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Abstract. X-ray Computed Tomography (XCT) has become an important tool for industrial measurement and quality control
through its ability to measure internal structures and volumetric defects. Segmentation of constituent materials in the volume
acquired through XCT is one of the most critical factors that influence its robustness and repeatability. Highly attenuating
materials such as steel can introduce artefacts in CT images that adversely affect the segmentation process, and results in
large errors during quantification. This paper presents a Markov Random Field (MRF) segmentation method as a suitable
approach for industrial samples with metal artefacts. The advantages of employing the MRF segmentation method are shown
in comparison with Otsu thresholding on CT data from two industrial objects.
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1. Introduction

X-ray computed tomography (XCT) is a non-destructive visualization technique widely used in
industrial metrology [1, 2], material composition and micro-structure studies [3, 4], and medical
analysis [5]. XCT is advantageous over other measurement techniques such as coordinate measuring
machine (CMM) and optical scanning because it can capture volumetric data that is not accessible using
other methods. XCT allows measurement of internal and external geometries of industrial components
as well as quantification of volumetric defects. Intermetallic phases and voids in alloys can be studied
for understanding metallurgical procedures and improving alloy composition [3].

XCT is based on the principle of attenuation of X-rays as they pass through an object, where the
attenuation depends upon the material they interact with and energy of the X-rays. The received
intensity of X-rays at the detector result in a 2D projection, with numerous projections taken through
a full rotation of the object. A 3D CT volume is then generated by reconstructing these projections by
methods such as filtered back-projection [6]. This volume is a map of linear attenuation coefficients.
Segmentation of different constituent materials can then be extracted from the CT volume based on

∗Corresponding author: Avinash Jaiswal, Department of Industrial and Systems Engineering, IIT Kharagpur, Kharagpur
721302, W.B., India. E-mail: avinashj562@gmail.com.

0895-3996/18/$35.00 © 2018 – IOS Press and the authors. All rights reserved
This article is published online with Open Access and distributed under the terms of the Creative Commons Attribution Non-Commercial License (CC BY-NC 4.0).

mailto:avinashj562@gmail.com


574 A. Jaiswal et al. / MRF segmentation for industrial computed tomography

the measured attenuation of groups of voxels (3D pixels) resulting in several distinct labels. Following
segmentation, dimensional and material analysis can be performed on the volume.

There are several influence factors that affect XCT performance such as: scanning parameters,
part dimension, orientation and geometry, and CT system hardware geometry and performance
[2, 7–10]. Robustness and repeatability of XCT analysis particularly depends on the segmentation
strategy, making it a critical step in the process [11]. However, image artefacts can severely impact
segmentation and lead to uncertainty in quantification [12, 13]. A particular issue with high material
densities is beam hardening [14] where there is a preferential attenuation of lower energy X-rays. This
results in cupping artefacts where a homogeneous object appears to have grey values that are higher at
the periphery of the object boundary. Resulting from the part geometry and orientation, X-rays passing
through varying lengths of the material in a single projection can lead to non-uniform grey values in
the reconstructed images. In this case, a skewed material phase in the grey value histogram of the CT
volume is observed. As these histograms are the basis of global image segmentation, a clear separation
between the imaged materials is degraded.

Image noise is another common issue where associated grey values are not homogenous for a
single material (or background). Some level of noise naturally occurs in lab-based XCT due to the
polychromatic beam where X-rays produced are not of a single energy and therefore have different
levels of attenuation. The reconstruction methods assume a monochromatic beam, which it is not,
causing the introduction of noise into the CT volume. Further hardware variations such as detector
intensity variations between projections also contribute to this noise. In fact, a detector pixel could
exhibit a continuous distinct variation from its neighbours throughout all projections. In this case, the
reconstruction smears this pixel through the CT volume resulting in ring artefacts. Scanning parameters
that result in a low amount of received photons either through low intensity of X-rays received by
the detector, fast image acquisition, or a fewer number of projections to reconstruct similarly influence
the noise level in the CT volume [6].

