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Abstract.
BACKGROUND: Although computer-aided detection (CAD) software employed with Artificial Intelligence (AI) system has
been developed aiming to assist tuberculosis (TB) triage, screening, and diagnosis, its clinical performance for tuberculosis
screening remains unknown.
OBJECTIVE: To evaluate performance of an CAD software for detecting TB on chest X-ray images at a pilot active TB
screening project.
METHODS: A CAD software scheme employed with AI was used to screen chest X-ray images of participants and produce
probability scores of cases being positive for TB. CAD-generated TB detection scores were compared with on-site and senior
radiologists via several performance evaluation indices including area under the ROC curves (AUC), specificity, sensitive,
and positive predict value. Pycharm CE and SPSS statistics software packages were used for data analysis.
RESULTS: Among 2,543 participants, eight TB patients were identified from this screening pilot program. The AI-based
CAD system outperformed the onsite (AUC = 0.740) and senior radiologists (AUC = 0.805) either using thresholds of 30%
(AUC = 0.978) and 50% (AUC = 0.859) when taking the final diagnosis as the ground truth.
CONCLUSIONS: The AI-based CAD software successfully detects all TB patients as identified from this study at a
threshold of 30%. It demonstrates feasibility and easy accessibility to carry out large scale TB screening using this CAD
software equipped in medical vans with chest X-ray imaging machine.
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1. Introduction

Tuberculosis (TB) is one of the top 10 causes of death and the leading cause from a single infectious
disease worldwide [1]. In 2015, World Health Organization (WHO) proposed the End TB Strategy,
aiming at a world free of TB [2]. The strategy stressed integrated, patient-centered care and prevention.
Early diagnosis of TB, treatment of TB patients and preventive treatment of persons at high risk are
key components of patient-centered care and prevention.

Detecting and curing TB patients are currently recognized as the most effective and cost-effective
TB control and prevention measures. Around the globe, passive detection strategies have been widely
used and recognized as a cost-effective way to identify TB patient, whereas can lead to the failure
of some TB patients to receive timely diagnosis and treatment, resulting in further transmission in
the community. Therefore, it has been recommended by WHO that countries should carry out active
screening and detection of TB in high-risk groups at national and provincial levels, based on their
epidemic situations and economic levels [3].

Although bacteriological examinations, including molecular test, sputum smear, and sputum culture,
are the main approaches to testing active TB, they are not practical in the large-scale screening of TB
in high-risk population. Chest radiography is the most preferred imaging technique for early diagnosis
of TB, and in developed countries, chest X-rays (CXRs) have been used for the evaluation of persons
with symptoms of active pulmonary TB (PTB), and for TB screening among high-risk groups for
several decades [4]. However, CXR has not been extensively used for screening active TB patients for
the lack of radiologists in low-resource, high burden areas [5]. Besides, screening large-scale CXRs
can lead to the fatigue of radiologists.

The development of artificial intelligence especially the recent break-through of deep learning tech-
nologies, has shed light in using computer-aided detection (CAD) software for automatic classification
of TB from normal and other abnormal CXRs to assist TB triage, screening, and diagnosis [6–8]. The
Stop TB Partnership has evaluated multiple CAD products from different countries with retrospective
datasets from TB triage settings, and all these products performed better than local human readers
[9, 10]. In a recent systematic review, Harris et al. concluded that CAD products are promising, but
also pointed out that majority of work in the literature had been on development rather than clinical
evaluation. All the 13 studies of clinical evaluation included in Harris’s review are about CAD4TB
(Delft Imaging, Netherlands). In addition to CAD4TB, nine more CAD products are under WHO
evaluation [11], but evidence about their clinical performance are limited. A recent prospective study
evaluated qXR (version 2.0) and CAD4TB (version 6.0) among symptomatic adults in a triage set-
ting with a reference of mycobacterial culture and reported that both software achieved non-inferior
accuracy (qXR: sensitivity = 0.93, specificity = 0.75; CAD4TB: sensitivity = 0.93; specificity = 0.69)
to WHO-recommended minimum values [12], further approve the value of CADs.

The clinical performance of CAD in TB screening settings, however, is still largely unknown. In this
study, one of the products under WHO evaluation, JF CXR-1, was employed in an active screening
pilot project in Guangdong Province (TB incidence 65/100 thousand compared to 56/100 thousands
nationwide in China, 2019) [13]. We evaluated its performance compared with human readers and
clinical diagnosis.

