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Abstract. In this manuscript, different approaches for modeling and prediction of tennis matches in Grand Slam tournaments
are proposed. The data used here contain information on 5,013 matches in men’s Grand Slam tournaments from the years
2011–2022. All regarded approaches are based on regression models, modeling the probability of the first-named player
winning. Several potential covariates are considered including the players’ age, the ATP ranking and points, odds, elo rating
as well as two additional age variables, which take into account that the optimal age of a tennis player is between 28
and 32 years. We compare the different regression model approaches with respect to three performance measures, namely
classification rate, predictive Bernoulli likelihood, and Brier score in a 43-fold cross-validation-type approach for the matches
of the years 2011 to 2021. The top five optimal models with highest average ranks are then selected. In order to predict and
compare the results of the tournaments in 2022 with the actual results, a comparison over a continuously updating data set via
a “rolling window” strategy is used. Also, again the previously mentioned performance measures are calculated. Additionally,
we examine whether the assumption of non-linear effects or additional court- and player-specific abilities is reasonable.
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1. Introduction

In recent years, several approaches to the statis-
tical modeling of tennis matches and tournaments
have been proposed and the existing methods for pre-
dicting the probability of winning matches in tennis
have been expanded. Then, when all matches can be
predicted, also winning probabilities for a whole tour-
nament could potentially be calculated. For instance,
Clarke and Dyte (2000) used the official Associa-
tion of Tennis Professionals (ATP) computer tennis
rankings to predict a player’s chance of winning via
logistic regression. Arcagni et al. (2022) extended the
approach of rating calculations to determine the prob-
ability that a player will win a match. The usage of
this centrality measure allows the ratings of the whole
set of players to vary every time there is a new match,
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and the resulting ratings are then used as a covari-
ate in a simple logit model. Klaassen and Magnus
(2003) used a large (live) data set from the Wimble-
don predictions during the event. Hence, their work is
suitable for the betting market. Easton and Uylangco
(2010) used Klaassen and Magnus’ model and com-
pared it with bookmakers’ odds on a point-by-point
basis. They verified that bookmakers’ odds are a good
predictor of outcomes of both men’s and women’s
tennis matches. Gu and Saaty (2019) predicted the
outcome of tennis matches of Grand slam tourna-
ments as well as of the ATP and the Women’s Tennis
Association (WTA) using both data and (unquali-
fied, subjective) judgments, and this way identified
numerous factors and systematically prioritized them
subjectively and objectively, so as to improve the
accuracy of the prediction. In McHale and Morton
(2011), a Bradley-Terry type model was proposed for
forecasting the top tier of the WTA and ATP com-
petition. They considered surface (hardcourt, carpet,
clay or grass) influence on match outcomes. They
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found that a model incorporating information on
match score, play data and surface can give a higher
accuracy of forecasting than ranking-based mod-
els. However, they did not consider the dependence
between factors. Ma et al. (2013) applied another
logistic regression model on 16 variables representing
player skills and performance, player characteristics
and match characteristics. Yue et al. (2022) proposed
a statistical approach for predicting the match out-
comes of Grand Slam tournaments, using exploratory
data analysis. The proposed approach introduces new
variables via the Glicko rating model, a Bayesian
method commonly used in professional chess.

Recently, machine learning models have been
utilized to predict the winner of tennis matches. Som-
boonphokkaphan et al. (2009) proposed a method
to predict the winner of tennis matches using both
match statistics and environmental data based on
a Multi-Layer Perceptron (MLP) equipped with a
back-propagation learning algorithm. MLP is a basic
sort of Artificial Neural Networks (ANN). ANNs
are a powerful technique to solve real world classi-
fication problems and are particularly effective for
predicting outcomes when the networks rely on a
large database and are able to deal with incom-
plete information or noisy data. In addition, there
are several studies for predictions based on machine
learning approaches (see, for example, Whiteside et
al., 2017). Also Wilkens (2021) focused on machine
learning approaches and extended previous research
by conducting and applying a wide range of machine
learning techniques. He used a variety of models such
as neural networks and random forests in combina-
tion with one of the most extensive data sets in the
area of professional men’s and women’s tennis sin-
gles matches. Moreover, the author showed that the
average prediction accuracy cannot be increased to
more than about 70%. Bayram et al. (2021) defined
a new method based on network analysis to extract a
new feature that represents the player’s skill on each
surface considering the variation of his performance
over time, which is believed to have a big effect on
the match outcome. In addition, advanced machine
learning paradigms such as Multi-Output Regression
and Learning using privileged information have been
applied, and the results were compared with standard
machine learning approaches, such as regression tree-
and forest-based methods as well as single- and multi-
target regression techniques. Evaluating the results
showed that the proposed methods provide more
accurate predictions of tennis match outcomes than
classical approaches frequently used in the literature.

Chitnis and Vaidya (2014) considered performance
assessments of professional tennis players using Data
Envelopment Analysis in historical matches played in
ATP world tour rankings. Radicchi (2011) novel evi-
dence of the utility of tools and methods of network
theory in real application. Del Corral and Prieto-
Rodrıguez (2010) estimated separate probit models
for men and women using Grand Slam tennis match
data from 2005 to 2008. The explanatory variables
are divided into three groups: a player’s past perfor-
mance, a player’s physical characteristics, and match
characteristics. The accuracies of the different models
were evaluated both in-sample and out-of-sample by
computing Brier scores and comparing the predicted
probabilities with the actual outcomes from 2005 to
2008 and from the 2009 Australian Open. In addition,
they used bootstrapping techniques, and evaluated the
out-of-sample Brier scores for the 2005–2008 data.

Statistical and machine learning techniques have
also been applied in other racket sports. For exam-
ple, Lennartz et al. (2021) focused on international
table tennis and analyzed matches of recent holdings
of the Men’s World Cup and the Grand Finals of the
Men’s ITTF World Tour. Also, they applied statis-
tical and machine learning methods on table tennis
tournaments for prediction with a correct classifica-
tion rate of around 75% by a random forest and 74%
by a penalized generalized linear logit model. Even
though both models based their predictive power
mainly on the official table tennis rankings and points,
variables like age, playing handedness or individual
strength turned out to be important additional factors.

