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Abstract.
OBJECTIVES: The purpose of this study was to use machine learning to examine the relationship between training load
and soccer injury with a multi-season dataset from one English Premier League club.
METHODS: Participants were 35 male professional soccer players (aged 25.79 ± 3.75 years, range 18–37 years; height
1.80 ± 0.07 m, range 1.63–1.95 m; weight 80.70 ± 6.78 kg, range 66.03–93.70 kg), with data collected from the 2014–2015
season until the 2018–2019 season. A total of 106 training loads variables (40 GPS data, 6 personal information, 14 physical
data, 4 psychological data and 14 ACWR, 14 MSWR and 14 EWMA data) were examined in relation to 133 non-contact
injuries, with a high imbalance ratio of 0.013.
RESULTS: XGBoost and Artificial Neural Network were implemented to train the machine learning models using four and
a half seasons’ data, with the developed models subsequently tested on the following half season’s data. During the first four
and a half seasons, there were 341 injuries; during the next half season there were 37 injuries. To interpret and visualize
the output of each model and the contribution of each feature (i.e., training load) towards the model, we used the Shapley
Additive Explanations (SHAP) approach. Of 37 injuries, XGBoost correctly predicted 26 injuries, with recall and precision
of 73% and 10% respectively. Artificial Neural Network correctly predicted 28 injuries, with recall and precision of 77% and
13% respectively. In the model using Artificial Neural Network (the relatively more accurate model), last injury area and
weight appeared to be the most important features contributing to the prediction of injury.
CONCLUSIONS: This was the first study of its kind to use Artificial Neural Network and a multi-season dataset for injury
prediction. Our results demonstrate the potential to predict injuries with high recall, thereby identifying most of the injury
cases, albeit, due to high class imbalance, precision suffered. This approach to using machine learning provides potentially
valuable insights for soccer organizations and practitioners when monitoring load injuries.
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1. Introduction

Monitoring the load placed on athletes in training
and competition is a current “hot topic” (Kalkhoven
et al., 2021) in sport science, with professional sports
teams investing substantial resources to this end
(Bourdon et al., 2017). Load monitoring is essen-
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tial for determining adaptation to training programs,
assessing fatigue and recovery, and minimizing the
risk of injury and illness (Kalkhoven et al., 2021;
Halson, 2014). As the most popular global sport, with
200,000 professional and 240 million amateur play-
ers, and with injury incidence higher than any other
sport (Rahnama, 2011; Owoeye et al., 2020; Jones et
al., 2019), soccer has become a key focus for research
into load monitoring and injury. Soccer injuries can
lead to extended periods of absence from matches,
with associated impacts on team performance, as well
as financial implications (Rahnama, 2011; Owoeye et
al., 2020; Jones et al., 2019; Ibrahimović et al., 2021).
Indeed, from 2012–2013 through to the 2016–2017
season, injuries cost English Premier League soccer
clubs approximately £45 million per season (Eliakim
et al., 2020). In attempting to better understand the
relationship between training load and soccer injury,
recent research has begun to draw on techniques
from machine learning (for a review, see Majum-
dar et al., 2022). In the present study, we employed
a multi-dimensional and multi-season interpretable
machine learning approach to examine the relation-
ship between training load and soccer injury using
data from one English Premier League club.

The timeliness of using machine learning for sports
injury prediction is highlighted by recent reviews
(Van Eetvelde et al., 2021; Rossi et al., 2021).
Machine learning approaches can help expand the
focus from more simplified models of the injury
process—such as when using the Acute Chronic
Workload Ratio (ACWR) (Hulin et al., 2013), the
most popular and well-researched model of the injury
process—to create a better understanding of the rela-
tive influence of various (physical and psychological)
aspects of training load on injury risk. The original
research into the ACWR (Hulin et al., 2013) in the
sport of cricket suggested an optimal ACWR range
of between 0.85 and 1.5, with ACWR values exceed-
ing 1.5 leading to a 2–4 times greater injury risk.
But there have been recent methodological and the-
oretical criticisms of ACWR (e.g., see Impellizzeri
et al., 2021). Further, although tests of the ACWR
with data from the English Premier League (Bowen
et al., 2019) have shown that if the ACWR exceeds a
value of 2 when chronic load is low, there is 5–7 times
greater risk of injury, other work within Italian pro-
fessional soccer (Rossi et al., 2018) has not observed
any training sessions with ACWR values exceeding
2, finding that the highest injury risks occur when the
ACWR is less than 1. These sorts of concerns and
equivocal results have led to recent machine learning

research examining soccer injury with a greater num-
ber or explanatory load variables (Rossi et al., 2018;
Vallance et al., 2020; Naglah et al., 2018; Lopez-
Valenciano et al., 2018; Ayala et al., 2019; Rommers
et al., 2020; Oliver et al., 2020; Venturelli et al., 2011;
Kampakis, 2016). The above notwithstanding, how-
ever, there are a number of limitations in this research
that have been noted (Majumdar et al., 2022). These
include, though are not limited to, a need for (a)
greater clarity with regard to the reported evalua-
tion metrics (e.g., recall and precision), and whether
they are “per-class” of injury or “averaged” across
injury and non-injury data; (b) greater detail regard-
ing the various pre-processing techniques employed
(e.g., in relation to any missing values, different data
imputation techniques required, balancing, and clar-
ity regarding all types of demographic data, and
internal and external load variables); and (c) stud-
ies over more than one season, wherein models are
tested and refined on subsequent seasons’ data, with
their inherent changes in players, coaches, training,
and matches.