While absorption is the primary attenuation in XCT, there is also a degree of scatter which is par-
ticularly evident when scanning high density objects. Scatter results in localized grey value variations
in the CT volume represented as noise, streaks, shades, bands and blurred boundaries [15]. In medical
studies, similar issues are encountered when scanning metal implants due to the presence of streaks
and shades. To improve qualitative interpretation of these images, several metal artefact reduction
(MAR) algorithms [16–18] have been developed, providing the radiologist with a clearer representa-
tion of the data. However, they can generate secondary artefacts by fixing the distortions and lead to
misrepresentation in areas close to metal objects [19, 20]. It must be noted that these techniques may
not be useful in quantitative industrial applications [21] where introducing secondary artefacts and
misrepresentations could lead to inaccurate measurement.

ISO-50 and Otsu [22] are widely used segmentation techniques in XCT as advised in the British
Standard BS 16016 [23] and various best practice guides such as that by National Physics Laboratory
[24]. These methods are reliant on the calculation of a global threshold value to classify pixels. Their
prevalent use in industrial XCT is evident across numerous published works as they work well with
low noise data and have been shown to give accurate results in industrial contexts, particularly in
dimensional measurement [1, 2, 4, 11, 25].

There are alternative more complex segmentation methods that have shown promise in the more
general field of XCT but have yet to be given appreciation in published standards and usage guides.
Watershed segmentation [4, 26] that is frequently used in multi-material segmentations uses an initial
seeding for materials together with gradient information from the image to classify pixels through
constrained region growing. Multi-material segmentations are particularly problematic in common
industrial objects where there are metallic and rubber/plastic phases. One way to overcome this is
by using a combination of region growing and graph-cut methods as demonstrated in [27]. There
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are of course many more for consideration that also have merit over standard global thresholding
as in Otsu and ISO50. This is of particular importance where XCT volumes have local grey value
variations, streaks, bands and other imaging artefacts that lead to questionable segmentations and
therefore inaccurate results.

In light of this discussion, alternative approaches to segmentation for industrial XCT require consid-
eration, particularly in the presence of numerous imaging artefacts. Modelling using a Markov Random
Field (MRF) to segment regions or detect edges may be helpful in such cases. It is expected that nearby
pixels in a region have same or similar labels, representing some global context. Given the contextual
information, a label assigned to a pixel should not only depend upon its grey value but also on the
labels of its neighbouring pixels; spatial information like region smoothness is lost in techniques like
Otsu, whereas Markov Random Fields incorporate both local knowledge and global context [28, 29].
MRFs and have been used in the analysis of medical images [30] and in the development of MRF
based MAR algorithms [31].

This article focuses on improved segmentation of CT images in the case of scatter, streaks, loss of
contrast, and noisy data using MRFs. First, the MRF image segmentation method is outlined. Otsu
and MRF are then applied to two test objects demonstrating high levels of noise, non-uniformities,
streaks and banding. When evaluating the appropriateness of methodologies in X-ray CT scanning or
segmentation, it is normative to consider a calibrated sample of known dimensions [2, 25] or porosity
[32]. In this way, the true measure is known and provides a direct comparison on the accuracy of the
method. This paper uses real samples that produces unique banding, streaking and non-uniformities in
the CT volume that would be difficult to replicate in a calibrated sample. In this manner, a qualitative
comparison is made that highlights advantages and limitations of both methods and suggestions on
usage are given when applied to such difficult cases.

2. Method

2.1. Markov random field image segmentation

Let S = {s1, . . . , sn} be a set of sites (pixels) in an image, and let � = {1, ..., M} be the set of
possible labels (background, material etc.) that can be assigned to the sites for a multi-level logistic
model [33]. An assumption is made which states that pixel values corresponding to each label λ ∈ �

in the image follow a Gaussian distribution with θλ = {μλ, σλ} . F = {F1, . . . , Fn} a collection of
random variables is a random field on S in which each Fi takes a value fi in the label set �. The
joint event F = f denotes Fi = fi∀i ∈ {1, . . . , n}. The probability of this joint event is p (f ) where
f = {f1, . . . , fn} is a configuration of F . The random field F an be regarded as a random variable
taking its values in the set of all possible labellings or configuration space �S = �*�* . . . *�, n
times. A neighbourhood system N is defined for an MRF which relates sites to one another. The
local property of MRFs states that a variable is conditionally independent of all other variables given
its neighbours. Context-dependent entities are implemented in MRFs by virtue of the local property
through this neighbourhood system. From the set of all possible labellings �S , the objective is to find
a labelling f̂ which is a maximum a posteriori probability (MAP) estimate of the true labelling f 1

f̂ = arg max
f∈F

{P (f |d)} (1)

