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1. Introduction 
The flow induced by bubble collapse has been investigated for a long time, mainly motivated by the 
urge to understand the cavitation phenomena (Vogel et al., 1989), and the applications on the surface 
cleaning, metal hardening, or the micro fusion, etc. The collapse of cavitation bubbles formed in the 
liquid due to the occurrence of vapor pressure can lead to the production of liquid jets and shock 
waves. Detailed characteristics of the bubble collapse flow, such as the velocity and pressure 
distributions, are required for engineering applications. However, they are not easy to be measured, 
since the bubbles are small in size, generally micro meters to millimeters, and collapse in a very 
short time, measured in micro seconds. Experimental studies of the bubble collapse flow using high 
speed photography have been reported (Kodama and Tomita, 2000; Brown and Williams, 2000). Most 
of them have provided only the qualitative flow characteristics, due to the limitation of the recording 
devices. Both the frame transfer rate and the image resolution of the recording devices are not high 
enough to reveal the detailed characteristics of the bubble collapse flow. 

It is known that the time scale of the bubble collapse is proportional to the square root of the 
bubble diameter. A large scale bubble provides better temporal and spatial resolution, which makes 
the detailed measurements of bubble collapse flows easier. Measurements of the break-up of a large, 
inflated rubber balloon in deep water were reported (Lawson et al., 1999). Experimental and 
computational results obtained were well in agreement; however, the rubber balloon is not formed by 
surface tension. Therefore, the balloon collapse flow can be quite different from the flow induced by 
the collapse of the bubble formed by surface tension. Alternatively, soap bubble is a better choice to 
perform the initiative analysis of the bubble collapse flow, since soap bubbles are formed by surface 
tension. The pressure inside the soap bubble is known to be
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atmosphere. In addition, soap bubbles can be easily generated to the size fit for the experiments. The 
effects of the surface tension and the pressure gradient to the bubble collapse flow can be clearly 
manifested. Flow visualization analyses of soap bubble collapse flow are thus performed in this 
study.  
  
2. Experimental Setup 
An injector was dipped in the 1.5% Ivory liquid soap solution to generate soap bubbles. Inside the 
soap bubbles were smoke particles in size 2 mµ , generated from Shell Ondina 17 oil. For each 
experiment run, a soap bubble was placed on a ring support, and closed in a chamber to reduce the 
interference of the surrounding air. A needle on top of the bubble was triggered by a synchronized 
signal generated from the PIV system to pierce and break the soap bubble. 

The bubble collapse flow was illuminated by two Nd-Yag pulse laser sheets triggered 
sequentially with 1/10,000 second time delay in between. Two sequential particle images were 
recorded using a double exposure mode PIV camera, with a resolution of 1360 by 1036 pixels. To 
clearly manifest the characteristics of the bubble collapse flow, part of the experiments were 
performed using color dye lasers (Jaw and Wu, 2000). Pulsed laser sheets in two different colors, red 
and green, were used to illuminate the flow field. Two colored, multiple exposure particle images 
were recorded by a color 3-CCD camera, with a resolution of 640 by 480 pixels. The system setup is 
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shown in Fig. 1. 
With two sequential images available, the magnitude and direction of the velocity vectors can 

be determined using cross correlation analysis. A modified pattern matching correlation scheme 
developed in house, with multi-pass, window offset, central difference (Wereley and Meinhart, 2001), 
and Gaussian weighting (Florio et al., 2002), was used to calculate the velocity distribution. 
Complete velocity fields were obtained with the stray velocities removed, and then filled with second 
order interpolation scheme. 

 

 
 

3. Results and Discussion 
The flow induced by a partially collapsed soap bubble of diameter 4.86 cm (volume 60 c.c.) is shown in 
Fig. 2. It is found that a series of the Kelvin-Helmholtz vortices, which arise in shear flow along a 
contact discontinuity, are formed around the bubble sphere. A color image recorded with smoke filled 
both inside and outside of the bubble, as shown in Fig. 3, manifests the formation of the 
Kelvin-Helmholtz vortices more clearly. 
 
