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Abstract.

BACKGROUND: Chest X-ray imaging has been proved as a powerful diagnostic method to detect and diagnose COVID-19
cases due to its easy accessibility, lower cost and rapid imaging time.

OBJECTIVE: This study aims to improve efficacy of screening COVID-19 infected patients using chest X-ray images with
the help of a developed deep convolutional neural network model (CNN) entitled nCoV-NET.

METHODS: To train and to evaluate the performance of the developed model, three datasets were collected from resources
of “ChestX-ray14”, “COVID-19 image data collection”, and “Chest X-ray collection from Indiana University,” respectively.
Overall, 299 COVID-19 pneumonia cases and 1,522 non-COVID 19 cases are involved in this study. To overcome the probable
bias due to the unbalanced cases in two classes of the datasets, ResNet, DenseNet, and VGG architectures were re-trained in
the fine-tuning stage of the process to distinguish COVID-19 classes using a transfer learning method. Lastly, the optimized
final nCoV-NET model was applied to the testing dataset to verify the performance of the proposed model.

RESULTS: Although the performance parameters of all re-trained architectures were determined close to each other, the
final nCOV-NET model optimized by using DenseNet-161 architecture in the transfer learning stage exhibits the highest
performance for classification of COVID-19 cases with the accuracy of 97.1 %. The Activation Mapping method was used
to create activation maps that highlights the crucial areas of the radiograph to improve causality and intelligibility.
CONCLUSION: This study demonstrated that the proposed CNN model called nCoV-NET can be utilized for reliably
detecting COVID-19 cases using chest X-ray images to accelerate the triaging and save critical time for disease control as
well as assisting the radiologist to validate their initial diagnosis.
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1. Introduction

The new coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2) has spread all over the world and has become a global public health issue [1].
COVID-19 that has been declared as a pandemic by World Health Organization (WHO) on 11th March
2020 leads clinical symptoms such as acute respiratory disorder, fever, cough, sore throat, headache,
fatigue, muscle pain, and shortness of breath [1-3]. According to the statistical reports, it has been
reported that one of the most crucial step in the fight against the COVID-19 is early identifying the
infected individuals and commencement of treatment procedures in severe cases as well as quarantine
procedures to mitigate the spread [3-6].

Diagnosis procedure of COVID-19 disease mainly follows these steps; i) clinical symptoms; ii) epi-
demiological history, and iii) viral nucleic acid test or CT images [7-9]. Although the real-time reverse
transcription- polymerase chain reaction (RT-PCR) test is mainly accepted as a standard diagnostic
method, it has several shortcomings such as lack of test kits for tens of thousands of suspected patients
especially in hyper-affected areas, availability in rural areas, and lower sensitivity (60%—70%), repro-
ducibility, and specificity compared to CT chest images [1, 10-11]. Moreover, the RT-PCR method has
a quite complicated manual and time-consuming process and shows relatively low positive detection
rates in early stages of the disease [9, 10]. Another major tool utilized for COVID-19 screening is
the radiological imaging techniques where chest x-ray or CT can be conducted [12, 13]. The obtained
images or scans need to be analyzed by radiologist to detect the visual radiograph pattern associated
with SARS-CoV-2 viral infection. However, it is not easy to distinguish COVID-19 pneumonia from
other types of pneumonia since they are similar to each other and sometimes certain manifestations
may overlap with other lung infections [9].

CT techniques take considerably more time than x-ray imaging as well as in many under-developed
countries/regions or rural areas CT may not be available whereas x-ray imaging considered standard
equipment in most healthcare systems is a widely available and low-cost radio-diagnostic technique
[11]. With the help of the utilization of the x-ray imaging technique for COVID-19 detection, the triage
step could be accelerated so the application of the treatment, and taking measures could significantly
speed up. Furthermore, the portable roentgen systems enable us to perform diagnosis in an isolation
room, home, etc. so that the transmission risk could be remarkably reduced [12]. However, the biggest
challenge faced is it is required expert radiologists to evaluate the x-ray images. In some cases, the
quality of radiographs may not be high enough to evaluate accurately by radiologists.