In the present study we addressed each of these lim-
itations, examining the relationship between training
load and soccer injury with a multi-season dataset
from one English Premier League club. The latter
point is important, because previous research has,
with the exception of the work of Rossi and col-
leagues (2018), tended to focus on developing models
with just one season’s data, using cross-validation
and train-validation split, leaving questions as to
how accurate such models would be in predicting
“unseen” data (such as from a subsequent season).
Specifically, then, our novel approach was to train
models on data collected across four and a half soc-
cer seasons, and then to test those models on the
next unseen half season’s data. Alongside address-
ing the known limitations of previous papers, we also
sought to examine multiple forms of data (e.g., Global
Positioning System data, physical data, psycholog-
ical data, and demographic data)—something only
Vallance et al. (2020) had previously reported.

To provide the best opportunity to then unearth
insights with our training load input data and injury
output data, we drew upon state-of-the-art processes
from machine learning (such as using the XGBoost
algorithm: Chen and Guestrin, 2016), but also drew
upon deep learning, wherein the employed algo-
rithms are inspired by the structure and functions
of biological neural networks—often called Artificial
Neural Networks (or ANNs) (Mehlig, 2019). Finally,
we should note another criticism of previous papers
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examining load monitoring and soccer injury—the
lack of clarity with regard to the key variables under-
pinning the machine learning models developed.
This is important, because if machine learning is
to become a key part of a practitioner’s toolkit in
understanding injury risk, machine learning models
need to provide clarity with regard to the causes
of (or key risks for) injury—i.e., the importance of
“interpretability” (Belle and Papantonis, 2020). In
this context, white-box models use algorithms (e.g.,
linear regression, logistic regression, k-nearest neigh-
bors, decision tree) that are interpretable, presenting
a clear mapping from inputs to outputs, clarifying
how analysis decisions are made—and potentially
aiding practitioners and clinicians in deriving applied
implications from such research (Loyola-Gonzalez,
2019). On the other hand, black-box models use
algorithms (e.g., ensemble methods, random forest,
artificial neural networks, support vector machine)
that are not easily interpretable, but may be more
powerful. In the latter examples, the mapping from
inputs to outputs is opaque, but additional post-hoc
methods can then be used to interpret and understand
the results (Loyola-Gonzalez, 2019). In the present
study, we employed black-box methods, and thus to
aid interpretability, we employed the Shapley Addi-
tive exPlanations (SHAP) approach (Lundberg and
Lee, 2017)—an explainability framework based on
game theory, which can be used to unpick the key
predictors of machine learning models by computing
the contribution of each feature to prediction.

Overall, then, in the first study of its type, we report
a novel approach which can address gaps in existing
research and produce a practical solution for soccer
injury prediction. Through comprehensive analysis
of a unique multi-season dataset of Elite Premier
League soccer players, we aimed to develop a multi-
dimensional predictive machine learning model to
assess injury risk among players in the following
seven days.

2. Materials and methods

2.1. Data collection and feature creation

Participants were 35 male professional soccer
players (aged 25.79 ± 3.75 years, range 18–37 years;
height 1.80 ± 0.07 m, range 1.63–1.95 m; weight
80.70 ± 6.78 kg, range 66.03–93.70 kg) from one
English Premier League club, with data collected
from the 2014–2015 season until the 2018–2019 sea-

son. Players’ positions were recorded as follows:
eight full-backs, nine center-backs, seven central
mid-fielders, eight wing-forwards, and three strikers.
Data were provided to the research team by the club’s
first team sports science department, having been col-
lected as part of the club’s day-to-day data collection
processes, and with all permissions in place. The
dataset contained 343 injury data points, of which
our focus was the 133 non-contact injuries. Of these
133 non-contact injuries, there were 43 thigh injuries,
29 knee injuries, 24 hip injuries, 19 ankle injuries,
and 18 ‘lower leg’ injuries. Across injuries, eight
players were injured once, nine players were injured
two times, four players were injured three times, two
players were injured four times, four players were
injured five times, two players were injured six times,
four players were injured seven times, one player
was injured 11 times, and one player was injured 16
times. Overall, there were 11 injuries recorded in the
2014–2015 season, six in the 2015–2016 season (the
club’s first in the English Premier League), 28 in the
2016–2017 season, 41 in the 2017–2018 season, and
47 in the 2018–2019 season.

The available ‘load’ data included Global Posi-
tioning System (termed GPS) data, physical (e.g.,
various skinfold measurements, bodyfat percentage)
data, psychological (e.g., RPE) data, and demo-
graphic information. Feature selection first focused
on removing features with more than 60% missing
values. Please note, when players missed training
sessions, their absence of training load data is not
noted in the dataset, and is thus not treated as missing
data. Subsequently, different missing values imputa-
tion methods were used across the features. We also
created two additional features within the dataset:
“last injury area” and “days since last injury”. In
the Appendix, Table 1 lists all training load vari-
ables considered as input features in the present study,
along with their description, source, method of col-
lection, frequency of data collection (e.g., GPS and
psychological data are collected daily; physical data
are collected every two weeks), and missing values
imputation techniques.

2.2. Dataset construction

We constructed a multi-dimensional load-injury
prediction model to forecast whether a player would
become injured in the next seven-day window. This
seven-day window was chosen to mirror the stan-
dard frequency of English Premier League match
occurrence—i.e., a match is played approximately
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every seven days (and generally at the weekend).
A similar approach was employed by Vallance et
al. (2020). There are generally between three and
four training sessions each week, with training loads
reaching their peak towards the end of each week.