2. Materials and methods

2.1. Pilot project location and study population

We implemented this active TB screening project in Yingde, a county-level city with a total population
of 1.18 million in Northern Guangdong Province. This pilot study of TB screening aimed to recruit local
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Fig. 1. A flow-chart of inclusion and exclusion criteria.

residents who lived in Yingde for more than 6 months. A sub-urban district (target population 1846)
and a rural village (target population 1574) of Yingde were selected to recruit the participants. The
local Health Departments organized the recruitment and mobilization door-by-door to notify residents
about the screening program with propaganda and TB-related health education materials.

2.2. Screening procedures

All participants (including known TB patients) who showed up at the screening sites were verbally
screened for TB symptoms; TB infection was tested by interferon-gamma release assay (IGRA, QIA-
GEN, QuantiFERON®-TB Gold), and those who aged 15 years and above received a posterior-anterior
CXR (PA-CXR). Subjects aged 5–14 years were examined by CXR only if any of the following condi-
tions occurred, (a) with TB symptoms, (b) close contacts of TB patients (family members, classmates
and neighbors), or (c) IGRA positive.

CXR was taken in two mobile vans equipped with a digital X-ray machine (HEDY, DXR-530)
which was connected with an AI-based CAD system (JF CXR-1, v2). The Al algorithm was deployed
on Ali-Cloud, and DICOM images and AI results were transferred via 4G connection. On-site cer-
tified radiologists read the CXR image simultaneously and took into consideration of participant’s
demographic and other clinical information to issue a report.

Sputum tests were performed (sputum smear, sputum culture and a TB molecular test) for subjects
meeting any of the following conditions, (a) with TB symptoms, or (b) with abnormal CXR (whether
suggestive to TB or not), (c) with known active TB disease, or (d) with positive IGRA results.

After the on-site data collection, all images were re-read by senior radiologists, and participants with
CXR suggestive to TB but missed by the on-site radiologists were followed up to have sputum tests.
(Fig. 1).
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2.3. AI-based CAD system

The AI-based CAD system (JF CXR-1, v2) used in this pilot study was developed by a domestic
Hi-tech enterprise (JF Healthcare, Nanchang, China). It used cutting-edge deep learning technology to
detect multiple major thorax diseases simultaneously on PA-CXR image, including TB, pneumonia,
lung nodule/mass, and pleural diseases etc. This system was trained on approximately 150,000 CXR
from township level hospitals in multiple provinces across China. Each TB image was annotated by one
of three board-certified radiologists to localize TB lesions through bounding boxes or masks. The full
training dataset was randomly split into 90% for training and 10% for validation. A ResNet-34 backbone
Convolutional Neural Networks (CNN) with a customized mask layer was trained to recognize TB,
which achieved area under the curve (AUC)0.94 with 0.91 sensitivity and 0.81 specificity at the cutoff
value of 0.20 for the TB probability score. Heatmaps were generated to locate the lesion on the image
[13, 14]. The probability scores of TB generated by this AI-based CAD system were recorded in this
screening study for data analysis.

2.4. Diagnosis and treatment

TB diagnosis in this study followed China’s National TB Diagnosis Guideline (WS288-2017) [15].
Newly detected TB patients were registered in the National TB Program (NTP) and given standard
treatment in local TB-designated healthcare facilities.

2.5. Data analysis

The performance of the AI-based CAD system, including AUC, as well as the sensitivity and speci-
ficity at different thresholds of the probability score, was calculated comparing with the results of
on-site radiologists (group 1), senior radiologists (group 2) when taking final diagnosis (group 3) as
the ground truth, respectively. All abnormal CXR reports were reviewed and those with “TB” or “sus-
pect TB” in the diagnosis suggestion session were considered positive for TB. “Normal” and “other
abnormal” CXR were considered negative for TB. Pycharm CE (JetBrains, PyCharm 2020.1.2) and
SPSS 22.0 (IBM) software packages were used for data analysis.

2.6. Ethics

The study was approved by the Institutional Review Board of Center for Tuberculosis of Guangdong
Province. Each adult participant who received the TB screening provided a written informed consent.
Parental consent was obtained for participants less than 18 years of age.