Bearing all of this information in mind, it can be concluded that the developing of deep learning
models is of great importance to the screening and diagnosis of all infections, especially COVID-19
in early stages. Specifically, CNN capable to enhance the quality of low-light images helps to identify
the hallmarks of disease that might be difficult for visual recognition [13]. By implementation of deep
learning models in the healthcare system, not only the quality of healthcare and the welfare of the
patients can be improved but also the diagnostic can be more effective [14]. Additionally, it is possible
to lower healthcare costs by means of utilizing artificial intelligence and machine learning models
in such systems. Especially the healthcare system still needs such practical solutions for rapid, cost-
effective, diagnosis, treatment, and quarantine measures of COVID -19 pneumonia cases. Hence, for
onsite applications it is critical developing a fast automated tool that can process chest x-ray images
and detect COVID-19 pneumonia. Deep-learning algorithms intended to analyze the radiodiagnostic
images to screen the disease in the early-stage is revolutionary [15]. These algorithms should be fueled
by big datasets to train themselves to attain a particular task. During the last decades, in literature, there
has been a number of studies based on deep learning motivated by the requirement of rapid diagnosis
by means of medical imaging [9, 16]. The results obtained by chest CT scans have been shown to be
very promising in terms of accuracy in detecting the patients infected with COVID-19 [1, 9, 17, 18].
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On the other hand, an artificial intelligence model based on chest x-ray images will provide a method
to assist clinicians in improved screening, as it can diagnose cases of COVID -19 pneumonia quickly
and cost-effectively.

The number of data and the method for classification of COVID-19 cases used in studies vary. Among
the studies, the most preferred method is the convolutional neural network (CNN). In a study conducted
by Jain et al., examined three different models including Inception V3, Xception, and ResNeXt for on
screening of Covid-19 from Chest -ray scans. They reported Xception model has the best performance
with an accuracy of 97.97% [19]. Similar to our study Minaee et al. developed a deep learning model
for detection of COVID-19 infected patients from Chest x-ray images by fine-tuning four different
pre-trained CNN architectures including ResNet18, ResNet50, SqueezeNet, and DenseNet-121, and
they reported SqueezeNet and ResNet18 have achieved relatively higher performance that the other
models [20] Quchicha et al., proposed a deep CNN model called CVDNet based on the residual neural
network to classify COVID-10 infection from normal and other pneumonia cases from Chest x-ray
images, and they reported that the model can classify COVID-19 class with an accuracy of 97.20% [21].
Panwar et al. also have developed a deep learning model with the same purpose. They reported that the
proposed model was able to detect COVID-19 positive cases in lower than 2 seconds with an accuracy
of 95.61% [22]. In another work conducted by Ozturk et al., a deep learning based model to detect
and classify COVID-19 cases from X-ray images collected from “COVID-19 image data collection”
database was provided. The proposed model has developed for both binary (COVID and no-findings)
and multi-class (COVID, no-findings and pneumonia) cases. They reported the highest accuracy was
obtained as 98.08% and 87.02% for binary classes and multi-classes, respectively [23]. In another
work reported by Albahli and Albattah, a transfer learning approach was proposed. Three different
deep learning architectures including Inception ResNetV2, InceptionNetV3, and NASNetLarge were
selected and fine-tuned for detection of COVID-19 cases from chest x-ray images. It was declared that
InceptionNetV3 yielded the best accuracy level as 98.63% [24]. Asnaoui et al., compared different
deep CNN architectures including VGG16, VGG19, DenseNet201, InceptionResNetV2, InceptionV3,
ResnNet50, MobileNetV2, and Xception for automatic binary classification of pneumonia images such
as SARS, COVID-19. The fine-tuned version of CNN architectures exhibited high performance rate in
training and validation accuracy (up to 96%) [25]. Azamin et al., implemented a deep learning model
based on the ResNet101 CNN architecture for the same purpose. The training and validation datasets
were collected from ChestX-ray14 database, and the accuracy of the model was reported as 71.9%
[26]. Bassi et al., used ChestX-Ray14 database, too. They fine-tuned CNN architectures and applied a
twice step transfer learning approach, and they reported test accuracy of 99.4% [27].

The developed nCoV-NET designed for the automatic screening of COVID-19 without requiring
any handcrafted techniques helps to provide a second opinion to expert radiologists in health centers.
It is predicted to significantly reduce the workload of clinicians and assist them to make an accurate
diagnosis in their daily routine work.