In the present work, we concentrate on several
regression-based modeling approaches with a focus
on tennis Grand Slam tournament data. While com-
plex machine learning models often have the capacity
to further increase the predictive performance, they
also come with the substantial draw-back of loos-
ing interpretability. Hence, in this work we want
to fully exploit the flexibility of modern regression
approaches, using their high level of interpretability
to gain some knowledge to understand certain asso-
ciations and relations in professional tennis. For this
purpose, a data set was compiled using the R package
deuce (Kovalchik, 2018). It contained information
on 5,013 matches at men’s Grand Slam tournaments
from 2011 to 2022. Several potential covariates are
considered including the players’ age, the ATP rank-
ing and points, odds, Elo rating as well as two
additional age variables, which take into account that
the “optimal” age of a tennis player is between 28
and 32 years (Weston, 2014). We present different
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regression approaches which are then compared with
respect to various performance measures. Two spe-
cific aspects that we will investigate in more detail
are whether it makes sense to (i) allow for non-
linear covariate effects or to (ii) incorporate additional
court-specific abilities.

The rest of the article is structured as follows.
Section 2 introduces the present data set, explains
the variables and defines the objectives. Then, in
Section 3, different modeling approaches are intro-
duced, including logistic regression, regularization
using the Least Absolute Shrinkage and Selection
Operator (LASSO) and non-parametric spline regres-
sion. In Section 4, these modeling approaches are
compared via 43-fold cross-validation (CV) for the
Grand Slam tournaments from 2011 to 2021. For
this comparison, various performance measure are
defined. Then, the performance measures are calcu-
lated on the Grand Slam tournament 2022 using a
rolling window approach. We discuss the obtained
results in Section 5. Section 6 summarizes the main
results and gives a final overview.

2. Data

In the following, both the used data set and the
variables it contains are described in more detail.
Subsequently, the objective of this work is specified.

The underlying data set was compiled using
the R package deuce (Kovalchik, 2018). It con-
tains information on 5,013 matches in men’s Grand
Slam tournaments from 2011 to 2022. The variables
included in the data set are listed and described below.
Unless stated otherwise, the variables were directly
included in the data sets of the package.

Player1: The name of the (randomly chosen)
first-named player.

Player2: The name of the (randomly chosen)
second-named player.

Year: The year when the match took place
(ranging from 2011 to 2022).

Tournament: The Grand Slam tournament where
the players met (Australian Open,
French Open, Wimbledon, US Open).

Surface: A factor variable describing the sur-
face on which the match was played
(either “hard”, “clay” or “grass”).

Victory: A dummy variable capturing whether
the first-named player did win the
match (1: yes, 0: no).

Age: A metric predictor collecting the age differ-
ence of the players in years; age of the 2nd
player was subtracted from the age of the
1st player. Note that players’ ages were not
given directly and had to be calculated from
the player’s date of birth as well as the date
of the relevant match.

Prob: Difference in the probabilities that the
respective player will win. These were
calculated from the average odds for
both players (see AvgProb1 and AvgProb2
below). The probability of the 2nd player
winning was subtracted from the probabil-
ity of the 1st player winning. This variable
is later used for modeling.

Rank: Difference in the players’ ranking positions.
These were calculated by subtracting the
rank of the 2nd player from the rank of the
1st player. For this, the rank of the player
at the start of the tournament was used. The
position in the ranking is based on the ATP
ranking points.

Points: Difference in the ATP ranking points. The
points of the 2nd player were subtracted
from the points of the 1st player. World
ranking points are awarded for each match
won per tournament. Wins in later rounds
of a tournament are valued higher than
wins in the first rounds of a tournament.
Points earned in a tournament expire after
52 weeks.

Elo: Difference of the Elo-numbers. The Elo-
number of the 2nd player was subtracted
from the Elo-number of the 1st player. The
Elo-number takes into account whether a
player played against a higher or lower
ranked player. The Elo-number increases
more if a player wins against a player with
a high Elo-number than if he wins against
a player with a lower Elo-number. It is
updated after each match of a player.

Age.30: To calculate this variable, first the distance
between the age of the players and reference
age 30 was calculated and then the corre-
sponding difference was calculated as for
the variable Age. It is assumed that the stan-
dard Age variable introduced above does
not contain enough information. For exam-
ple, a 25-year-old player typically has an
advantage over a 20-year-old one, while a
40-year-old player typically has a disadvan-
tage over a 35-year-old one. However, in
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both cases, the age difference is 5 years.
As Weston (2014) argued, the optimal
age of tennis players is between 28 and
32 years. Therefore, the middle of the
interval, i.e. 30, was used as reference
age here.

Age.int: For this feature, the distance to the closer
limit of the interval was used, i.e. for
players younger than 28 the distance to
28 was calculated and for players older
than 32 the distance to 32 was calculated.
For players between 28 and 32 the dis-
tance was set to 0. Then, the difference
was calculated as for the variable Age.

AvgProb1: Average probability for a win by
Player1, calculated from the aver-
age odds of several different betting
providers, which were included in
the deuce package as obtained from
https://www.oddsportal.com/.

AvgProb2: Average probability for a win by
Player2, calculated from the average
odds of the betting providers. Together
with AvgProb1, it sums up to 1 per match.

B365.1 Winning odds for Player1 obtained from
the specific bookmaker Bet365. For
example, with winning odds of 2.31 for
Player1, one gets back 2.31 money units
if he wins, if previously one money unit
was placed on this event. The odds from
this specific bookmaker are later used to
calculate the betting returns.

B365.2 Same as B365.1, but from the perspective
of Player2.

It should be noted that the data set does not include
matches in which one of the two players retired or
was unable to compete, e.g. due to injury, such that
the other player won without actually playing the
match. These matches do not contain any informa-
tion and could distort the results and are therefore
excluded. Furthermore, the data set does not contain
any missing values.

In addition, it should also be noted that there are
some players which only participated in a single
Grand Slam tournament. For instance, Camilo Ugo
Carabelli participated only at the French Open 2022
and did not participate in any of the Grand Slam
tournaments from 2011 to 2021. Also, as another
example, Jan Satral participated for the very first
time at the US Open 2016 and never again after this.
Altogether, there are 70 players which participated in

only one single Grand Slam tournament. Therefore,
in our leave-one-tournament-out strategy for compar-
ing the predictive power of the different modeling
approaches, for these players no estimates of their
abilities are available, if their matches are part of the
tournament which is currently used as test data. In
order to obtain nonetheless reasonable estimates for
the player ability effects of such players, which can
then be used for the prediction of the currently left-
out Grand Slam tournaments, we group all players
that have only participated in a single tournament in a
group called “newcomer”. Hence, these players share
the same player-specific ability parameters.