To accomplish the task of constructing an injury
prediction model, we initially built a master dataset
consisting of 106 training load variables (see Table 1):
40 GPS data variables, six personal information vari-
ables, 14 physical data variables, four psychological
data variables, 14 ACWR, 14 MSWR, and 14 EWMA
data variables (mentioned in Table 1), one injury
label (indicating 1 if the player is injured and 0 if
not), and 10653 data points (i.e., each data point is
a row which describes the training information and
personal information for each player). In this master
dataset, there were 10,520 non-injury data points and
133 injury data points, indicating a high imbalance
ratio of 0.013. Importantly, in this master dataset,
the injury label was assigned to the original injuries
that happened on the same day (i.e., injuries that
were recorded on the day of occurring), but our aim
was to predict injuries in the next seven-day win-
dow. To achieve the latter focus, we thus assigned
the previous data points (i.e., each data point or row
that came before the original data points) present in
the past seven days of the original injury data point
to 1 and removed the original injury data points.
The assumption behind removing the original data
points is that the injury occurring on a specific day
is caused by the training loads of the previous days.
As a result, our seven-day injury prediction model
is based on a revised dataset containing 10,520 data
points, of which there are 10,142 non-injury data
points and 378 injury data points, giving an imbal-
ance ratio of 0.037. Figure 1 presents the injury and
non-injury distribution in the original and seven-day
injury prediction dataset (denoted D) respectively. In
the seven-day injury prediction dataset (D) the injury
and non-injury data points overlap. Imbalanced and
overlapping data classification represent a challenge
for traditional machine learning models, which often
fail to recognize patterns in such data (Shahee and
Ananthakumar, 2021; Kiesow et al., 2021).

In addition, for a better depiction of the clas-
sification problem and how our high-dimensional
injury and non-injury datapoints appear in a
two-dimensional plane we performed Principal
Component Analysis. Figure 2 in the Appendix
demonstrates that the injury and non-injury data
points are overlapping (Tang et al., 2010; Sáez
et al., 2019; Gupta and Gupta, 2018; Shahee and

Ananthakumar, 2021; Kiesow et al., 2021). This is
illustrated by many instances where similar training
programs resulted in different outcomes, which is
likely an indication that the features which would
clearly separate the two classes are not being cur-
rently collected. We should also note that, while
calculating ACWR, MSWR and EWMA for each
player, we used the training sessions which fell in the
past seven days before each training session or match-
day. The past seven days may be different from the
past seven training sessions as the past seven training
sessions might not fall into the past seven days.

2.3. Model construction

For model building, validation, and testing,
we used the Python programming language. We
used various machine learning algorithms—logistic
regression, k-nearest neighbors, decision tree, and
random forest resulted in poor model performance,
failing to predict most of the actual injuries—with
XGBoost (Chen and Guestrin, 2016) and Artificial
Neural Network (ANN) (Mehlig, 2019) providing
the best results. In this paper, we thus focus from
this point onwards on the use of and results from
the XGBoost and ANN algorithms. We used vari-
ous pre-processing techniques, such as oversampling
the minority data points (i.e., the injury data), feature
scaling (i.e., scaling each training load), and setting
different hyperparameters.

We first split the entire dataset into two parts—the
training data (DTrain), containing the first four and
half seasons’ data, and the test data (DTest), contain-
ing the remaining half season. DTrain contained 9548
non-injury data points and 341 injury data points and
DTest contained 493 non-injury data points and 37
injury data points. The test set was further divided into
three labelled months: Month 1 contained 161 non-
injury data points and 14 injury data points; Month
2 contained 162 non-injury data points and 14 injury
data points; and Month 3 contained 170 non-injury
data points and 9 injury data points. Months 4 and 5
did not contain any injury data points.

We first trained XGBoost and ANN on DTrain.
During this model training we performed 10-fold
cross-validation to check how well the model per-
formed on different validation subsets of the data.
Hyperparameter optimization techniques, includ-
ing grid-search and Bayesian optimization, were
implemented to refine the model’s configuration.
The overarching goal of hyperparameter tuning
was to identify settings that would yield opti-
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Fig. 1. The Relationship Between Graphical Representation of Injury and Non-Injury Distribution in the Original and Seven-Day Injury
Prediction Dataset using two training load variables. Note. Top panel: Injury and non-injury distribution in the original dataset. Bottom panel:
Injury and non-injury distribution in the seven-day injury prediction dataset. To present the injury and non-injury distribution in both the
datasets, total duration and total Distance (m) were used.

mal outcomes when tested on the independent test
dataset. To achieve this, the Bayesian optimiza-
tion process yielded a set of hyperparameters that
notably improved the prediction of instances asso-
ciated with non-injuries. Complementary to this,

grid-search contributed partially to the refinement
of hyperparameters by predicting both injuries and
non-injuries in a balanced way. These endeavors
collectively provided preliminary estimates of hyper-
parameter values. It is noteworthy that the precise
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Fig. 2. Principal Component Analysis of the Seven-Day Injury Prediction Dataset. Note: Principal component analysis on dataset D (the
seven-day injury prediction) with 106 features. Red dots represent non-injury data points; black dots represent injury data points.

values obtained from the Bayesian optimization and
grid-search hyperparameter optimization techniques
were not adopted verbatim. Subsequent to the ini-
tial hyperparameter optimization, a further iterative
phase ensued wherein the hyperparameters of both
models were subject to adjustments. This iterative
refinement process involved multiple iterations of
cross-validation procedures to iteratively enhance
the model configurations. We also performed fea-
ture selection techniques, such as Recursive Feature
Elimination, Variance Threshold (i.e., removing low
variance features) techniques to reduce the dimen-
sionality of the feature space and risk of overfitting.
The best results were obtained by simultaneously
using all features (i.e., all the training load types).