From Bayes’ theorem, the conditional probability of labelling configuration f given observed data
d can be expressed as P (f |d) = P(d|f )P(f )

P(d) where P (d|f ) is the likelihood, P (f ) is the prior and P (d)
is constant. Therefore the MAP estimate can be written as:
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f̂ = argmax
f∈F

{P (d|f ) P (f )} (2)

The Hammersley-Clifford theorem states that when F is an MRF and P (f ) > 0 ∀f , the joint distri-
bution of an MRF has the form of a Gibbs distribution [34].

P (f ) = 1

Z
exp

(
−U (f )

T

)
(3)

where U (f ) is the energy of the Gibbs distribution, T stands for temperature usually equal to 1 and Z is
a constant normalization term called the partition function. Given the Gaussian distribution assumption
of same label sites, the likelihood of observed data di belonging to label fi = λ is

p (di|fi) = 1√
2πσ2

λ

exp

(
− (di − μλ)2

2σ2
λ

)
(4)

For a labelling f over all sites S,

P (d|f ) =
∏
i∈S

p (di|fi) =
∏
i∈S

⎡
⎣ 1√

2πσ2
fi

exp

(
−
(
di − μfi

)2

2σ2
fi

)⎤
⎦ (5)

The joint likelihood probability can be written as:

P (d|f ) = 1

Z′ exp (-U (d|f )) (6)

log (P (d|f )) = -log
(
Z′) -U (d|f ) (7)

From equations (5) & (7), energy can be derived as

U (di|fi) = (di − μλ)2

2σ2
fλ

+ log

(√
2πσ2

λ

)
+ K (8)

Where K is a constant. The joint likelihood energy for a labelling f is

U (d|f ) =
∑
i∈S

U (di|fi) =
∑
i∈S

[(
di − μfi

)2

2σ2
fi

+ log

(√
2πσ2

fi

)]
+ K (9)

The likelihood energy represents the likelihood of sites belonging to a label with the assign-
ment favouring the label for which energy is minimum. The distribution characteristics θ� =
{μ1, μ2, . . . , μM, σ1, σ2, . . . , σM} are crucial to the definition of likelihood function and are estimated
using Maximum Likelihood.

The prior conveys the contextual information in a region or overall image. To derive the prior energy,
a neighbourhood system is defined and cliques are identified. Cliques are subsets of sites in image space
such that every pair of sites in a clique are neighbours. The labellings of sites in a clique determine
clique potentials from a predefined potential function Vc The energy of the Gibbs distribution can be
expressed as a summation of clique potentials for the defined neighbourhood system [35]:

U (f ) =
∑
c∈C

Vc (f ) (10)

By specifying the potential functions, the prior distribution for the MRF is defined. Consider a 2nd
order neighbourhood system N in an image region shown in Fig. 1.
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Fig. 1. A second order neighbourhood in an image region.

Only single-site and pair-site cliques are considered for this discussion. Neighbours of site x are
given by N (x) = {1, 2, 3, 4, 5, 6, 7, 8} The cliques which are a superset of site x are:

1. single-site x, and
2. pair-sites x - 1, x - 2,..., x - 8

Appropriate clique potentials can be built for specific applications. Clique potentials for single-site
cliques can be given by

V (x) = αλ, fx = λ (11)

Clique potentials for pair-sites can be given by a constant, a bounded quadratic or other functions
along with weight or interaction parameter, � such that cliques which have different label elements have
higher potential than those with similar elements. In the case of a smoothing prior, similar neighbouring
sites are given an incentive by a negative potential and differing sites a penalty by a positive potential:

V (x, i) = β, fx = fi; V (x, i) = −β, fx /= fi (12)