Based on this data set, the best possible regression
model for predicting tennis matches at Grand Slam
tournaments is sought. We investigate which model
approaches are particularly suitable for this purpose.
Among other things, it will be examined whether
the assumption of non-linear influences or additional
surface- and player-specific abilities is reasonable.
For the different modeling approaches, we then deter-
mine models which are optimal with respect to certain
performance measures, and compare those with each
other.

3. Statistical methods

In the following, the statistical methods used in this
work are briefly introduced. These include logistic
regression and parameter estimation using maximum
likelihood. Based on this, we shortly motivate regu-
larization and define the so-called LASSO-estimator.
Finally, spline regression with P-splines is described.

3.1. The logistic regression model

For n individuals, let observations
(yi, xi1, . . . , xip), i = 1, . . . , n of a binary tar-
get variable y and covariates x1, . . . , xp be given.
In the logistic regression model, the relationship
between y and metric, categorical or binary covari-
ates is examined. Here, y = 1 denotes the occurrence
of a particular event (typically defined as “success”)
and y = 0 that the event does not occur (also defined
as “failure”). Then,

πi = P(yi = 1|xi1, . . . , xip) = E(y|xi1, . . . , xip)

is the (conditional) probability for the occurrence of
yi = 1, given the covariate values xi1, . . . , xip. The
aim is to model πi appropriately as a function of the
feature variables. Therefore, the linear predictor ηi is

https://www.oddsportal.com/
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related to the probability πi by a strictly monotoni-
cally increasing function h : R→ [0, 1], i.e.

πi = h(ηi) = h(β0 + β1xi1 + · · · + βpxip) .

The function h(·) is also called the response function.
With the help of the inverse function g = h−1, we can
also write ηi = g(πi).

The estimators for β0, . . . , βp are obtained by
numerical maximization of the log-likelihood, e.g.
by using the Fisher scoring or the Newton-Raphson
method, see, e.g., Nelder and Wedderburn (1972).
Generally, for more details on GLMs, see also
Fahrmeir and Tutz (2001).

3.2. Regularization

If the number of covariates p becomes very large,
estimation becomes numerically unstable (see, e.g.,
Fahrmeir et al., 2013). This can also be the case if
there is some substantial mulitcollinearity between
the columns of the design matrix X = (x1, . . . , xn)�.
To address this problem, a penalty term pen(βββ) is
added to the negative log-likelihood in the logit
model. According to Park and Hastie (2007), the
estimator is then obtained by minimizing

β̂ββpen = arg min
βββ

(−l(βββ) + λ · pen(βββ)),

where λ is the penalty parameter that controls the
influence of the penalty term on the parameters esti-
mated by the ML method.

The Least Absolute Shrinkage and Selection
Operator (LASSO)

One possibility for penalization is provided by the
Least Absolute Shrinkage and Selection Operator
(LASSO; Tibshirani, 1996). Here the penalty term is
given by

pen(βββ) =
p∑

j=1

|βj|.

It allows model estimation and variable selection to be
performed in one step, as small coefficients are shrunk
to 0. There is no closed-form representation for solv-
ing this minimization problem. Therefore, numerical
optimization methods are used to obtain the optimal
LASSO estimator β̂ββLASSO (see, e.g., Friedman et al.,
2010). To optimize the penalty parameter λ typically
K-fold cross validation can be is used.

3.3. Splines

In the methods introduced above, the influence
of the covariates on the target variable is assumed
to be strictly linear. However, often also non-linear
influences are worthwhile. In order to model these
appropriately and flexibly, so-called splines can be
used. Here, the so-called B-splines (Eilers and Marx,
1996) are used.

B-splines
In principle, with B-splines a non-linear effect f (x)

of a metric predictor can be represented as

f (x) =
d∑

j=1

γjBj(x).

As an unpenalized estimation of a non-linear B-spline
effect often overfits, typically the non-linear effect is
smoothed by using penalized B-splines, i.e. P-splines.

P-splines
Beside the problem of potential overfitting, the

goodness-of-fit of the B-spline approach depends on
the number of selected nodes. To avoid this prob-
lem, various penalization methods exist in the form
of P-splines. Here, a penalized estimation criterion,
which is extended by a penalty term, is used instead
of the usual estimation criterion. For P-splines based
on B-splines (see, e.g., Eilers and Marx, 1996), the
function f (x) is first approximated by a polynomial
spline with many nodes (typically about 20 to 40).
The penalty term then results in

λ

∫ (
f ′′(x)

)2
dx .

This is motivated by the fact that the second derivative
is used as a measure of the curvature of a function. If
this becomes too large, it will be penalized by the term
above. For approximation of the second derivative
exist simple representations, so that the penalty term
results in

λ

d∑
j=3

(
�2γj

)2
,

where �2γj = γj − 2γj−1 + γj−2 (see again Eilers
and Marx, 1996).

The optimal smoothing parameter λ is deter-
mined using generalized CV. For more details on
the methodology, see also Eilers and Marx (2021),
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and for more details on the corresponding software
implementation in R, see Wood (2017).

4. Evaluation

In the following, some model approaches which
seem to be suitable to adequately model tennis
matches well, are investigated. These are compared
with each other in a CV-type strategy in order to be
able to select the best model with respect to a selection
of performance measures. In an external validation
with previously unused data, the best models from
the preceding CV-type approach are evaluated. All
calculations and evaluations are performed with the
statistical programming software R (R Core Team,
2022).

4.1. Model selection

To model the outcome of a tennis match appro-
priately, different regression models with different
assumptions can be used. Since the target variable
y (win/loss) is a binary variable, the methods are all
based on logistic regression. Therefore, the model can
be generally formulated as

ln

(
πi

1 − πi

)
= ηi = β0 + xi1β1 + · · · + xipβp.

Since the xi1, . . . , xip, i = 1, . . . , n, are differences
of the covariate values of the players, where the value
of the second player is always subtracted from the
value of the first player, β0 would correspond to
a kind of “home effect” for the first-named player.
However, since the data are composed in such a way
that one of the two players is named first randomly,
β0 cannot be meaningfully interpreted here and is
therefore excluded and set to zero in the following
considerations. Furthermore, it is assumed that the
yi|xi1, . . . , xip are independent for i = 1, . . . , n.

Linear effects
The simplest and most straight-forward model

approach is to assume linear covariate effects in the
linear predictor. Here, nevertheless, covariates must
be selected appropriately. To ensure this, all possible
combinations of the available variables are com-
pared in the CV-type approach. Since there are seven
covariates in the data set, there are

∑7
i=1

(7
i

) = 127
different combinations of these. However, of these
seven covariates, three reflect specific age differ-
ences. Therefore, it is additionally assumed that the

combinations always include a maximum of one age
variable. This results in 63 different combinations.