Data imbalance in the training data was a con-
cern, which, if left untreated, would heavily bias
the outcomes towards non-injuries. To combat this
data imbalance, while applying XGBoost, we (a)
implemented the Synthetic Minority Oversampling
Technique (i.e., SMOTE: Chawla et al., 2002) to
create “synthetic” injury instances, and (b) set the
weighting for injury at nine times higher than the

non-injury weighting. On the other hand, while
applying ANN, we (a) scaled the data, (b) imple-
mented SMOTE, and (c) set the weighting for injury
at 11 times higher than the non-injury weighting.
The weight parameters were identified empirically,
by meaning that we adjusted the weights for both the
models by running them several times through cross-
validation and noticed how they perform on the test
data.

Following best practice, the test dataset was not
included for any of the data balancing, training,
and validation phases of the model development.
Missing values in the test dataset were imputed by
using the corresponding imputation values from the
training data. Table 2 provides a summary of the
results, describing the machine learning algorithms
employed, the pre-processing techniques for each
employed algorithm, along with evaluation metrics.
The two machine learning models were compared
with two baseline models: Baseline 1 predicted the
most frequent class (i.e., the non-injury datapoints);
Baseline 2 randomly predicted the class (i.e., injury
or non-injury) by respecting the distribution of the
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classes. In the Appendix, Table 3 details the different
hyperparameter settings and working architectures
for both (XGBoost and ANN) algorithms.

3. Results

A model with XGBoost correctly predicted 13 of
14 injuries in Month 1, as well as 8 of 9 injuries in
Month 3, but predicted just 5 of 14 injuries in Month
2. A model with ANN correctly predicted 11 of 14
injuries in Month 1, as well as 8 of 9 injuries in Month
3, but also predicted 9 of 14 injuries in Month 2.
The latter model with ANN improved the precision
and recall for injuries and non-injuries during cross-
validation as across a combined value for Month 1,
Month 2, and Month 3. The baseline models (i.e.,
Baseline 1 and 2) demonstrated AUC of 0.50, which
demonstrates that they are in effect random models.

The baseline models failed to predict injury. Thus, the
results provided by both XGBoost and ANN repre-
sent a significant improvement when compared with
the baseline models.

To interpret and visualize the output of each model
and the contribution of each feature (i.e., training
load) towards the model we used the Shaply Addi-
tive Explanations (SHAP) approach (Lundberg and
Lee, 2017)—see Fig. 3. Higher SHAP values denote
a higher contribution for that training load towards
the model’s prediction. Given the relatively improved
model, when using ANN over XGBoost, the follow-
ing SHAP explanations relate to the model with ANN.
With this in mind, the five most important features for
injury risk in the train and validation data appear to
be as follows: last injury area; exponential weighted
moving average of meta energy; weight; meta energy;
and age. We also used SHAP to examine the key fea-
tures for injury risk at Months 1, 2, and 3 predicted

Fig. 3. Top 20 Features According to SHAP Values in The Training and Validation Data. Note: The variables in the model are listed from
relatively the most important (left) to the least (right) important by their average global impact on the model. Each bar shows the mean
absolute SHAP value for each variable, the higher the value, the higher the importance on the classification model (i.e., a higher probability
of a positive prediction which is injury). The same applies for the Figs. 4, 5 and 6 as well.
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Fig. 4. Distribution of SHAP values for top features in The Training and Validation Data. Note: The variables in the model are listed from
relatively the most important (top) to the least (bottom) important by their average global impact on the model. Each dot represents the SHAP
value of an individual sample in the dataset which is plotted horizontally next to the feature name. We get an estimation of the distribution
of the SHAP values per variable, saying that the higher the absolute value the higher the importance on the model prediction also, positive
SHAP values represent a higher probability of a positive prediction (i.e., Injury).

by our trained ANN model (see Figs. 4–6). The two
most important features that appeared in all models
were last injury area and weight.

4. Discussion

The purpose of this study was to use machine learn-
ing to examine the relationship between training load
and soccer injury with a multi-season dataset from
one English Premier League club. Our results demon-
strated that two algorithms (XGBoost and ANN)
provided the best results. Correctly predicting 26 of
37 injuries, XGBoost produced a precision value of
10% and recall of 73%; correctly predicting 28 of 37
injuries, ANN produced a precision value of 13% and

recall of 77%. For the latter relatively better model
using ANN, the most important features contribut-
ing to injury were “last injury area” and “weight”.
Thus, although precision (i.e., the ratio of correctly
predicted injuries to the total number of correctly
and incorrectly predicted injuries) was relatively low
(meaning that many of the model’s predicted injuries
were not in fact injuries), values for recall (the ratio
of correctly predicted injuries to the total observed
injuries) were relatively high, suggesting precision
suffered at the expense of being able to accurately pre-
dict most of the actual injury cases. If this model were
used in an applied setting, the “false alarms” (those
non-injuries that were predicted as injuries) might
lead to some players being unnecessarily rested from
training; at the same time, however, the model’s cor-
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Fig. 5. Top 20 Features According to SHAP Values for Month 1.

rectly predicted injuries would lead to most genuinely
at-risk players rightfully being rested, and thereby
saving players from injury and the club from los-
ing players to injury, with the concomitant selection
problems, rehabilitation time, and financial impact.
Finally, the ANN model produced low false neg-
atives, suggesting that if the model predicts that a
player will not be injured, this is likely to be the case.