2. Materials and method
2.1. Preparing of datasets

In this work, datasets collected from three different sources, including “ChestX-ray14,” “COVID-19
image data collection”, and “Chest X-ray collection from Indiana University” [28] were used for the
diagnosis of COVID-19 from chest x-ray images. The first data set, ChestX-ray14 [29], consisted
of 112, 120 frontal-view chest radiographs of 30, 805 patients. Only chest radiographs labeled with
1431 pneumonia were used in this data set that was labeled automatically with Natural Language
Processing (NLP) techniques of radiographic interpretations received from the Picture Archiving and
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Communication System (PACS). The accuracy of these labels is reported to be over 90% [30]. The
bit-depth of the radiographs in 16-bit Digital Imaging and Communications in Medicine (DICOM)
format was reduced to 8-bit Portable Network Graphics (PNG) format without compression (without
Joint Photographic Experts Group (JPEQG) artifacts). At this stage, 256 times data loss was experienced.

In the second data set, called COVID-19 image data collection [31], there are 208 radiographs
for COVID-19 case and 41 radiographs for non-COVID-19 (bacterial, fungal or other viral types of
pneumonia) cases (with Posteroanterior (PA) and Anteroposterior (AP) views). However, this database,
which also includes contralateral and lateral view chest radiographs, is created to transform the data
obtained from the articles into a database for access to COVID-19 radiological data. Hence, it contains
lossy-images taken from articles. In addition, it has been noticed that the some of the properties such
as brightness, contrast, sharpness are modified by the authors in most of the images. It can be said that
the database may be biased due to such effects. For this reason, in this study, to eliminate the probable
bias problem on the database pre-processing explained in the following section have been proposed.

The third dataset, “Chest X-ray collection from Indiana University”, was used as testing dataset
for non-COVID-19 cases. The cases of pneumonia in this dataset were manually detected together
with the radiologists from the Akdeniz University, Turkey. 50 non-COVID-19 pneumonia cases were
tagged by the experts and used as testing datasets.The collected data were classified as non-COVID-19
pneumonia and COVID-19 pneumonia. The total number of non-COVID-19 cases is 1,522 whereas
the number of COVID-19 pneumonia cases is 299 (~5.0 times less). Thanks to the structure of the
selected architectures that will be used in the transfer learning and optimization step, it was aimed to
avoid the unbalanced dataset problem. Whereas 199 training data,50 validation data, and 50 testing
data of “COVID-19 Pneumonia” class were used, 1177 training data and 295 validation data, and 50
testing data were used for the “Other Pneumonias” class.

2.2. Pre-processing

In order to solve the probable bias problem mentioned in the Section 2.1, chest x-ray radiographs
without JPEG artifacts were recorded in JPEG format by changing the IMWRITE JPEG_QUALITY
value between 30 and 70 randomly with the imwrite() method in the OpenCV [32] library. Furthermore,
the bias problem was tried to be solved by adding random brightness, contrast, sharpness adjustments
in addition to JPEG artifacts to this data.

Since the previously trained Convolutional Neural Networks (CNN) networks to be used work with
RGB (Red, Green, Blue) inputs, grayscale radiographs need to be colored with colormap (Fig. 1).
Although all the data used are 8-bit grayscale images, the main reason for applying colormap to the
graphics is to create a custom dataloader ready to work with 16-bit DICOM formats. By this way,
when DICOM files are used on the model, 16-bit data can be transferred to 24-bit RGB color space
without loss. It is also expected that the coloring process may provide a solution to the probable bias
problem. For this purpose, all radiographs are colored with the colormap named COLORMAP_JET in
the OpenCYV library and transferred to 24-bit space. Due to the few numbers of data and unbalanced
classes in the dataset, all the radiographs were augmented randomly by horizontal and vertical flipping,
rotating, zooming, changing brightness values, and warping (Fig. 2). Since these augmentations also
simulate different types of images created by different x-ray devices, itis a very crucial step to generalize
the suggested model.

2.3. Transfer learning and optimization

Transfer learning technique was used in this work since there are few numbers of the available
dataset. The transfer learning and optimization of the model was conducted on a personal computer
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Fig. 1. Schematic presentation of pre-processing step.
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Fig. 2. Schematic representation of the augmentation process.