Non-linear effects (splines)
The assumption of linear effects can possibly be

very limiting and lead to insufficient results. There-
fore, spline models based on B-splines are also
considered. Here, all 63 possible combinations are
again compared with respect to various performance
measures. To obtain smoothness, penalization of the
splines is performed and, hence, P-splines are used.
Furthermore, an additional regularization approach is
used, i.e. an additional variable selection is performed
on the spline effects. This is done by setting the
spline coefficients to zero and is implemented in the
gam-function from mgcv (Wood, 2017) via setting
the select argument to TRUE. For the underlying
methodology of this additional penalization and vari-
able selection approach, see e.g. Marra and Wood
(2011). We will later on see that exemplarily the
effect of the variable probs is non-linear for very low
and high values (see Fig. 1), which also seems to be
reasonable (see our explanation in Section 5).

Surface-specific player skills (LASSO)
Since tennis is played on different surfaces (grass,

hard court and clay court) and these surfaces have
specific characteristics, so that each surface is played
differently, it is plausible to assume that not every
player copes equally well on every surface. For
example, the Spaniard Rafael Nadal is considered as
the “king of clay”, as he has won 14 French Open
titles on this surface. At the same time, however, he
was “only” able to win the Wimbledon title twice,
which is played on grass. In contrast, the Swiss
Roger Federer has already won Wimbledon eight
times, but the French Open only once. In order to
take into account these specific features of players
and surfaces, a corresponding factor variable is
created. Technically, this requires effect coding.
Actually, to the data set artificially columns are
added, whose entries are either 0, 1 or –1. Each
column represents a combination between a player
and one of the corresponding surfaces, i.e. for each
player there are a maximum of three such columns.
If a player has not played on one of the three surface
types, the corresponding columns are omitted. Each
row consists of exactly one entry of –1 and 1,
respectively, while all other entries of the row are
0. The entry 1 is in the column of the combination
of the first player and the corresponding surface on
which the match took place. Analogously, the entry
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–1 is in the column of the combination of the second
player and the surface. For example, the line

· · · Nadal.Hard Nadal.Grass Nadal.Clay · · · Federer.Hard Federer.Grass Federer.Clay · · ·
· · · 0 1 0 · · · 0 −1 0 · · ·

means that Rafael Nadal played against Roger
Federer on grass, Nadal was named as the first
player and Federer as the second. The remain-
ing entries in the row are 0, because the match
was played on grass and only these two players
were involved. All these columns are appended
to the existing data set. The newly constructed
variables as well as the already existing variables,
i.e. Age, Ranking, Points, Elo, Prob, Age.30 and
Age.int, are then jointly used as covariates.

As a result, a large number of new covariates is
constructed, namely 1,024, which generally leads
to an extremely large number of parameters being
estimated and the associated estimators becoming
unstable. Therefore, for this approach the logistic
regression model is combined with LASSO regular-
ization. The influences of all covariates is assumed
to be linear here. Via the surface-specific player skill
parameters, the model can detect when a player has
won or lost more often than average on a surface.

Global player skills (LASSO)
Analogously, it can be argued that there are also

players who overall perform even better or worse than
the information of their covariate values would sug-
gest, i.e. who have a generally great or substandard
talent and are therefore more likely to be assessed
as winners or losers. For this purpose, similar to the
previous paragraph, a corresponding factor variable
is created, again using effect coding. In this case, we
add only one column per player. The added columns
again only have the entries 0, 1 or –1, where the val-
ues 1 and –1 occur exactly once per row. In each row,
the value 1 appears at the position belonging to the
first-named player and the value –1 at the position
belonging to the second-named player, all remaining
entries are 0. The following exemplary row

· · · Novak.Djokovic · · · Rafael.Nadal · · · Roger.Federer · · ·
· · · 0 · · · −1 · · · 1 · · ·

indicates that Rafael Nadal played as the second
named player against the first named player Roger
Federer. The column for the player Novak Djokovic
(as well as for all other players), for example, is

then 0, since he did not play. Again, those global
player-specific abilities are then added to the design

matrix and used along with the covariates defined
in Section 2. The columns are then appended to the
already existing record.

Again, a large number of new covariates is con-
structed, namely 426, so again a large number of
player-specific skill parameters has to be estimated.
And, hence, again we extend the logistic regression
model with LASSO penalization and assume linear
covariate effects only.

Benchmark model
As a benchmark model for prediction, we solely

use the probabilities (probs) calculated from the aver-
age odds of the different bookmakers included in the
deuce package. The winning probabilities in the
i-th match π̂i1 and π̂i2 for player 1 and player 2,
respectively, can be derived from the two winning
odds, i.e. oddi1 and oddi2, respectively, according to
Schauberger and Groll (2018) as follows:

π̂i1 =
1

oddi1
1

oddi1
+ 1

oddi2

or π̂i2 =
1

oddi2
1

oddi1
+ 1

oddi2

Note that naturally those probs fullfill π̂i1 + π̂i2 = 1.
Moreover, this way, it is automatically adjusted for
the bookmaker’s margin. These margins result from
the fact that the betting providers artificially lower
their betting odds to gain some profit. This means that
when the inverse values of the odds are directly used
as probabilities, they do not sum up to 1, but to a value
slightly larger than 1. In order to calculate the margin,
the sum of the reciprocals in the denominator is used
for normalization. Here, it is implicitly assumed that
the margin is equally distributed to both players.

4.2. Performance measures

To compare the selection of regression models in
terms of their predictive performance on new, unseen

data, the following criteria are considered. First, use
ỹ1, . . . , ỹn for the true binary outcomes of the n

matches, i.e., ỹi ∈ {0, 1}, i = 1, . . . , n. Further, let
π̂i1 =: π̂i denote the probability, predicted by a cer-
tain model, that player 1 wins the i-th match. The
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probability that player 2 wins the match is given by
π̂i2 = 1 − π̂i1 = 1 − π̂i, since y is binary.

Classification rate
The (mean) classification rate indicates how many

matches on average are correctly predicted by a cer-
tain model. It is defined by

1

n

n∑
i=1

1(ỹi = ŷi), where ŷi =
{

1, π̂i > 0.5

0, π̂i ≤ 0.5
,

see, e.g., Schauberger and Groll (2018). Here, large
values indicate a good model. A mean classifica-
tion rate of 0.5 would correspond to a random
classification. It is therefore also desirable that the
classification rate is much larger than 0.5.