A pair-site clique has a negative potential β when labels of constituent sites are the same and a positive
potential −β when labels of constituent sites are different. The parameters φ = {α1, . . . , αM, β} can
be estimated using least squares fitting [35] on an overdetermined system of linear equations derived
from distinct configurations of neighbouring labels. Since clique potentials are now defined, the prior
distribution of the MRF is defined. The posterior probability can be expressed in terms of posterior
energy and thus, a MAP estimate can be expressed in terms of likelihood and prior energies:

f̂ = argmin
f∈F

{U (d|f ) + U (f )} (13)

f̂ = argmin
f∈F

{∑
i∈S

[(
di − μfi

)2

2σ2
fi

+ log

(√
2πσ2

fi

)]
+
∑
c∈C

Vc (f )

}
(14)

Minimizing the posterior energy U (f |d) is too computationally expensive due to a large search
space. Thus, an iterative local maximization technique called Iterated Conditional Modes (ICM) [28]
is used that maximizes conditional probabilities of sites sequentially. In other words, it iteratively
minimizes the posterior energy of each site given all other sites, U

(
fi|d, fS−{i}

)
. Initialization of the

algorithm is usually done with labels obtained by minimizing the likelihood energy for each site. Since
we are working with many XCT slices, we employ a stability tracking algorithm [36] to enable ICM to
converge faster by avoiding unnecessary evaluations. After initial assignments, a site label may change
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if and only if labels of any of its neighbours change. This is a direct conclusion of the local Markov
property. Posterior energies for possible labels of a site will only be evaluated if any of its neighbours
updated their label in the previous iteration. Using ICM it is feasible to introduce problem dependent
constraints to achieve better segmentations.

2.2. Test strategy

In order to assess the performance of MRF and Otsu, objects of different materials, geometries and
characteristic defects were scanned.

2.2.1. Steel column
The first object is a steel column pictured in Fig. 2 of quarter circle cross section measuring approxi-

mately 80 mm in height and a radius of 36 mm. It is a part of a mold of steel taken from a basic oxygen
furnace and divided into four to allow shorter path lengths for X-rays to achieve sufficient penetration.
The sample has several voids of different sizes and shapes due to the production of carbon monoxide
that often gets trapped in the steel. The segmentation of these voids serves as a metric in the experi-
ments. Studying porosity of samples manufactured with different process parameters is of interest to
materials engineers to determine optimal manufacture. The high iron content makes it a difficult object
to image at a higher resolution as it requires high energy and intensity X-rays to penetrate which give
rise to significant scatter and beam hardening artefacts. In addition, the geometry of the sample has
some sharp corners that under any scanning orientation can lead to inhomogeneity in grey values due
to large variations in path lengths traversed by the X-ray beam in that region.

2.2.2. Titanium cuboid
The second object is an additively manufactured cuboid of Ti6Al4V measuring 30 mm in height

with a square cross section of side 20 mm. The sample has a number of prescribed cylindrical voids
varying from 0.2–1.2 mm in diameter as shown in the CAD model in Fig. 3 b), in this case used to
study the efficacy of the segmentation. Given its metallic composition, again the reconstructed volume
will exhibit scattering radiation artefacts particularly around sharp edges and interior voids.

Fig. 2. Steel column workpiece and representative radiograph that is used throughout the analysis.



A. Jaiswal et al. / MRF segmentation for industrial computed tomography 579

a) b) c)

Fig. 3. a) Titanium cuboid workpiece, b) CAD of object showing placement of voids and c) representative radiograph.

3. Experiments

3.1. Experimental procedure

The samples were scanned in a Nikon XT H 225/320 LC XCT scanner using parameters shown
in Table 1. The machine has a fixed source and detector with a manipulator to position and rotate
the sample, taking 2D projections at numerous angular intervals. The projections show visually the
attenuation of X-rays traversing the sample where individual pixels have an associated value referred
to as the grey value due to their representation.