Injury prediction perspectives. Our study used
a very high dimensional and highly imbalanced,
overlapped dataset. Although ANN has been success-
fully employed to deal with such high dimensional,
overlapped datasets in other fields of artificial intelli-
gence (such as in object detection, image recognition,
speech recognition, text processing, recommenda-
tion systems, and time series model building: Bohr
and Memarzadeh, 2020; Emmert-Streib et al., 2020;
Johnson and Khoshgoftaar, 2019), it has never been
used for soccer injury prediction. In the present study,
ANN out-performed “state-of-the-art” XGBoost,
with better recall and precision values. In attempt-

ing to counter class imbalance in the present study’s
dataset, data oversampling (i.e., Smote), in combina-
tion with setting the weights for injury at nine (for
XGBoost) and eleven (for ANN) times higher than
for non-injury (termed a cost-sensitive classification),
we were able to maximize the accurate prediction of
injuries.

Injury prediction is based on analysis of longitu-
dinal data, with the goal of being able to accurately
predict injuries in some pre-defined upcoming period
of days. Thus, in order to ensure the independence
of test and train data, in addition to the usual cross-
validation, we also evaluated our models on unseen
future (test) data. In terms of data pre-processing,
differently from Lopez-Valenciano et al. (2018) and
Ayala et al. (2019) who imputed missing values using
the mean, we used different imputation techniques
for different types of training loads. For example,
some physical training load variables (such as weight
and body fat percentage) are not measured on a daily
basis, even though they naturally increase or decrease
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Fig. 6. Top 20 Features According to SHAP Values for Month 2.

gradually over time. Imputing the missing values of
these features by using the mean or the most fre-
quent values may not reflect well the actual values
over time. To combat this potential inaccuracy, we
used interpolation for imputing the missing values
of those time-dependent features. In a similar way,
to better replicate the most practical and reasonable
values with our GPS measures, ACWR, MSWR, and
EWMA, we imputed missing values using k-nearest
neighbor or weekly mean values.

Explainability. Compared with white-box
machine learning models, “black-box” models,
like those examined in the present research (i.e.,
XGBoost and ANN), can provide better predictive
performance, but at the expense of being difficult to
interpret and understand. With black-box models,
then, additional post hoc methods are needed to
interpret and understand results (Loyola-Gonzalez,
2019). Thus, in terms of the explainability of our
model, we present (based on SHAP explanations) the
important features (i.e., training loads) in Figs. 3–6.

Last injury area was a key feature in the ANN
model—37% of injured players had a previous
record of thigh injury, 30% had a previous record
of knee injury, 16% had a previous record of lower
leg injury, and 17% did not have any previous
record of injury. Further, 84% of injuries occurred
in those with body weights between 73 kg and
85 kg. It is worthy of note that, despite the power
of SHAP explanations, the output from such global
explanations can sometimes be misleading. For
example, in our main dataset 122 of 133 injuries, and
in our dataset D 334 out of 378 injuries, occurred
when the exponential weighted moving average
(EWMA) of Meta Energy exceeded a value of 6.14.
On the contrary, with our test data (i.e., those data
not included in the training and validation dataset),
of 530 data points, there were no data points for
which EWMA of Meta Energy exceeded a value of
6.14. Thus, although (see Fig. 3) EWMA of Meta
Energy was one of the top three features in the
training and validation data, it failed to emerge as
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Fig. 7. The Top 20 Features According to SHAP Values for Month 3.

an important feature in Months 1–3 (as can be seen
in Figs. 4–6). What this means is that, despite its
apparent importance during training and validation,
EWMA of Meta Energy plays no major role in terms
of explainability of the test data. Building from
the above, if we had divided our entire dataset on
a 10% train-test split basis (rather than using our
process of testing on later data), we would have
likely concluded that EWMA of Meta Energy plays
a more prominent role in terms of explainability than
it actually does in real life. Finally, it is also worth
noting that in our data, values for the ACWR (the
most well-researched model of injury monitoring in
soccer) appeared to differ from those noted in the
existing literature. Thus, in contrast with research
demonstrating, for example, that values in excess of
2 (Bowen et al., 2019) or less than 1 (Rossi et al.,
2018) might lead to greater injury risk, the majority
of injuries in our data occurred when ACWR values
were between 0.5 and 1.5.

Practical applications. The models developed in
this study could be used by clubs and practitioners to

calculate the probability of a player getting injured in
the next seven days. With the use of explainability (via
SHAP), practitioners would also be well-positioned
to have an essence of the cause of injuries predicted
by the models. The results from the present study
cannot be directly compared with other studies into
soccer injury, because, unlike those studies, we used
a multi-season dataset with a very high imbalance
ratio. However, in seeking to make comparisons, we
reproduced as closely as possible, with our data, the
analysis strategy from two other well-regarded soc-
cer injury studies—the work of Rossi et al. (2018)
and Vallance et al. (2020). In attempting to predict
injuries in the next day and in the next seven-day win-
dow, we used all the possible similar features (i.e., the
training load variables) from Rossi et al. (2018) and
Vallance et al. (2020) that were also available in our
data, and followed their methods with regard to data
pre-processing, feature selection, feature extraction,
balancing techniques, model training, hyperparam-
eter optimization, along with the model evaluation
and validation techniques, where specified. In repro-
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ducing the work of Rossi et al. (2018), we used the
Recursive Feature Elimination (Guyon et al., 2002)
as the feature selection technique which yielded just
one feature in our data, and the prediction based on
that one feature was not as high as the results reported
by Rossi at el. (2018). In reproducing the work of Val-
lance et al. (2020), we used the Bayesian optimization
hyperparameter technique with our data, which pre-
dicted most of the non-injuries. Rossi et al. (2018)
reported as their best algorithm Decision Tree, and
Vallance et al. (2020) reported as their best algo-
rithms k-nearest neighbors, random forest, decision
tree, and XGBoost—conversely, only XGBoost per-
formed well with our data. It is important to note that
the differences we noted in our data are completely
normal, and should be expected. All clubs have dif-
ferent philosophies and unique ways of handling their
training load data. As a result, the number of train-
ing loads used and the training programs employed
at clubs are frequently quite different. And thus, the
choice of the best performing machine learning algo-
rithm for each dataset is likely dependent on the
context and the quality of those data.