Predictive Bernoulli likelihood
The predictive Bernoulli likelihood is based on the

predicted probability for the true outcome and for n

predictions is defined as

π̂
ỹi

i (1 − π̂i)
1−ỹi ,

see again Schauberger and Groll (2018). Once again,
a high value is an indicator of a good model. In the
following, the average likelihood is used for model
comparison.

Brier score
The Brier score is based on the squared distances

between the predicted probability and the actual
(binary) output from the i-th match. It is defined
according to Brier (1950) as

1

n

n∑
i=1

(π̂i − ỹi)
2 .

This is an error measure, so low values indicate a
good model.

Betting profit
Another way to compare the predictive quality of

different models is the betting profit. Let oddi1 and
oddi2 be the odds from a specific betting provider for
a win of the first and second player in the i-th match,
respectively. If one bets one monetary unit on a win
of the respective player, the expected betting returns
for the i-th match are given by

E[returni,player1] = π̂i1 · oddi1 − 1 or

E[returni,player2] = π̂i2 · oddi2 − 1,

because, for instance, if player 1 wins the match
(which due to the model at hand happens with pre-
dicted probability π̂i1), the better, who has previously
invested one money unit (hence the –1), would receive
oddi1 money units, if they has bet on this event (see
Schauberger and Groll, 2018). Hence, if the player
on whom the bet was placed wins, the betting return
is calculated by the player’s odds minus the invest
of one monetary unit. If the other player wins, the
better’s loss is −1 monetary unit.

Principally, the bet should of course be placed on
the match outcome with maximum positive expected
return. If the return is not positive for either outcome,
no bet is placed on the corresponding match. In this
work, to calculate actual, realistic betting returns, the
odds of the specific betting provider Bet365 are used,
i.e. it is assumed that the bets are placed with this
provider. The total betting return is then the sum of
all betting returns across all matches.

4.3. Leave-one-tournament-out cross validation

To evaluate the models, all Grand Slam tour-
naments from 2011 to 2021 are used, i.e. the
tournaments that took place in 2022 are initially not
considered and are used as external validation data
later on. So, from each of the 11 years four tour-
naments are used. A 43-fold CV-type strategy is
performed with these tournaments. The data set then
still contains 4,720 of the original 5,013 matches. The
following scheme is used:

1. From the 43 Grand Slam tournaments present in
the data set, a training data set of 42 tournaments
and a test data set of the remaining tournament
are constructed.

2. Then, all regression models introduced above are
fitted:
– For the models with linear influences, the func-

tion glm from the R package stats (R Core
Team, 2022) is used. As described in Sec-
tion 4.1, there are 63 such models, each using
at most one of the three variables for age.

– For the calculation of the spline models the
function gam from the R package mgcv
(Wood, 2004) is used. Again, there are also
63 different models here.

– In order to be able to compute the two LASSO-
penalized models, first the design matrices
have to be constructed as described in Sec-
tion 4.1. For a proper usage of the LASSO, then
all columns of the design matrix of the train-
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ing data need to be standardized. The function
cv.glmnet from the R package glmnet
(Friedman et al., 2010) is used to compute both
models. For this, a 10-fold (inner) CV is first
performed on the current training data to find
the optimal λ which provides the minimum
deviance. The corresponding LASSO model is
used afterwards for prediction. 10-fold CV is
also recommended in Friedman et al. (2010).

– For prediction based on average betting odds,
the probabilities calculated from odds are used
as predicted probabilities.

3. After fitting the respective model, for each match
of the test data the probabilities that the first player
wins are predicted.

4. Steps 1–3 are repeated until each of the 43 tour-
naments has served once as a test data set.

5. Finally, the predicted results are compared with
the actual results and the performance measures
defined in Section 4.2 are calculated.

Table 1 on page 9 shows the results of the five best
models with linear effects and the five best mod-
els with spline effects. Additionally, the results of
the LASSO models and the benchmark model are
shown. The top five models were selected from the
63 models by assigning ranks for each of the three
performance measures, classification rate, predictive
Bernoulli likelihood, and Brier score, with the best
model receiving the highest rank. Average ranks were
assigned if the models had equal performances. In
order to select the best models in terms of all three
measures, their ranks were also averaged per model
and the five models with the highest average ranks
were selected. The models are listed below in such a

way that the best model is determined in first place,
the second best in second place and so on. The over-
all betting performance is also given together with
the per match betting return in brackets. Finally, the
number of bets placed is provided in the last column,
together with the ratio of all matches in which a bet
was placed in brackets.

The classification rate is slightly above 77% for
all models (see 1st column). Differences between the
models can only be seen at the third decimal. The
linear regression model with both rank and probs
as covariates here performs best with a value of
0.7776, i.e. this model predicts the correct outcome
for 77.76% of the matches.

The values of the predictive Bernoulli likelihood
(2nd column) differ somewhat more. It is notice-
able that within one group of model approaches the
likelihood is almost the same (differences are only
seen in the fourth decimal). The average likelihood
of the models with both linear and non-linear effects
is slightly more than 0.69, i.e. the models predict the
correct outcome with an average probability of about
69%. The two LASSO models are just below 0.69. It
is noticeable that the benchmark model has the low-
est likelihood, which is 0.6709. The average betting
provider correctly predicts the outcome of a match
with an average probability of 67.09%.

The differences across model groups in the Brier
scores are rather small, similar to the classification
rate. The models with non-linear effects perform
best in this regard with Brier scores between 0.1546
and 0.1547. The models with linear effects produce
slightly larger values, followed by the LASSO mod-
els. In the case of the Brier score, the benchmark
model again performs worst with a value of 0.1555.