The projections were reconstructed using filtered back-projection [6] within Nikon proprietary
software that results in a stack of 2D slices through the object. Together they provide a volumet-
ric representation of the sample with 3D pixels or voxels that have an associated grey value equivalent
to the absorptivity of the material at that point. A beam hardening reduction filter was applied in the
reconstruction process to remove residual cupping imaging artefacts. The filter used was a standard
polynomial correction (second order) where the function attempts to transform the polychromatic
attenuation data into equivalent monochromatic data, often referred to as linearisation [37].

After reconstruction, the samples were segmented using Otsu thresholding and the MRF method
outlined in Section 2.1 in order to compare the advantages and disadvantages of their application.
The built-in greythresh() function in MATLAB (Image Processing and Parallel Computing Tool-
boxes Release 2016b, The MathWorks, Inc., Natick, Massachusetts, United States) was used for Otsu

Table 1
XCT scanning parameters for the samples

Parameter Steel column Titanium cuboid

Voltage (kV) 310 215
Current (�A) 97 433
Filter (mm Sn) 6 5
Exposure (s) 4 0.5
# projections 3141 3141
Detector pixel size (�m) 200
Voxel size (�m) 38 19
CT volume size x (y z voxels) 2000 × 2000 × 2000
Scan time (min) 210 27
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thresholding. The discussed MRF method and its least squares parameter estimation were coded as a
MATLAB script.

3.2. CT scan data

CT images obtained from scanning the two objects are presented and their characteristic artefacts
are discussed. The grey values lie in the range [0, 1] for all the CT images presented in this article.

3.2.1. Steel column
Slices acquired from the steel column exhibit streaks, loss of contrast, and noise as shown in Fig. 4(a).

Different artefacts and specific features are marked with arrows and white rectangles respectively in
Fig. 4(b). Voids suffer from loss of contrast and inhomogeneous grey values due to high scatter and are
marked with white arrows. Smaller voids which have been obscured due to scatter are indicated with
blue arrows. Scatter and beam hardening cause beam attenuation to become non-linear to path-length,
causing non-uniform grey values in the CT image. Yellow arrows indicate streaks emanating from
high contrast regions such as voids resulting in inhomogeneity in grey values in homogenous regions.
This inhomogeneity can be observed in the line profile across a streak in Fig. 5(a). The image grey
value histogram shown in Fig. 5(b) shows the absence of a sharp valley between background and
material due to high amounts of scatter contributing to non-uniform nature of background grey values.
Segmentation results of voids highlighted by white rectangles in Fig. 4(b) are shown in Fig. 10 and
discussed in section 4.1.

To study the effect of part geometry on artefacts and subsequent segmentation, CT slices are con-
sidered in two orthogonal directions. Figure 6 shows two more CT images of the steel column. Image
(a) shows a cross-section closer to the object boundary having edges and voids severely affected by
scatter and ring artefacts with their axis parallel to the image plane. Image (b) has several small voids
where the ability to successfully segment across the two methods is of particular interest.

3.2.2. Titanium cuboid
One of the XCT images of titanium cuboid is shown in Fig. 7(a). It shows streaks emanating

from sharp corners, and loss of contrast indicated by yellow arrows, and white arrows respectively in
Fig. 7(b). The black dashed line in Fig. 7(b) is used to generate the line profile in Fig. 8. The holes within

Fig. 4. (a) An image from XCT scan of the steel column. (b) Arrows and rectangles show different artefacts and features
respectively, see text for details.
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Fig. 5. (a) Line profile along the black dashed arrow shown in Fig. 3(b), and (b) histogram for CT image in Fig. 3(a).

Fig. 6. CT images (a) of the same orientation, and (b) orthogonal to image in Fig. 3(a). Note that (b) is smaller and has less
material than (a) and has been cropped and resized for visualization.

the cuboid suffer from loss of contrast due to scatter similar to obscured voids in the steel column.
Non-linearity between attenuation and path length causes a cupping artifact, showing the interior of
the object to be less attenuating than it is. This further promotes loss of contrast experienced by the
holes. Table 2 shows means and standard deviations of rectangular sections marked 1–4, in Fig. 7(b).

Figure 8 and Table 2 demonstrate loss of contrast in the holes and cupping artefact in the image. It is
observed that regions 1 and 2 which are both background have quite different grey values due to high
scatter. This can lead to incorrect segmentation.