(Ryzen 5 1600 CPU, 16GB DDR4 RAM, Nvidia RTX 2080 Ti Graphics Card). Fastai [33] and
OpenCV [32] libraries were used to develop the model. Residual Neural Network (ResNet) [34], Dense
Convolutional Network (DenseNet) [35], and Visual Geometry Group (VGG) [36] architectures, which
have already been trained by ImageNet [37] database, and therefore already able to classify in 1,000
different classes, were re-trained to distinguish COVID-19 pneumonia and non-COVID-19 pneumonia
by transfer learning. It is an advantage to use pre-trained architectures to enhance training speed and
accuracy of the new proposed model, since the main image features that have already been learned can
be transferred to the new task.

During transfer learning studies, the convolution layers of ResNetl8, Resnet34, ResNet50,
ResNet101, ResNetl152, DenseNet121, DenseNet161, DenseNet169, DenseNet201, VGG16, and
VGG19 architectures, which have previously trained by ImageNet to achieve the accurate results
with few datasets, were frozen and only fully connected layers were re-trained. The numbers in the
name of architectures such as 34, 50, 152, and 121, etc. represents the number of weight layers within
the respective neural network. The VGG Net is developed a result of an idea of much deeper networks
with much smaller filters. There are three types of VGG Net architectures including VGG-11, VGG-16,
and VGG-19 and these networks contain 11, 16 and 19 convolutional and fully connected layers. The
VGG network is characterized by its simplicity, using only 3 x 3 convolutional layers stacked on top
of each other in increasing depth. Reducing volume size is handled by max pooling. The configuration
of VGG- 16 s as follows: the number of convolutions and max- pooling layers: 13, max-pooling layer:
1, fully connected layers: 3, and Softmax layer: 1. Total weights is 138 million. The VGG-19 consisted
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of 16 convolutional layers, one max-pooling layer, 3 fully connected layers followed by a Softmax
layer [36].

The main base element of ResNet is the residual blocks. In ResNet, all these residual blocks are
stacked together very deeply. Thanks to this, it prevents the distortion that occurs as the network gets
deeper and more complex. In addition, bottleneck blocks are used to make training faster in the ResNet
model. Another thing with this very deep architecture is that it is enabling up to 150 layers deep of
this. The number of filters can be doubled and downsample spatially using stride two in ResNet [34].
DenseNet is densely connected CNN where each layer is connected to all previous layers. Therefore,
it forms very dense connectivity between the layers. The DenseNet consists of several dense blocks,
and the layer between two adjacent blocks is called transition layers. The former define how the inputs
and outputs are concatenated, while the latter control the number of channels so that it is not too large.
DenseNet uses the modified “batch normalization, activation, and convolution” structure of ResNet
[35].

The learning rate were explored from 1.0 x 107 to 1.0 over 170 iterations for all architectures, then
it was stopped when loss diverged. Following the completion of the learning rate exploration process,
the learning rate values for each architecture were similarly determined as 1.0 x 1072 and they were
trained in a total of 40 epochs. During the training process, the radiographs were used at a resolution of
224 x 224 pixels. On the other hand, the patterns on chest x-ray images cause the pneumonia are usually
thin and tiny. Therefore, it is important to enhance the resolution of the radiograph for the optimization
of the model. For this purpose, all the radiographs were re-sizes at a resolution of 448 x 448 pixels,
then the pre-processing step was applied to each radiograph.

Another issue to be considered in the optimization process is fine-tuning. In fine-tuning process, the
frozen convolutional layers were re-trained by unfreezing the layers. In the backpropagation process,
the “stochastic gradient descent with restarts” [38] technique is used to find the minimum points on
the loss function. As the iterations progress, the learning rate value is updated by repeating with the
“cosine annealing” method and by expanding the period. Thanks to the dynamically updated learning
rate, the minimum points on the “loss function” can be determined more accurately. In order to apply
the “stochastic gradient descent with restarts” technique to the network trained at transfer learning
stage (1Ist stage), the limits of the learning rate values should be determined. To determine the limit
of the learning rate values, following the completion of the 1st transfer learning stage as stated above,
the learning rate exploration process of unfrozen networks was repeated and the appropriate learning
rate interval to be studied was determined. At the end of the transfer learning and optimization step,
the final model (optimized nCoV-NET model) was applied to a independent testing dataset to verify
its performance.