Table 1

Results of the cross validation for the (at most) best five models per model class (best performing model in bold font). In brackets are the
betting profits per match and the ratio of all matches in which a bet was placed

Explanatory Class. Likeli- Brier Betting Amount of
variables rate hood score profit bets

Linear Prob 0.7772 0.6919 0.1549 −128.8 (−0.05) 2696 (57.1%)
Points, Prob 0.7772 0.6917 0.1549 −99.9 (−0.04) 2395 (50.7%)
Rank, Prob 0.7776 0.6918 0.1550 −110.9 (−0.04) 2707 (57.3%)
Age, Prob 0.7766 0.6918 0.1550 −150.3 (−0.05) 2716 (57.5%)
Rank, Points, Prob 0.7772 0.6917 0.1550 −104.3 (−0.04) 2418 (51.2%)

Splines Prob 0.7764 0.6912 0.1546 113.7 (0.09) 1170 (24.8%)
Rank, Prob 0.7764 0.6912 0.1546 113.7 (0.09) 1170 (24.8%)
Points, Prob 0.7764 0.6912 0.1547 101.3 (0.08) 1298 (27.5%)
Rank, Points, Prob 0.7764 0.6912 0.1547 101.8 (0.08) 1299 (27.5%)
Elo, Prob 0.7764 0.6911 0.1547 106.9 (0.09) 1175 (24.9%)

LASSO Surface specific 0.7774 0.6816 0.1551 −225.3 (−0.12) 1891 (40.1%)
General skills 0.7770 0.6838 0.1551 −199.3 (−0.10) 2002 (42.4%)

Benchmark 0.7772 0.6709 0.1555 −311.4 (−0.23) 1359 (28.8%)
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The betting returns are negative for all models
except for the spline-based approaches, and here there
are substantial differences between the various mod-
eling approaches. If linear effects are assumed, the
losses range from about 100 to 150 monetary units.
For the spline models, gains are achieved which lie
between about 101 and 114 monetary units. In partic-
ular, the model in which either only prob or prob and
rank were included perform best with a gain of about
114 monetary units. The two models with LASSO
perform even worse than the linear models, with a
betting loss of almost 200 and 225 money units. Once
again, the benchmark model performs worst with a
loss of about 311 monetary units. This comparatively
high loss is due to the fact that this model almost
always bets on the underdog, but the underdog rarely
wins. The betting profit must be seen in relation to
the number of bets placed. Here, the tendency can be
seen that models with a high betting loss have the ten-
dency to bet more often. It is particularly noticeable
that bets are placed much less frequently when using
the non-linear models compared to the other models.
It can therefore be assumed that these models are a
little more conservative. This can also be seen from
the betting returns per match (bet). In some cases,
the corresponding losses are significantly lower than
those of the other model approaches.

4.4. External validation

To validate the models from above with respect
to their predictive performance on new, unseen test
data, the three best models from the groups of mod-
eling approaches with linear and non-linear effects
are used, as well as the two LASSO models and the
benchmark model. For this purpose, the performance
measures are calculated on the four Grand Slam
tournaments 2022. The data set then contains 293
matches. The validation is performed using a “rolling
window”-type approach, i.e. one of the remaining
tournaments is used as the test data set in chrono-
logical order. The training data set then continues to
be constantly updated and enlarged, this scheme can
be explained as follows:

1. First, all tournaments prior to 2022 are used as
the training data set and then the models are fitted
in a way as it is described in the second step of
the CV approach described in Section 4.3. With
those, then predictions can be obtained for the
2022 Australian Open, as this is the first Grand
Slam tournament of the year 2022.

2. The new training data set will then contain all tour-
naments up to and including the Australian Open
2022, on which the models are fitted again and
predictions are made for the French Open 2022,
the 2nd Grand Slam tournament of the year 2022.

3. Now the French Open 2022 is added to the train-
ing data set and the models are fitted again. This
will then be used to predict Wimbledon 2022.

4. Then, the Wimbledon 2022 matches will be added
to the training data set, and again, the models are
fitted and predictions are made for the final Grand
Slam tournament, the US Open 2022.

5. Finally, the predicted results for all four tourna-
ments are compared with the actual results and
the performance measures are calculated.

The results of the external validation are shown in
Table 2. Once again, in the last two columns addi-
tionally the average betting returns per match and the
proportion of bets placed are given in brackets.

The classification rate is again above 77% for all
models, and for some models even above 78% and,
hence, slightly better compared to the classification
rates from the CV-type strategy from above. The best
value is 78.16% and is achieved by three models. It is
striking here that now the benchmark model is among
the best.

Similar trends as in Table 1 (cf. page 9) can be seen
for the likelihood, although the results here are some-
what better. The linear models achieve the highest
likelihood, where the model including the covariates
Rank and Prob delivers the best value with 0.7037,
only slightly behind are the models with non-linear
effects (all between 0.7031 and 0.7033). The LASSO
models yield an even slightly smaller likelihood. The
benchmark model again performs worst.

The Brier score for all models is around 0.141–
0.142. In Section 4.3, the values were slightly larger.
The benchmark model again yields the largest, and
thus worst value with 0.1441. The best value is
achieved by the non-linear model including covari-
ates Points and Prob (0.1411).

Looking at the results of betting returns, the larger
part of the results are similar to those of Table 1.
The LASSO models and the linear models yields the
largest betting loss: approximately between 16 and 24
monetary units each, respectively. The models with
non-linear effects again mostly yield profits (about
four monetary units). However, here the benchmark
model yields the largest loss with 39 monetary units.

Also in terms of the number of bets placed, the
results from Table 1 are mostly confirmed. The lin-
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Table 2

Results of the external validation for the (at most) best three models per model class from Section 4.3 (best performing model in bold font).
In brackets are the betting profits per match and the ratio of all matches in which a bet was placed

Explanatory Class. Likeli- Brier Betting Amount of
variables rate hood score profit bets

Linear Prob 0.7816 0.7036 0.1419 −21.6 (−0.11) 197 (67.2%)
Points, Prob 0.7747 0.7027 0.1421 −17.4 (−0.09) 191 (65.2%)
Rank, Prob 0.7816 0.7037 0.1418 −20.5 (−0.01) 198 (67.6%)

Splines Prob 0.7782 0.7031 0.1413 4.2 (0.03) 121 (41.3%)
Rank, Prob 0.7782 0.7031 0.1413 4.2 (0.03) 121 (41.3%)
Points, Prob 0.7782 0.7033 0.1411 −0.28 (−0.00) 126 (43.0%)

LASSO Surface specific 0.7782 0.6934 0.1423 −24.4 (−0.15) 161 (54.9%)
General skills 0.7782 0.6969 0.1416 −16.1 (−0.09) 171 (58.4%)

Benchmark 0.7816 0.6810 0.1441 −39 (−1.00) 39 (13.3%)

ear models again bet most frequently (in almost every
third match), the LASSO models bet second most fre-
quently (in about half of the matches). If non-linear
effects are included, betting is even less frequent (in
about 40% of the cases), these models seem to be
again the most conservative ones, but at a higher level,
since the proportion of bets placed has increased for
each of these three model approaches compared to the
results from Section 4.3. The same applies to the bet-
ting returns per match, which is now 0.00 monetary
units of loss in the worst case. It is noticeable that bets
were placed much less frequently with the benchmark
model than with all other models. This was not the
case in Section 4.3. There, a bet was placed in 28.8%
of the possible matches, while here the percentage is
only 13.3%.