4. Results and discussion

MRF segmentation and Otsu methods were applied to the resultant scans from the steel column
and titanium cuboid. When testing new segmentation methods it is common to use computer designed
images where the ground truth is known. MRFs have previously been demonstrated as a successful
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Fig. 7. (a) A CT image of the titanium cuboid, and (b) same image with arrows showing artefacts and rectangles indicating
areas of interest. See text for details.

Fig. 8. Line profile for the CT slice shown in Fig. 6(b) along the dashed line.

Table 2
Means, standard deviations and true labels for the rectangular sections from Fig. 6(b). True label

shows the correct classes of these regions

Region Mean grey Standard True region
(refer Fig. 7(b)) value deviation (material/background)

1 0.3809 0.0247 External Background
2 0.5771 0.0301 Void Background
3 0.6407 0.0309 Inner Material
4 0.6900 0.0263 External Material

segmentation tool in this manner [22, 38]. Here, MRF segmentation’s capabilities and limitations are
explored using real lab-produced data.

4.1. Steel column

Loss of contrast severely affects Otsu’s performance to classify voids correctly as can be observed
in Fig. 9. Upon visual inspection, it is clear that a large number of background pixels are identified
as material and smooth edges are scarcely seen. The MRF method classifies such voids correctly.
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Figure 10 shows segmentation results of four voids shown inside rectangles in Fig. 3(b). Voids (1)
and (2) show improvement when MRF segmentation is used. Voids (3) and (4) being small and easily
concealed by scatter, are not successfully segmented by Otsu whereas the MRF method appears to
resolve them with greater accuracy.

ICM for the MRF method was initialized by likelihood energy minimization for each pixel in the
image. It takes ICM an average of 6 iterations to converge to local minima for all images in the stack.
The number of evaluations of posterior energy is kept at a minimum at each iteration using stability
tracking. Table 3 summarizes ICM’s average performance over 1400 images in steel column CT stack.

Fig. 9. (a) Otsu and (b) MRF results for the steel column CT image shown in Fig. 3(a).

Fig. 10. Several voids in the steel column (a), (d), (g) and (j) marked in Fig. 3(b) as (1), (2), (3) and (4) along with their Otsu
(b), (e), (h) and (k), and MRF segmentations (c), (f), (i) and (l) respectively.
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Table 3
ICM performance for the steel column CT stack. Note that the calculations do not include border pixels

of the image. Posterior for border pixels is not evaluated because of unavailability of 8-point
neighbourhoods; they assume the label assigned to them in ICM initialization

Iteration % pixels % pixel labels Number of changes
evaluated changed per evaluation

1 100.00 0.1417 0.0014
2 0.5329 0.0174 0.0326
3 0.0736 0.0036 0.0491
4 0.0155 0.0009 0.0577
5 0.0039 0.0002 0.0624
6 0.0011 0.0001 0.0662

Comparison between Otsu and MRF results shown in Fig. 11 validates that in the case of scatter
affecting voids, improved segmentation is possible using MRF. But it is observed that the corners of
the steel column are degraded in MRF’s output more than Otsu. Investigating this effect further, it can
be seen from the grey value surface plot in Fig. 12 that corners have lower grey values than rest of the
material. This inhomogeneity is a result of the geometry of the object and the non-linear relation of
attenuation with path-length compounded as non-uniform grey value distribution.

In the MRF segmentation, the label assigned to a pixel may change if the change in prior energy
which is based on neighbours, overcomes the change in likelihood (global) energy during posterior
energy minimization. Therefore, corner pixels with lower grey values having background neighbours
might be labelled background themselves as ICM progresses.

Consider the CT image in Fig. 13(a) to demonstrate how geometry and poor contrast can influence
segmentation. The grey value distribution in Fig. 13(b) shows that the image is affected by a loss of
contrast and the presence of background ‘fringes’ in the material is observed. The segmentation results
for Otsu, ICM initialization label field, and ICM convergence are compared in Fig. 14. It is observed
that the corner is poorly segmented by both Otsu and MRF suggesting that it is the scan itself that is
problematic rather than the segmentation method.