2.4. Activation maps

Gradient-weighted Class Activation Mapping (Grad-CAM) method helping to improve causality
and intelligibility was used to create activation maps that highlights the crucial areas of the radiograph
[39-41]. In the Grad-CAM method, the gradients of the radiographs flowing into the final convolutional
layer to produce a rough localization map in which the important areas are highlighted is used. It has
been reported that the deeper presentations in a convolutional neural network capture upper-level visual
constructs [42, 43]. Additionally, the convolutional layers able to keep spatial information which is
lost in fully-connected layers. Thus, it can be expected the last convolutional layers to have the perfect
concurrence between high-level semantics and detailed spatial information. The semantic class-specific
information in the image are tried to find by the neurons (i.e. object parts). Grad-CAM uses the gradient
information flowing into the last convolutional layer to assign significance values to each neuron.
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2.5. Performance evaluation criteria

The accuracy, recall (sensitivity) and precision (positive predictive value) parameters are the main
parameters to determine the performance of the model. In confusion matrix there is four possible
outcomes including true positive (TP), true negative (TN), false positive (FP), false negative (FN).
When the case is actually positive, if it is classified as positive it is labeled as TP, in contrast, if it is
classified as negative it is labeled as FN. Similarly, in the case of negative, if the case is classified as
negative it is TN, if is classified as positive it is labelled as FP [44]. To evaluate the performance of the
tailored convolutional neural networks the accuracy, recall and precision coefficients were determined
as followings.

TP +TN

Accuracy % = ( ) x 100 (D)
TP+ TN + FP + FN
TP
Recall % = () x 100 )
TP + FN
. TP

Precision % = <) x 100 3)

TP + FP

A confusion matrix is a performance measurement technique for summarizing the performance
of a developed deep learning classification model. Calculating a confusion matrix provides a better
representation of what classification model is getting right and what types of errors it is making. It also
ensures insight not only into the errors being made by the classifier but more importantly the types of
errors. It is a matrix including the different combinations of predicted and actual values.

3. Results

The training process consists of three basic stages as followings; i) different architectures in various
depths including ResNet, VGG and DenseNet were examined and all convolutional layers were frozen
and trained i) the most appropriate architecture was determined and fine-tuning process was performed
for each architecture iii) the inference results of the activation map were evaluated, which establishes
a bridge between radiologists and artificial intelligence for understanding.

3.1. The I*" stage: Transfer learning

In the first stage of transfer learning, fully connected layers of ResNet, DenseNet, and VGG archi-
tectures, previously trained by ImageNet datasets with different layer numbers, were re-trained and
structured to distinguish between COVID-19 pneumonia and non-COVID-19 pneumonia. All training
conditions were set as a resolution of 224 x 224 pixels, batch size of 16, the learning rate of 1.0 x r10~2
to compare different architectures.

The obtained accuracy, recall and precision values for each architecture were depicted in Fig. 4.
As can be seen from Fig. 4, in the 1st stage transfer learning step, all models conducted by different
numbers of layers showed similar performances on different types of CNN architectures. Since the
dataset consists small and unbalanced data and the learning rate used in the first stage were relatively
large, performance charts varied in each epoch value, causing noise in the charts, thus making it
difficult to determine the performance criteria of the networks. According to the results determined
by the training, it was determined that the values of accuracy, recall, and precision were very close to
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each other. Thus, it was decided that the bottleneck both for data set and parameters used in training
process was not CNN architectures.

In the light of this information, it was decided to perform fine-tuning on VGG-16, DenseNet-161
and ResNet-50 architectures by considering both computational efficiency and the performance of
networks in similar medical studies [45-47]. Also, it was aimed to improve the performance criteria.

3.2. The 2" stage: Fine-tuning and optimizations

Following the 1st stage transfer learning process, it was decided to improve the image resolution value
for selected architectures including VGG-16, DenseNet-161 and ResNet-50. The most important reason
for this was that pneumonia findings on chest x-ray images might contain small features compared
to the lung itself. Therefore, in the studies conducted with the new input resolution determined as
448 x 448 pixels, the learning rate values of networks whose input resolution was changed after the
learning rate exploration process were similarly determined as 1 x 10~2. Convolutional layers were
trained for 20 training epochs by setting batch size as 8 while frozen.