2.7. Role of the AI developers

The AI developers had no role in study design, data collection, and analysis. The AI developers
participated in the AI-based CAD system manuscript writing, revision, and approved the final version.

3. Results

3.1. Participant characteristics and TB case finding

Ten days of the on-site screening from December 16–26, 2019 tested 2543 residents who showed up
at the TB screening site out of the total 3420 local residents from the two selected area (one sub-urban
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Fig. 2. Performance of the AI-based CAD algorithm.

district and one rural village). Female to male ratio was 1.37 : 1, and more than half of the participants
(63.43%) were 25–60 years old adults (Table 1).

About 24.18% participants had positive IGRA results (615 positive, which is consistent with recent
findings of LTBI prevalence in China [16]. In addition, 10.66% (271/2543) of participants showed TB
symptoms, 52 of which also had abnormal CXRs. On-site radiologists detected 56 CXRs “suggestive
to TB (including old TB)”, 211 “other abnormal”, 2276 “normal”. The senior radiologists confirmed
2110 participants’ CXRs as “normal,” while 389 “other abnormal,” and 44 “suggestive to TB (including
old TB)” (Table 1).

Eight TB patients were identified from this screening pilot (Table 1), four of which as bacteriologi-
cally confirmed (three by molecular test and one by culture), and the other four had clinical diagnosis
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Fig. 3. Comparison of TB detection performance among the onsite radiologists, senior radiologists and AI-based CAD
algorithm.

Fig. 4. Images of normal tuberculosis under threshold of AI-CAD Score = 0.3 and threshold of AI-CAD Score = 0.5.
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Table 1
Demographic characteristics of participants in the active TB screening pilot project, Yingde, Guangdong, December 16–26,

2019

Overall On site Human Reader Senior Human Reader Final
Categories Categories Diagnosis

2543 Normal Abnormal TB Not Normal TB Abnormal Not TB
but not sure but not TB

suggestive suggestive
of TB of TB

< 15 years 35 5 1 0 29 17 0 18 35 0
Young age (15–25years) 43 14 1 0 28 36 0 7 43 0
Middle age (25–60 years) 1613 540 86 23 964 1436 19 158 1608 5
Elder age (> 60 years) 852 191 123 33 505 621 25 206 849 3
Male 1073 314 90 36 633 851 28 194 1065 8
Female 1470 436 121 20 893 1259 16 195 1470 0

according to China’s National TB Diagnosis Guideline (WS288-2017). Seven were new, and one more
was on TB treatment for six months with abnormal CXR suggestive to TB as read by senior radiolo-
gists, positive molecular test result but negative IGRA result at the screening, and AI TB probability
score of 46%. It should be noted that the eighth patient was diagnosed four months later via follow-
up management due to suspicious CXR (AI score = 33.1%) and strong positive IGRA result at the
screening.

3.2. Performance of AI-based CAD system

In this 2543 participants dataset, the AI-based CAD system achieved AUCs of both above 0.85
when compared with the on-site radiologists (0.740) and senior radiologists (0.805). The highest AUC
(0.985) was achieved when comparing AI results to the final diagnosis (including bacteriologically
confirmed and clinical diagnosed TB patients as defined in China’s National TB Diagnosis Guideline
WS288-2017). Sensitivity, specificity, and PPV at the thresholds of 30% and 50% are shown in Table 4.
On sensitivity, AI-based CAD system shown better performance than human reader. At threshold of
50% (which was recommended before the start of the pilot), the AI-based CAD system missed two
TB patients, one of which was very early on the disease stage at screening and was followed-up to be
diagnosed three months later, and the other was on TB treatment for 6 months with positive molecular
test but negative IGRA at the screening. All eight TB patients could have been detected by the AI-based
CAD system at threshold 30%, but 97 participants would have to receive the subsequent sputum tests
compared to 71 at threshold of 50%.