Otsu fails to segment correctly due to lack of a sharp valley in the global image histogram. ICM ini-
tialization and Otsu result are quite similar given both are global thresholding methods. The smoothing
prior in the MRF method which is useful for correcting falsely detected pixels also smooths out the
‘fringes’, potentially connecting them by labelling material pixels as background.

4.2. Titanium cuboid

Results in Fig. 15 show that Otsu fails to segment the holes entirely whereas MRF detects the voids,
although with noticeable grains of material assigned labels within the holes. The global threshold
determined by Otsu is depicted as G.T. in image histogram in Fig. 16. It is observed that mean grey
value of holes (area 2 in Fig. 7(b)) marked by S2, is on the material side of this threshold which is why
Otsu labels them as such. Hole pixels are much fewer in number than material or rest of the background
so they appear as a part of the material peak in image histogram, elongating its tail to the left. S1, S2,
S3 and S4 indicate mean grey values of background, holes, the material at centre, and material near
edge respectively from areas 1, 2, 3 and 4 marked in Fig. 7(b).

Segmentation of two important features in the titanium cuboid is shown in Fig. 17. ICM which is ini-
tialized by minimizing likelihood energy at each pixel shows irregular hole boundaries with several pix-
els assigned as material inside holes. As ICM converges, taking 5 iterations, the hole emerges clearer but
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Fig. 11. Otsu (a, b), and MRF segmentation (c, d) results for CT images in Fig. 6(a) and (b).

Fig. 12. The CT image in Fig. 6(b) plotted as a surface. The two lower corners are highlighted where there are issues with
grey values appearing lower than normal.

still has some material within its boundary. The corner is more competently segmented by Otsu with the
image quality causing the irregularities in its boundaries. MRF appears to hamper the shape of the cor-
ner by smoothing it and losing some material pixels to the background. Additionally, both approaches
are affected by streak artefacts near the corners and as a result, have a tendency to chamfer the corner.
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Fig. 13. (a) A CT image from steel column showing corner and voids with poor contrast, and (b) its grey value distribution
highlighted by a red/blue colour transform.

Fig. 14. (a) Otsu result, (b) ICM initialization, (c) ICM converges for CT image shown in Fig. 12(a). Error in each case is
evaluated as a percentage of incorrectly labelled material pixels in all material pixels. Note that both Otsu and MRF were
applied on the whole image and a cropped section is shown here.

Fig. 15. (a) Otsu, and (b) MRF output for CT image in Fig. 7(a).
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Fig. 16. Image histogram of the CT image in Fig. 7(a) with annotations. See text for details.

Fig. 17. Two features from CT image in Fig. 7(a): (a) a hole and its Otsu segmentation, ICM initialization and MRF
segmentation result in (b), (c) and (d) respectively, and (e) a corner and its Otsu segmentation, ICM initialization and MRF
segmentation result in (f), (g) and (h) respectively. Note that methods are applied to the whole image and cropped sections
are shown here.

Since the grey value for holes is quantitatively different to the background, they can be considered
as a different material in the object. Segmentations obtained for holes can then be combined with
background to obtain the desired result. To assess its performance, MRF segmentation is applied with
three labels instead of two and the result is shown in Fig. 18. It is observed that a thin layer a few pixels
wide labelled hole material is formed around the object due to the transition in grey value across object
boundary and partial volume effects.

It is observed that the holes are clearly segmented but the thin boundary around the object would
hamper potential dimensional measurements involving object boundaries. To resolve this layer into
material and background, prior knowledge about an object can be utilized. In object B, it is known
that holes and background pixels are not neighbours. A constraint is introduced in ICM to prevent
hole-background interactions after initialization in a large neighbourhood. A logical vector keeps
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Fig. 18. MRF result for CT image in Fig. 7(a) with three labels- one each for background, material and holes affected by
scatter.

Fig. 19. For the titanium cuboid CT image in Fig. 7(a): (a) MRF segmentation output with 3 labels and the constraint to
prevent forming of an imaginary layer of hole pixels on object boundary, and (b) final segmentation of the titanium cuboid.

track of pixels that were initialized as holes in areas of intermediate grey values between material and
background. It prevents them from becoming reassigned as holes to avoid unnecessary iterations.