 

                             
 
 

When the bubble collapsed, the pressure inside was gradually released. Smaller pressure and 
larger velocity occurred on the edge of the bursting rim due to the pressure release. The vortices are 
tilted downward, due to the continuous shearing motion of the bursting rim. Surrounding fluids then 
entrained and formed another vortex at the root of the Kelvin-Helmholtz vortex, as marked in Fig. 3. 
Rippling instability exists around the bursting rim, as marked by the red rectangle in Fig. 2. The 
rippling instability from the top view of a half-collapsed bubble is shown in Fig. 4. Higher smoke 
density in the bubble center of Fig. 4 implies that a convergent jet is developed during the bubble 
collapse, which will be more clearly manifested in the quantitative analysis discussed later on. 

The soap film of the soap bubble is thinner on the top and thicker on the bottom, due to the 
gravity effect. The bursting velocity is not a constant, but varies with the thickness of the soap film. 
To manifest the thickness influence, a soap bubble was setup horizontally, with the support ring on 
the right and the needle on the left. The bubble was pierced through the left. The thinner film on the 
top bursts faster than the thicker film on the bottom, as shown in Fig. 5. 
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Fig. 1. PIV system for bubble collapse flow.

Fig. 2. Partially collapsed soap bubble.       Fig. 3. Formation of Kelvin-Helmholtz vortices.
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The elapsed time for a bubble with a diameter of 4.86 cm to completely collapse is about 0.0075 

seconds. The bursting velocity, estimated by dividing half of the circumference of the bubble by the 
collapsing time, is about 10.18 m/s. The speed of disturbance transmitted on a two-dimensional soap 
film in the atmosphere is estimated to be 2.5 m/s to 3.7 m/s (Wen et al., 2004), depending on the 
thickness of the soap film. The pressure inside the soap bubble is 
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surrounding atmosphere, where σ  is the surface tension of the soap film, and maxR  is the radius of 
the soap bubble. The bursting velocity is accelerated by the pressure difference, such that it is much 
faster than the disturbance transmitted on the soap film. Together, the pressure difference and the 
shearing effect of the bursting rim generate the series of Kelvin-Helmholtz vortices around the 
bubble sphere. 

 

     
 
 
 

To perform the quantitative analysis, two sequential images were recorded using a double 
exposure mode PIV camera for each experiment run. The time interval between the two images is 
1/7500 of a second. When the bubble collapsed, the pressure release from the bubble will induce the 
upward moving motion of the fluid. Favorable pressure gradients toward the central axis of the 
bubble are induced due to the pressure release, which in turn will push the fluid to move toward the 
central axis of the bubble. A convergent jet is thus formed. The marked area of Fig. 6(a) and its 
corresponding velocity vector distribution, shown in Fig. 6(b), clearly manifests such a convergent 
flow.  

The streamline patterns for the different stages of a bubble collapse flow are presented in Fig. 
7. As the bubble collapse proceeds from top to bottom, the curvature inside the bubble changes from 
convex to concave. Due to the curvature change and the pressure release inside the bubble, the 
streamline patterns evolve from the converged pattern, to the parallel pattern, to the pattern with a 
expanded middle, as shown in Figs. 7(a), 7(b), and 7(c). As the bubble is fully collapsed, the swell 

Fig. 4. Top view of partially collapsed bubble.    Fig. 5. Horizontally setup bubble collapse flow.

(a) Image of half collapsed bubble                 (b) Velocity vectors 
Fig. 6. Measurements of a half collapsed soap bubble. 
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effects, due to the pressure release, will induce a favorable pressure gradient underneath, causing 
the surrounding fluids to be sucked in toward the central axis. A saddle point, where the vertical 
outgoing streamlines and the horizontal incoming streamlines meet, then occurs near the bottom of 
the bubble, as shown in Fig. 7(d).  

 
 

 
 

 
 
 

 
The image and the calculated velocity vectors of a fully collapsed bubble flow are shown in Fig. 

8. The vortices and the convergent jet of the complicated flow are all successfully measured.  
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(a) Image of fully collapsed flow                        (b) Velocity vectors 

(a) 1/4 collapsed        (b) Half collapsed            (c) 3/4 collapsed         (d) Fully collapsed
Fig. 7. Streamline patterns of bubble collapsed flow. 

Fig. 8. Soap bubble fully collapsed flow. 