Strengths and limitations. The present research
had some notable strengths. First, to the best of our
knowledge this is the first study that has considered
multi-season data with elite male soccer players from
the English Premier League. Second, we included
many types of training loads, including GPS mea-
sures, physical and psychological loads, personal
information, as well as ACWR, MSWR, and EWMA
of certain training load variables (See Table 1). Third,
we also created features—such as last injury area
and days since the last injury—which appeared to
enhance the predictive utility of our machine learn-
ing model and were among the most important injury
predictors. Fourth, the proposed seven-day injury pre-
diction window is unique to our study—and aligned
well with the notion that English Premier League
are generally played every seven days. Fifth, our
use of ANN was a novel addition, which appeared
marginally more effective than the state-of-the-art
XGBoost in predicting injuries. All the above led us
to conclude that the most important features in our
study were “last injury area” and “weight”, which
are very general—these two features are monitored in
almost every sporting organization to evaluate injury
risk among players, and thus in practical terms the
present research has genuinely real-world applica-
tion. Against the backdrop of these many strengths,
a major limitation for the process used in the present
research (as is true for many machine learning pro-

cesses) is that when new data are available, the model
would have to be retrained, and thus the predictions
may then vary. That said, given that we were able to
demonstrate that machine learning models trained on
a highly multi-dimensional and imbalanced dataset
can indeed predict and explain injuries to address
the needs of a professional soccer club, different
clubs and organizations could use our approach with
amendments to the feature set as required.

Future Research. As noted above, a limitation of
the present research is the need to retrain the mod-
els when new data become available. Thus, a future
research avenue could be to develop automation of
the model training process with continuously incom-
ing injury data, so that the models adapt to this new
information. This would seem particularly impor-
tant in soccer, wherein changes in training processes,
team members, and injuries mean that the underly-
ing distribution of the data does not remain constant
across seasons. We believe that this limitation could
be addressed by using adaptive streaming predictive
methods (Yang, Manias and Shami, 2021), and we
encourage future research to examine this further.

5. Conclusions

Using a highly imbalanced and high dimensional,
overlapped, multi-season dataset from an English
Premier League soccer club, we were able to pre-
dict soccer injuries with high recall. Our novel use
of ANN in combination with explainable artificial
intelligence also demonstrated its potential to unearth
effective insights into the workload-injury relation-
ship. Our data pre-processing techniques such as
unique missing value imputation techniques, new
features creation, handling of the high imbalance
in non-injuries and injuries, train-validation process
alongside testing of models on real-life in-coming
data, and improving recall and precision techniques
all have potential to lay the foundation for future
research to employ machine learning in a more prac-
tical way to predict injuries.
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Appendix

Table 1

Training load variables, variable descriptions, missing value imputation techniques, method of data collection, and data collection frequency

Variable Name Variable Description Missing Value
Imputation

Method of
data collection

Frequency of data
collection

GPS measures/External Load

Total Duration Total time in minutes an athlete is in
activity

knn Time taken
from activity
on GPS device

Every pitch
session and game

Total Distance (m)* (TDM) Distance in meters covered during the
activity

knn GPS device Every pitch
session and game

Meterage Per Minute*
(MPM)

Distance in meters covered during the
activity per minute

knn GPS device Every pitch
session and game

Sprint Efforts* (SE) Number of efforts above 7 m/s knn GPS device Every pitch
session and game

Sprint Distance (m) Distance in meters covered above 7 m/s knn GPS device Every pitch
session and game

High Speed Distance (m)*
(HSD)

Distance in meters covered above 5.5 m/s knn GPS device Every pitch
session and game

High Speed Distance Per
Minute (m/min) (m)

Distance in meters covered above 5.5 m/s
per minute of activity

knn GPS device Every pitch
session and game

Maximum Velocity (m/s)*
(MV)

Maximum velocity reached in activity knn GPS device Every pitch
session and game

Velocity Band 7 Total Effort
Count

Number of efforts above 90% of players
maximum velocity

knn GPS device Every pitch
session and game

Velocity Band 7 Total
Distance (m)

Distance in meters covered above 90% of
players maximum velocity

knn GPS device Every pitch
session and game

Total Player Load* (TPL) Sum of the accelerations across all axes
of the internal tri-axial accelerometer
during movement. It considers
instantaneous rate of change of
acceleration and divides it by a scaling
factor (divided by 100).

knn GPS device Every pitch
session and game

Accels* (ACC) Number of accelerations above 0.5 m/s2 knn GPS device Every pitch
session and game