5. Discussion

In Section 4.3, a leave-one-tournament-out CV-
type approach was performed with the 43 Grand
Slam tournaments from the years 2011–2021. Since
the tournaments actually were played one after the
other in time, the CV-type strategy in a certain sense
resulted in the setting that the past was predicted
with information from the future. Initially, this argues
against the normal intuition of prediction, since, for
example, players with currently high rankings are
also more likely to have had high rankings in the past
tournament, i.e. the values are correlated. However,
since the crucial assumption that the yi|xi1, . . . , xip

are (conditionally on the covariate information) inde-
pendent for i = 1, . . . , n is still realistic, CV was
used here as a technical tool to compare performance
across many different prediction models.

Instead of a CV-type approach, a performance
comparison over a continuously updating data set

(“rolling window”) could be considered, as in Sec-
tion 4.4. This would have the advantage that the
temporal structure of the data could be preserved.
However, the CV-type strategy here had the advan-
tage that the models could be compared on more data.
Thus, each tournament served once as a test data set
and since this was only used for an initial comparison
to find principally suitable models, CV was preferred
to the rolling window approach.

For the models from Table 1 (page 9) and Table 2
(page 11) it is noticeable that the variable Prob
is always selected. So the bookmaker information
seems to be very important and to have a big influ-
ence on the prediction. This could also be a reason
why the models all perform quite similarly. The num-
ber of ranking points or the rank itself are also partly
selected in the three best linear and spline-based mod-
els. Hence, these variables also appear to be important
to a certain extend, although not quite as influential
as the odds.

It is hardly possible to filter out a clear win-
ner amongst the regarded models, since they differ
little with regard to the performance measures. If
one initially compares only the three regression
modeling approaches, tendencies can be identified.
When considering the classification rate and predic-
tive Bernoulli likelihood, the linear models might be
very slightly preferred. Regarding the Brier score, the
spline-based models perform slightly better.

However, since the two LASSO models never per-
form best with respect to any of the measures, and
since also their respective betting loss is the largest,
these models are rather not to be preferred. Within the
first modeling approach, according to the results from
Table 2 (page 11), the linear model with the ranking
position and the betting odds is best suited to model
a tennis match. Within the spline models, the model
including only the betting odds and the number of
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ranking points could be chosen as the winner with
respect to the first three performance measures. But
as all three models almost yield equal results, also the
most sparse and simple model, here the first one just
including the betting odds, could be chosen, as it also
results in positive betting returns.

Between the two models selected in this way (Rank
and Prob as linear effects or only Prob as a non-linear
effect), the betting profit should also be considered.
If this is taken into account, the spline model should
be preferred; if the betting returns are not considered
to be important, the linear model should be selected.

Spline models

Figure 1 shows the fitted spline of the variable Prob
and its pointwise 95% confidence intervals. For this
purpose, the model was fitted with the covariate Prob
on all tournaments.

The estimated effect looks almost linear between
−0.5 and 0.5, and then steeper at both edges. This
suggests that betting providers use somewhat “unfair”
or special odds in these regions. If the absolute differ-
ence in the winning probabilities is more than 0.5, it
can be assumed that a strong player is playing against
an extreme underdog, which occurs particularly often
in the first round of a tournament. For example, the
favorite in a match may have a 99% chance of winning
the match according to the betting companies, while
the underdog has a 1% chance of winning. This would
result in odds of 1.01 for the favorite and 100 for
the underdog (ignoring the bookmaker’s margin for a

moment). However, since an underdog’s win is very
unlikely, the bookmaker probably don’t always with-
hold the same margin from an underdog’s odds. For
higher odds, they probably withdraw larger margins
than for lower odds. Therefore, it seems reasonable
to assume that the effect of Prob is not linear, but
instead (slightly) non-linear.

LASSO models

In determining the optimal penalty strength λopt

for the LASSO models, 10-fold CV was performed
for a sequence of different λ values and the mean
deviance was calculated. Figure 2 shows this process
as an example with the 2011–2021 data for the model
with general player skills.

Here, λopt = 0.0161 provided a minimum
deviance of 0.9504. The LASSO model with this
choice for λopt was then used to predict the Aus-
tralian Open 2022. For the same setting, Fig. 3 on
page 13 shows the corresponding coefficient paths
as a function of λ, together with λopt as the vertical
dashed line.

For any λ between about 0.02 and 0.3, every coeffi-
cient except that of the variable Prob is shrunk to zero.
For decreasing λ, the coefficient of Prob becomes
larger, again showing the importance of this vari-
able. For λ smaller than 0.02, the coefficients of both
variables Points and Elo are also positive. The coef-
ficients estimated by the model can be read at the
location of λopt . Prob has a coefficient estimate of
1.50, Points of 0.06 and Elo of 0.02. Among others,

Fig. 1. Estimated non-linear effect of the variable Prob.
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Fig. 2. CV-deviance of LASSO-model as a function of λ; vertical dashed line: λopt .

Fig. 3. Coefficient paths vs. penalty strength λ; vertical dashed line: λopt .

the coefficient estimate of the player Tennys Sand-
gren (plotted in gray), is also positive at this point
with a value of 0.03.

This can be seen in more detail in Fig. 4, where it
is zoomed into the range of the smaller λ values. At
the optimal amount of penalization, the coefficients of
most other players are 0, except for ten different play-
ers. Among those, Tennys Sandgren has the largest
estimated regression coefficient with a value of 0.03,
so if he is one of the two players competing in a match,
the value of 0.03 is added to his linear predictor for

modeling the probability of him winning the match,
so he seems to perform a bit better than his covariate
values indicate. If one chooses λ to be even smaller,
the coefficient estimates of many other players are
also no longer shrunken to zero, and they are given
positive or negative abilities. As the LASSO estimator
for smaller λ gets closer and closer to the maximum
likelihood estimator, these coefficient estimates are
numerically very unstable. This can also be seen in
the path of the variable Prob (see Fig. 3), which shows
a very wiggly behavior for λ close to 0.
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Fig. 4. Zoomed fragment of the coefficient paths for lower λ values.