To apply SGDR to the model, the learning rate exploration process must be repeated on the unfrozen
model and the maximum and minimum learning rate limits to be used must be determined [38]. These
determined learning rate values were used as maximum and minimum learning rate values in the cosine
annealing process. In Fig. 5, loss values versus learning rate values and preferred learning rate intervals
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for use in SGDR were specified for each network. Learning rate intervals to be used in training are
indicated with orange fields (Fig. 5).

As a result of the total of 80 Epoch training process, validation loss, validation accuracy, recall and
precision metrics were calculated after each epoch and the results were plotted as depicted in Fig. 6.
Validation loss values for all three architectures appeared to decrease exponentially and had a stable
structure by reaching saturation. Validation accuracy, recall and precision values appeared to be very
close to each other for all three architectures.

Confusion matrix is a performance measurement for machine learning classification problem where
output contains two or more classes. The confusion matrices for each model with different architecture
were calculated at the points where the models perform at maximum to obtain a better idea of the
performance of the developed models. The confusion matrices calculated for both validation dataset
and testing datasets were depicted in Fig. 7. The results revealed that the DenseNet-161 architecture
performs better than other architectures with the following graphs (Fig. 7). It was observed from the
confusion matrix of DenseNEt-161 architecture calculated for the validation dataset reported in Fig. 7c
that the nCoV-NET model can detect 38 out of 50 patients with COVID-19 as having COVID-19, 295
out of 295 non-COVID-19 cases as non-COVID-19. On the other hand, it was seen that it misclassified
12 non-COVID-19 cases as COVID-19 case. Moreover, from the confusion matrix of DenseNet-161
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matrices for the testing dataset).

Table 1
Comparison of performance metrics of nCoV-NET for different architectures
Performance Architecture
Metrics VGG-16 DenseNet-161 ResNet-50

Accuracy  Recall Precision Accuracy Recall Precision Accuracy Recall Precision

Ist Learning Stage 95.36 99.66 95.14 95.94 99.66 95.76 95.65 99.66 95.45
2nd Learning Stage 96.52 100.00 96.09 97.10 100.0 96.72 96.81 100.00 96.40
nCoV-Net (applied 80.00 84.00 74.00 82.00 86.30 76.00 79.00 83.70 72.00
to the testing data)

architecture calculated for the testing dataset proposed nCoV-NET model achieved an accuracy of 82.0
% to classify COVID-19 cases (Fig. 7d).

In Table 1, the results of the fine-tuning process including the first stage and the second training
stage were tabulated. As can be seen from the chart, DenseNet-161 architecture exhibited the best
performance in accuracy, recall and precision metrics. Additionally, it should be noted that all trained
networks presented high recall (sensitivity) values. Moreover, the performance parameters of opti-
mized nCoV-NET (final model) calculated for the independent testing dataset were listed in Table 1.
It was clearly seen that DenseNet-161 presented the highest accuracy value as 82% amongst the other
architectures.
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Fig. 8. The illustration of radiographs where all networks made same mistakes.

On validation dataset, for the COVID-19 pneumonia class, 12 false-negative cases were encountered
in VGG-16 architecture, 10 in DenseNet-161 architecture, and 11 in ResNet-50 architecture (Fig. 7).
As a result of the examinations with radiologist, 8 same data were predicted as false-negative for
each architecture. In Fig. 8 these radiographs were presented with their metadata. In the light of these
findings, two hypotheses have been developed that cause this problem. The first one could be the
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(b) ©

Fig. 9. The illustration of (a) original radiograph entered to the network, (b) calculated activation map, (c) superimposed
version of the original radiography and its activation map.

bias problem in the dataset since the same errors were repeated in the same way by all networks
[48]. It is difficult to examine chest radiographs only for pneumonia because the lungs belonging
to the non-COVID-19 pneumonia or COVID-19 pneumonia classes, in addition to healthy lungs,
atelectasis, cardiomegaly, effusion, infiltration, mass, nodule, pneumothorax, consolidation, edema,
emphysema, fibrosis, pleural thickening and may have one or more different pathologies such as
hernia [49]. This is why it is crucial that the data set contains large enough and large numbers of sub-
pathology groups. As the databases expand and generalization is achieved, it will be possible to decrease
the bias on the database. Another point suggested by radiologists was that in these cases both the
involvement was mild and could not be detected due to limitations that could be caused by monitoring
materials.