Decels* (DCC) Number of decelerations above –0.5 m/s2 knn GPS device Every pitch
session and game

Perceived Exertion* (PE) The Borg Rating of Perceived Exertion
(RPE) using Borg CR10 Scale

knn Questionnaire Every pitch
session and game

Workload* (WD) Perceived Exertion × Total Duration knn Calculation of
Total Duration
x RPE

Every pitch
session and game

Meta Energy (KJ/kg) * (ME) Estimated energy expenditure, based on
GPS acceleration

knn GPS device Every pitch
session and game

Velocity Work/Rest Ratio Time working divided by Time resting
where work and rest are defined by
velocity thresholds

knn GPS device Every pitch
session and game

Work/Rest Ratio The amount of time spent above the
work velocity threshold divided by the
amount of time spent below the rest
velocity threshold

knn GPS device Every pitch
session and game

Relative Intensity (High Speed Distance (m)/Total Distance
(m)) * 100

knn GPS device Every pitch
session and game

Mean Heart Rate Average heart rate (beats per minute) in
activity

knn GPS device Every pitch
session and game

Maximum Heart Rate Maximum heart rate (beats per minute)
in activity

knn GPS device Every pitch
session and game

Player Load Per Minute Average Player Load accumulated per
minute of activity

knn GPS device Every pitch
session and game

(Continued)
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Table 1

(Continued)

Variable Name Variable Description Missing Value
Imputation

Method of
data collection

Frequency of data
collection

Player Load (1D Fwd) Player Load accumulated in the
sagittal plane

knn GPS device Every pitch
session and game

Player Load (1D Side) Player Load accumulated in the
frontal plane

knn GPS device Every pitch
session and game

Player Load (1D Up) Player Load accumulated in the
sagittal plane

knn GPS device Every pitch
session and game

Player Load (2D) Player Load accumulated in the
frontal and sagittal planes

knn GPS device Every pitch
session and game

RHIE Total Bouts The total occurrences of
Repeated High Intensity Effort
(RHIE) events

knn GPS device Every pitch
session and game

RHIE Effort Duration – Mean The average duration of a RHIE
event

knn GPS device Every pitch
session and game

RHIE Effort Duration – Min The shortest duration of a RHIE
event

knn GPS device Every pitch
session and game

RHIE Effort Duration – Max The longest duration of a RHIE
event

knn GPS device Every pitch
session and game

RHIE Bout Recovery – Mean The average amount of time
between RHIE events

knn GPS device Every pitch
session and game

RHIE Bout Recovery – Min The shortest time between RHIE
events

knn GPS device Every pitch
session and game

RHIE Bout Recovery – Max The longest amount of time
between RHIE events

knn GPS device Every pitch
session and game

IMA Jump Count Low Band The total number of jumps
registered 0–20 cm

knn GPS device Every pitch
session and game

IMA Jump Count Med Band The total number of jumps
registered 20–40 cm

knn GPS device Every pitch
session and game

IMA Jump Count High Band The total number of jumps
registered >40 cm

knn GPS device Every pitch
session and game

HMLD* Distance in meters covered by a
player where his/her Metabolic
Power is >25.5 W/kg

knn GPS device Every pitch
session and game

HML Distance Per Minute
(m/min) (m)

Distance in meters covered by a
player where his/her Metabolic
Power is >25.5 W/kg per minute

knn GPS device Every pitch
session and game

Explosive Efforts* (EE) IMA Accel High + IMA Decel
High + IMA CoD Left High +
IMA CoD Right High + IMA
Accel Medium + IMA Decel
Medium + IMA CoD Left
Medium + IMA CoD Right
Medium

knn GPS device Every pitch
session and game

Explosive Efforts per Min*
(EEM)

EE/minute knn Calculation Every pitch
session and game

Personal Information

Age Age of player
BMI Body Mass Index; ratio between

weight (in kg) and the square of
height (in meters)

None Calculation

Height Player’s height in centimetres None Measurement
from
Sadiometer

Pre-season

Weight Players weight in kilograms Linear
Interpolation

Measurement
from Secca
Scales

Fortnightly

Last Injury Area Last injury area None
Days since last injury None

(Continued)
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Table 1

(Continued)

Variable Name Variable Description Missing Value
Imputation

Method of data collection Frequency of
data collection

Internal Load – Physical data

TRICEP Triceps’ skinfold measurement Linear
Interpolation

Skinfold measurement taken
with Harpenden Callipers

Fortnightly

SUBSCAP Subscapular skinfold measurement Linear
Interpolation

Skinfold measurement taken
with Harpenden Callipers

Fortnightly

BICEP Bicep skinfold measurement Linear
Interpolation

Skinfold measurement taken
with Harpenden Callipers

Fortnightly

ILIAC Iliac Crest skinfold measurement Linear
Interpolation

Skinfold measurement taken
with Harpenden Callipers

Fortnightly

SUPRA Supraspinal skinfold measurement Linear
Interpolation

Skinfold measurement taken
with Harpenden Callipers

Fortnightly

ABDOM Abdominal skinfold measurement Linear
Interpolation

Skinfold measurement taken
with Harpenden Callipers

Fortnightly

THIGH Thigh skinfold measurement Linear
Interpolation

Skinfold measurement taken
with Harpenden Callipers

Fortnightly

CALF Calf skinfold measurement Linear
Interpolation

Skinfold measurement taken
with Harpenden Callipers

Fortnightly

Skinfolds Sum of 8 site skinfold measurements Linear
Interpolation

Calculation Fortnightly

% Bodyfat
(Yuhasz).