After ICM initialization, as the constraint is applied while making label changes, the thin layer gets
resolved into its constituent background and material pixels. Figure 19 shows the performance of MRF
segmentation after including the constraint to prevent hole-background neighbourhoods. This simple
constraint is suitable for objects which have interior voids and holes entirely obscured by high scatter.
ICM for both MRF 3 labels with and without constraint takes 11 iterations to converge.

Otsu, MRF 2 labels, and MRF 3 labels segmentation results for features (a) and (e) in Fig. 17 are
shown in Fig. 20. It is found that both holes and corners are very well resolved in MRF 3 labels. Corners
are found to be correctly segmented like Otsu but significantly smoother. The reason for the correct
segmentation of corners in MRF 3 labels, as opposed to MRF 2 labels, lies in ICM initialization where
intermediate grey value pixels are assigned as hole and subsequently segmented as background and
material due to the hole-background neighbourhood constraint in ICM.
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Fig. 20. Two features from CT image in Fig. 7(a): (a) a hole and (f) a corner with their (b, g) Otsu, (c, h) MRF 2 labels, (d,
i) MRF 3 labels, and (e, j) MRF 3 labels with constraint segmentations respectively. Note that methods are applied to whole
image and cropped sections are shown here.

5. Conclusion

Otsu thresholding and Markov Random Field segmentation were applied to the reconstructed CT
volume data sets of two objects: steel column and titanium cuboid. The highly attenuating nature
of these materials promotes streaks, loss of contrast, blurred edges and noise making it difficult to
segment. Further artefacts are generated from the object geometry leading to inhomogeneities in grey
values.

Segmentation using MRF has significantly improved the segmentation of voids in the steel column
sample. MRF segmentation shows notable results with highly obscured voids in the titanium cuboid
whereas Otsu fails to detect any voids in the images. Analyzing CT data from the titanium cuboid
particularly highlights MRF’s capabilities through incorporation of prior knowledge about an object.
MRF with three labels and the additional constraint to prevent a layer of hole pixels around the periphery
of the object, performs better than Otsu thresholding for both features: holes and corners.

However, non-uniform grey values and voids near corners in the steel column cause MRF to incor-
rectly assign some material pixels to background. Even Otsu fails to correctly segment the corner
region as shown in Fig. 14(a) which suggests that objects with highly attenuating materials and sharp
corners may always be problematic in XCT analysis, rather than an issue inherent to MRF. Further
study in this domain will be crucial to understanding the material-geometry-segmentation relationship.

The comparison against Otsu was natural given its broad usage and identification as the main segmen-
tation method in standards and best practice guides. It is clear that MRF has some significant advantages
and warrants consideration as an alternative method in industrial XCT. Further, the wider array of seg-
mentation techniques requires evaluation for specific cases that arise in industrial applications such as
the review by Schluter et al. [39] for soil and porous media samples.

An extension to this work would be to apply the methodology to X-ray CT scans that show evidence
of texture. Textures are not suitably segmented using traditional grey-scale methods such as Otsu as
two textures could contain the same grey-scales but exhibit different patterns. Similarly, gradient based
methods like watershed are clearly unsuitable. In this case a wavelet decomposition of the textures can
be modelled with MRF with Gibbs cliques used for feature classification. This has been demonstrated
for grey-scale images [40] that would be directly applicable to X-ray CT, and coloured textures [41] that
is currently used in computer vision based applications. There are developments in ‘colour’ X-ray CT
that identifies different materials by decomposing received spectra [42] for which this could potentially
be of benefit. In this case the ground truth can be achieved through serial grinding of the sample and
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using scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) to achieve images
for accuracy comparison.

To review, modelling a Markov random field to segment CT data influenced by scatter, streaks and
noise can deliver appreciable results. MRF’s advantage in a segmentation task is that likelihood, and
potential functions for prior can be changed for specific applications. Future work with metrological
measurements and multi-material samples can aid to quantify and better assess MRF’s segmentation
capabilities in XCT.
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