3.3. Activation map and radiologist expert interactions

Since radio-diagnosis takes an important role in the detection of early-stage COVID-19 cases and
taking further measures, it is crucial to train the CNN model to detect more sensitively of COVID-19
positive lung. Thus, in the last stage of the study, the original labels of the radiographs of COVID-19
cases confirmed positive by the RT-PCR test and the predictions errors of the nCoV-NET outputs were
evaluated by an expert radiologist to confirm model robustness. The nCoV-NET is capable to determine
the pathognomonic findings for COVID-19 including ground-glass opacities, consolidation areas, and
nodular opacities. In the chest x-ray images of COVID-19 infected patients, bilateral, lower lobe and
peripheral involvement can be observed. Thus, the developed model should detect the localization of
these to identify the early stages of COVID-19 cases [23].

The activation mapping was applied to the chest x-ray images by Grad-CAM algorithm so that
radiologists could diagnose the artificial neural network chest x-ray and determined which regions the
diagnosis was based on and decided accordingly (Fig. 9).

In Fig. 9, the original radiograph, the activation map obtained by the Grad-CAM algorithm, the
overlaying of the original radiograph with the activation map was presented on the left, in the middle,
and on the right, respectively. As can be seen from Fig. 9, on the far right, bright regions could be
defined as regions containing the features that had the most effective role in artificial neural network
decision making. In this way, causality and explainability were included in the study [23]. It was
concluded that the developed model could be used in healthcare centers so that would no need to wait
long times for the radiologists to interpret the images.
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Table 2

The comparison of similar works for artificial intelligence based automated detection of COVID-19 pneumonia from chest
X-ray images

Study Number of Cases Method Used Accuracy (%)
Apostolopoulos et al. [52] 224 COVID-19 (+) VGG-19 93.48
504 Healthy
Wang and Wong [51] 53 COVID-19 (+) ResNet-50 93.3
5526 COVID-19 (-)
8066 Healthy
Hemdan et al. [50] 25 COVID-19 (+) VGG-19 90.0
25 Normal
Khobani et al. [56] 76 COVID-19 (+) ResNet-18 93.5
5526 Pneumonia
8066 Healthy
Zhang et al. [57] 493 COVID-19 (+) ResNet-18 83.61
24596 Pneumonia
18774 Healthy
Sethy and Behra [58] 25 COVID-19 (+) ResNet-50 95.38
25 COVID-19 (-)
Rahimzadeh and Attar [59] 118 COVID-19 (+) ResNet50V2/Xception 914
6037 Pneumonia
8868 Healthy
Hall et al. [60] 33 COVID-19 (+) VGG16/ResNet-50 93.12
208 Pneumonia
This study 299 COVID-19 nCOV-NET (optimized by 97.10
1522 Pneumonia finetuning with DenseNET-161)

4. Discussion

The rapid diagnosis and triaging are vital for the control of infectious diseases, specifically COVID-
19. There is urgent requirement for alternative effective and timely diagnosis methods that can be
utilized by front-line health care personal to quick and accurate diagnosis of COVID-19. The utilization
of artificial intelligence-based models becomes prominent in screening of COVID-19 infected patients
fromradiological images. As depicted in Table 2. in literature, there are plenty of valuable works which
used the similar datasets to train the CNN model to differentiate COVID-19 pneumonia from Chest
CT scans of Chest x-ray images.