4. Discussion

This active screening pilot project in Yingde identified seven new TB patients; one on-going patient
under TB treatment. The two screening sites had a total population of 3420, and therefore, the rough
TB prevalence was 234/100,000, with rough incidence 205/100,000,which is not only higher than the
estimated incidence rate of 58/100,000 in China, but also higher than the notification rate 65/100,000
in Guangdong Province in 2019 [13]. Unlike other retrospective studies [9, 17, 18], our study is one
of the few studies perform prospectively screening on healthy population.
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Table 2
AI-CAD results compared with different groups

Overall AI Result AI Result
Threshold Threshold
Score: 30 Score: 50

Negative Positive Negative Positive

2543 2425 118 2456 87

On-site radiologists Negative 2408 79 2435 52
Positive 17 39 21 35

Senior radiologists Negative 2414 85 2443 56
Positive 11 33 13 31

Final diagnosis Negative 2425 110 2454 81
Positive 0 8 2 6

The AI-based CAD system employed in this active screening pilot achieved better AUCs than on-
site and senior radiologists when taking the results of final clinical and bacteriological result as the
ground truth. This result is consistence with results reported by Cao XF, et al., [17]. In our study,
with sensitivity of 90%, the AI-based CAD system shows specificities larger than 70%, which meets
the WHO-recommended minimum values (90% for sensitivity, 70% for specificity). Nevertheless, our
study result indicates a threshold score of 30% (with sensitivity 100% and specificity 96%) is suggested
in future screening project. Furthermore, our study, conducted in 2019, is an innovative study to test
the performance of a commercially available AI technique on real world on-site screening, rather than
those study focusing on potential patients showed up on hospital triage [12]. Therefore, even though
our study evaluates one available AI-based CAD system, it showed a promising performance of the
AI-based CAD system, which indicates more and more concerned should be put on future AI screening.
Further analysis of AI’s false positive CXR at threshold of 30%, more were abnormal but not suggestive
to TB as determined by on-site radiologists (77.7%) and senior radiologists (93.5%) (Table 2). Less
than 74.7% were normal CXR as determined by human readers. Most likely, AI tends to mistakenly
group other abnormal CXR as TB. Differential diagnosis is challenging in CXR interpretation for AI
and for human readers. To flag other abnormal CXR as TB to raise the attention of clinicians and
patients may waste the resource of TB testing, but could benefit patient care.

There are a few limitations in this study. Not every participant received sputum test due to resource
restriction and difficulties to collect sputum from apparent healthy subjects. As recommended in
Harris’s review, microbiologic reference standard of culture or nucleic acid amplification tests (NAAT)
are preferred to assess CAD accuracy [18]. This study mainly assessed CAD performance against
human readers (on-site and senior). In addition, CAD score were not considered as one of the criteria
for subsequence sputum test, and therefore, the false positivity of CAD may be over-estimated. It
has been reported that 19.5% of bacteriological positive patients who had CXR not suggestive to TB
as by human readers [19]. The CAD threshold of 30% as recommended based on findings from this
study may not be the ideal threshold in other settings; additional evaluations from sites with different
demographic and disease prevalence baseline other than Yingde are needed to better determine the
threshold of this CAD for TB screening purpose. Last but not least, we failed to include a cost-effective
analysis, which plays an important role in decision makings of public health program.

In conclusion, this is one of few studies so far to evaluate CAD in an active TB screening program.
This commercially available CAD successfully detected all TB patients as identified from this study
at a threshold of 30%. It is quite feasible and accessible to carry out large scale TB screening using



Q. Liao et al. / Evaluation of an artificial intelligence (AI) system 229

Table 3
AI results and demographic distribution

Overall AI Result AI Result
Threshold Threshold
Score: 30 Score: 50

≥30 < 30 ≥50 < 50
2543 118 2425 87 2456

Age group
< 15 years 1 34 0 34
Young age (15–25 years) 0 43 0 43
Middle age (25–60 years) 44 1569 32 1581
Old age (> 60 years) 73 779 55 797

Gender
Male 80 993 64 1009
Female 38 1432 23 1447

Table 4
Comparison of Sensitivity, Specificity and Positive predict value (PPV) between

AI results and radiologists

Sensitivity Specificity PPV

On-site Radiologists 50% 97.90% 7.10%
Senior Radiologists 62.50% 98.50% 11.40%
AI (Threshold 30) 100% 95.70% 6.80%
AI (Threshold 50) 75% 96.80% 6.90%

The gold standard was defined as bacteriologically confirmed and clinical diagnosed TB.

CADs equipped in medical vans with DR. In future scaled-up studies, CAD could be considered to
assist the on-site radiologists to further increase the efficiency of TB screening.
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