(0.1051 × sum of triceps, subscapular,
supraspinal, abdominal, thigh, calf)
+2.585

Linear
Interpolation

Calculation Fortnightly

% Bodyfat
(Jackson)

(0.29288 × sum of skinfolds) – (0.0005
× square of the sum of skinfolds) +
(0.15845 × age) – 5.76377

Linear
Interpolation

Calculation Fortnightly

Fat Mass (Weight/100)* % Bodyfat (Jackson) Linear
Interpolation

Calculation Fortnightly

Lean Mass Weight – Fat Mass Linear
Interpolation

Calculation Fortnightly

Relative Lean
Mass

Lean Mass/Weight Linear
Interpolation

Calculation Fortnightly

Internal Load – Psychological data

Sleep Previous night’s sleep quality Forward fill
and back fill

Questionnaire Every training
day

Fatigue Fatigue level Forward fill
and back fill

Questionnaire Every training
day

Ext. Stress Stress level Forward fill
and back fill

Questionnaire Every training
day

Soreness Muscle Soreness Forward fill
and back fill

Questionnaire Every training
day

ACWR, MSWR and EWMA

ACWR of 14 daily
GPS features*

Given a training load feature, the Acute
Chronic Workload Ratio (ACWR) is the
ratio of acute (i.e., rolling average of
training load completed in the past week)
to chronic (i.e., rolling average of
training load completed in the past 4
weeks) workload.

knn Calculation

MSWR of 14
daily GPS
features*

Monotony of a player. Given a training
load feature, MSWR is calculated by
taking the ratio of the mean and standard
deviation of the values of the training
load in the past 1 week/7 days.

knn Calculation

EWMA of 14
daily GPS
features*

Exponential weighted moving average
puts greater weight and significance to
the most recent training loads (i.e., data
points). It follows a decay rule of
α = 2

Span+1 where the span is set to 7.

knn Calculation

Note. *These training load variables are used in the calculation of ACWR, MSWR and EWMA.



64 A. Majumdar et al. / Machine learning and soccer injury

Table 2

Model fit for the best-fitting model from each analysis

Machine learning algorithms,
pre-processing technique(s)

Model evaluation Non-injury and
injury

Precision (%) Recall (%) AUC Confusion
matrix

TN FP
FN TP

Algorithm 1: Cross-validation
(Training data)

Non-injury 0.99 ± 0.00 0.72 ± 0.02 0.74 ± 0.04 N/A
XGBoost Injury 0.09 ± 0.01 0.76 ± 0.08

Month 1 Non-injury 0.99 0.54 0.73 87 74
Pre-processing: Injury 0.15 0.93 1 13
Oversample: SMOTE Month 2 Non-injury 0.92 0.61 0.48 99 63

Injury 0.07 0.36 9 5
Class weight: Month 3 Non-injury 0.99 0.55 0.72 93 77
non injury: 1, injury: 9 Injury 0.09 0.89 1 8

Month 1 + Month
2 + Month 3

Non-injury 0.97 0.57 0.64 279 214
Injury 0.10 0.73 11 26

Algorithm 2: Cross-validation
(Training data)

Non-injury 0.99 ± 0.00 0.74 ± 0.03 0.80 ± 0.02 N/A
Artificial Neural Network Injury 0.10 ± 0.01 0.86 ± 0.04

Month 1 Non-injury 0.97 0.58 0.69 96 65
Pre-processing: Injury 0.14 0.79 3 11
Feature scaling: Min max scaler
with feature range (0.01, 0.99)

Month 2 Non-injury 0.95 0.60 0.62 98 64

Oversample: SMOTE Injury 0.12 0.64 5 9
Class weight: Month 3 Non-injury 0.99 0.64 0.77 99 64
{non injury: 1, injury: 11} Injury 0.12 0.89 1 8

Month 1 + Month
2 + Month 3

Non-injury 0.97 0.61 0.69 300 193
Injury 0.13 0.77 9 28

Baseline 1 (most frequent)* Cross-validation
(Training data)

Non-injury .97 1.00 0.50 N/A
Injury 0.00 0.00

Baseline 2 (stratified)* Cross-validation
(Training data)

Non-injury 0.97 0.97 0.50 N/A
Injury 0.03 0.03

Note. Each model was run 1000 times during cross-validation with stratified sampling to check model stability. *We have not provided
evaluation metrics for these two baseline models in month 1, 2, and 3, because they correctly predicted non-injuries only (i.e., they failed to
predict any injuries).

Table 3

Training algorithm hyperparameter settings and architecture

Machine Learning Algorithm Hyperparameter setting and architecture

XGBoost Objective: binary (logistic)
colsample bytree: 0.9
learning rate: 0.09
maximum depth: 3
alpha: 5
gamma: 5
evaluation metric: error

Artificial Neural Network Input layer: 106,
Hidden layer 1 : 200,
Dropout: 0.5,
Hidden layer 2 : 100,
Dropout: 0.5,
Output layer: 1
Activation function for hidden layer 1, 2: Rectified Linear Unit (RELU)
Activation function for output layer: Sigmoid
Kernel initializer for input layer: Glorot Uniform
Optimizer: ADAM
Loss function: Binary crossentropy
Learning rate: initial learning rate 0.0001 with an exponential decay rate 0.96
Epochs: 100
Batch size: 128

Note. Above, the hyperparameters that used in our study for each used algorithm is presented. In Section 2.3, we described how we came up
with these specific hyperparameters for both the algorithms. These hyperparameters are not absolute and may vary according to data used
in other studies.
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