6. Summary and overview

In this work, tennis matches in Grand Slam tour-
naments were modeled within the framework of
regression. For this purpose, a data set that was
compiled using the R package deuce (Kovalchik,
2018). This contained information on 5,013 matches
in men’s Grand Slam tournaments from the years
2011–2022. This included the age difference of both
players (Age), the difference in their ranking positions
(Rank) and ranking points (Points), in Elo numbers
(Elo), in probabilities for the victory of the play-
ers, calculated from the average odds by the betting
providers (Prob), as well as the two additional age
variables Age.30 and Age.int, which should take into
account that the optimal age of a tennis player is
between 28 and 32 years.

Different regression approaches were considered
for modeling and prediction of tennis matches. As
there are only two possible outcomes in tennis (win or
loss), all models were based on a binary outcome and,
hence, on logistic regression, modeling the probabil-
ity of the first named player to win. It was discussed
that modeling with intercept would not be useful as
this would incorporate a kind of home effect for the
first named player – a property which was not desired
here.

The different modeling approaches were compared
in a 43-fold leave-one-tournament-out CV-type strat-
egy. Each of the 43 Grand Slam tournaments from

2011 to 2021 served once as a test data set. The
following models were included:

– Models with linear effects: to find suitable
covariates, all possible combinations of the
seven covariates were considered such that at
most one of the three age variables was incorpo-
rated. This resulted in 63 models.

– Models with non-linear effects (splines): Again,
63 models were considered.

– A model which took into account surface- and
player-specific effects. Due to the large amount
of unknown parameters, here LASSO penaliza-
tion was used.

– A model that considered general player-specific
abilities. Again, LASSO penalization was used.

– A benchmark model, where the predicted proba-
bilities were derived from average betting odds.

Within the CV-type approach, the models were com-
pared in terms of the classification rate, the predictive
Bernoulli likelihood, the Brier score as well as bet-
ting returns. Since 63 different models resulted for
each of the first two approaches, the five best models
were selected in each case.

It was found that all models performed very sim-
ilarly in terms of classification rate, likelihood and
Brier score. The classification rate was slightly above
77% for all models, meaning that the models pre-
dicted the correct outcome in about 77% of the
matches. The predictive Bernoulli likelihood was
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about 0.69 for both linear and non-linear models,
while the LASSO models and the benchmark model
were slightly below. The models thus predicted with
an average probability of about 69% the correct out-
come of a match. The Brier score was slightly above
0.15 for all models, differences were mostly found
in the third decimal. When comparing the betting
profits and the amount of bets placed, it was found
that only the spline models achieved positive betting
returns, but also placed fewer bets. Therefore, it can
be assumed that these models are more conservative
(and thus probably safer) in terms of betting.

The tournaments in 2022 were then used as an
external validation data set. The three best mod-
els with each linear and non-linear effects, the two
LASSO models and the benchmark model were then
compared again. The results of the preceding CV-
type competition could be mostly confirmed, with the
values of the performance measures generally being
slightly better than for the CV: the classification rate
was around 0.775 − 0.782, the predictive likelihood
yielded around 0.693 − 0.704 and the Brier score
was between 0.141 − 0.142. With regard to the bet-
ting returns, again only the spline models achieved
a betting profit, except for the model with the num-
ber of ranking points and the betting odds led to loss.
The proportion of placed bets increased for all mod-
els, only the benchmark model placed considerably
fewer bets than in the preceding CV-type competition.
The most striking here was that, again the benchmark
model was no better than the other models for most
performance measures.

In a more detailed discussion, it was pointed out
that the CV-type strategy here was preferable to a
“rolling window approach” in finding models, since
on the one hand the assumption of independence
of the observations of the target variable, given the
covariates, is fulfilled. Secondly, this allowed the
models to be compared on more data, as the initial
aim was to find suitable models. Furthermore, it was
emphasized that the betting odds are very important
for the prediction. In addition, it could be worked
out that within the linear models the covariates Rank
and Prob provided the best results. Within the spline
approach, all three models provided almost equal
results. Due to simplicity, the model that only con-
sidered betting odds would be preferred here. The
LASSO models tended to perform worse than the
other models and therefore could not really be rec-
ommended. The obtained betting returns can be used
to decide between the first two types of approaches.
They turned out to be positive for the best spline

model, while the linear model yielded a loss. How-
ever, the classification rate and predictive likelihood
were better for the latter model. It was also notable
that all models performed at least as well as the bench-
mark model.

Lastly, the spline model with the Prob variable
and the model with general player-specific skills
were examined in more detail. Based on the corre-
sponding fitted smooth effect, the behavior of the
bookmakers in setting odds for an extreme under-
dog were discussed. Using the LASSO model for
general player-specific skills, the CV for finding an
optimal λ via deviance minimization was illustrated.
In addition, the corresponding coefficient paths for
the different covariates were shown and explained.

In future research, an upcoming complete tourna-
ment could also be repeatedly simulated, and then
the probability of a certain player to win the tourna-
ment could be determined. This can take advantage
of the fact that the tournament course is completely
drawn before the start, i.e. it can already be said on
the basis of the tournament tree that two players can
meet at earliest in a certain round. This means that is
not necessary to take into account whether someone
has finished first or second in a certain group stage,
as it is the case in soccer, for example. With such an
approach, however, only the match-specific betting
odds for the first round would be available. Models
that do not use the odds as covariates could then be
preferable, but this could lead to a poorer prediction
performance due to the large influence of this vari-
able. Alternatively, one could look at models that do
not use the odds for individual matches, but instead
use odds set before the tournament on each player to
win the whole tournament.

Moreover, another extension of the approach pro-
posed here would be to allow for more flexible,
time-varying player-specific ability parameters, sim-
ilar e.g. to the approach proposed by Ley et al. (2019)
for modeling soccer. This approach has also been
used successfully and the resulting estimates have
been incorporated as a so-called “hybrid” feature in
a random forest model for predicting the FIFA World
Cup 2018 in Groll et al. (2019), and hence, seems
to be also promising in tennis. And the authors have
already planned to carry over this idea to tennis. To
do so, a different (and much larger) data set has to be
collected and also a separate, quite complex model
specifically designed for historic match data has to
be built up.

Finally, as already stated, in this work only
(directly interpretable) approaches within the frame-
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work of regression were analyzed. In future research,
we have planned to compare their performance with
different complex machine learning models, which
often have the capapbility to further increase the
predictive performance, though coming with the sub-
stantial draw-back of loosing interpretability. For that
reason, they typically should be equipped with certain
methods of interpretable machine learning (IML),
such as partial dependence plots Friedman, 2001, ICE
plots Goldstein et al., 2015 and ALE plots Apley and
Zhu, 2020. A first attempt to summarize the limited
selection of available methods for interpretable ML
appears in Molnar (2020).
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