For example, in a study conducted by Hemdan et al., the COVIDX-Net model with a 90% accuracy
rate was developed to screen COVID-19 from x-ray images [50]. In another study reported by Wang
and Wong, a deep learning approach based model called COVID-NET with 92.4% accuract rate was
suggested for COVID-19 detection by using 16,756 chest x-ray images collected from different open
access sources [51]. loannis et al. proposed a transfer learning model with a high accuracy rate of
98.75% for the detection of COVID-19 cases from radiology images [52]. With a similar purpose of
automatic detection of COVID-19 cases from radiology images Narin et al. utilized different CNN
architectures including ResNet50, ResNet101, ResNet152, InceptionV3, and Inception-ResNetV2, and
they reported that ResNet50 model provided the highest classification performance in a range changes
between 96.1% and 99.7% [53]. Singh et al. presented the performance of their proposed model
by dividing the dataset at various training and testing rates, and they reported the highest accuracy as
94.65 % at 70% training and %30 testing ratios [54]. In another study, COVID-19 positive, pneumonia,
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and other infection classes were employed for training the CNN model developed by Das et al., and
the dataset was divided 70% training, 10% validation, and 20% for the testing dataset. The results
proved that the developed model achieved 94.40 % accuracy over the testing dataset for differentiation
COVID-19 cases [55].

Bearing all summarized information in mind, it can be concluded that most of the studies have a
limited number of COVID-19 data and most of them used biased datasets, and it was observed that
common architectures such as VGG and ResNet were used. Therefore, considering this problem, a deep
convolutional neural network model called nCoV-NET was developed to screen COVID-19 infected
patients from chest x-ray images, and it is aimed to eliminate the debias issue in other works. Moreover,
this study was developed to show whether the proposed CNN model, nCoV-NET, can be utilized for
differentiating COVID-19 pneumonia and other pneumonia with high sensitivity and accuracy for
practical use.

The performance evaluation results of the model have pointed out the proof of principle that nCoV-
NET can extract hallmarks of COVID-19 from chest x-ray radiographs to diagnose the COVID-19
pneumonia with an accuracy of 97.1%. As a result of training steps, it was concluded that only fully-
connected layers were not enough to re-train. Thus, convolutional layers were also re-trained and
the performances of the networks were increased with fine-tuning after the first stage. Although the
performance results of all CNN architectures were determined close to each other, DenseNet-161 was
identified as the most suitable CNN architecture among fine-tuned architectures. In the last step of
the model development, an activation map was created by implementing the Grad-CAM algorithm,
and radiologists were informed about which points artificial intelligence focused on the graph. In
the evaluation process, all CNN architectures found the same 8 data of COVID-19 pneumonia as
false-negative. This situation could explain why all architectures gave close results. In addition, this
situation was thought to be due to both medical reasons such as mild lung involvement and limitations
of monitoring materials and bias problem, as stated in the two hypotheses described in the results and
discussion section. However, the main shortage of this study is the limited number of available data. The
performance of this model is expected to increase by increasing the number of datasets. Furthermore,
since we have used the latest version of the “COVID-19 image data collection” database, which is
constantly updated in our study, it is thought that this work will contribute to the future COVID-
19 studies. In addition, it is thought that comparing different architectures and choosing suitable
architecture will make a great contribution to the literature. The main advantages of the proposed CNN
model, nCoV-NET, can be listed as follows:

e With the developed debiasing data loader, the model was tried to be generalized by eliminating
the bias problem.

e The proposed model has been prepared for models planned to be developed in the future with a
transfer learning technique by using high bit depth DICOM graphics.

e The model achieved to differentiate COVID-19 cases with an accuracy of 97.10%

e Thanks to the activation mapping the model can highlighst the crucial areas on chest x-ray images
to improve the causality and intelligibility.

o Different architectures with different weight layers including ResNet, DenseNet and VGG have
been utilized in transfer learning stages to optimize the model.

5. Conclusion

In this work, the performance of the transfer learning model was enhanced by implementing a
debiasing-data-loader approach to avoid the bias problem and to obtain high accuracy values for
automatic detection of COVID-19 cases from Chest x-ray images. In essence, it can be concluded that
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by utilizing proposed transfer learning model called nCoV-NET in the healthcare system the diagnosis
time can significantly shorten so the disease can be effectively controlled and the possible spreading
risk of virus can thus be prevented. Moreover, in this way, the work-load of the experts in the field can
significantly be reduced. The developed nCoV-NET model works online at www.notrino.com/ncov-
net and says that as a result of the graphic files given to the model, the graphic belongs to the class
“COVID-19 Pneumonia” or “Other Pneumonias” with an accuracy of 97.10%, and by visualizing the
activation map on the graphic, provides graphical information. The performance of the proposed model
is evaluated by the expert radiologist from Akdeniz University Hospital, Turkey, and it is proved that
it is ready to be tested with larger datasets.
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