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Abstract. Estimating probability is the very core of forecasting. Increasing computing power has enabled researchers to
design highly intractable probability models, such that model results are identified through the Monte Carlo method of
repeated stochastic simulation. However, confidence in the Monte Carlo identification of the model can be mistaken for
accuracy in the underlying model itself. This paper describes simulations in a problem space of topical interest: basketball
season forecasting. Monte Carlo simulations are widely used in sports forecasting, since the multitude of possibilities makes
direct calculation of playoff probabilities infeasible. Error correlation across games requires due care, as demonstrated with a
realistic multilevel basketball model, similar to some in use today. The model is built separately for each of 20 NBA seasons,
modeling team strength as a composition of player strength and player allocation of minutes, while also incorporating team
persistent effects. Each season is evaluated out-of-time, collectively demonstrating systematic and substantial overconfidence
in playoff probabilities, which can be eliminated by incorporating error correlation. This paper focuses on clarifying the use
of Monte Carlo simulations for probability calculations in sports.
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1. Introduction

Estimating probability is the very core of fore-
casting. Increasing computing power has enabled
researchers to design highly intractable probability
models, such that the model results are identified
through the Monte Carlo method of repeated stochas-
tic simulation. As described in the seminal paper on
the topic, “if we assume that the probability of each
possible event is given, we can then play a great num-
ber of games of chance, with chances corresponding
to the assumed probability distributions” (Metropo-
lis and Ulam 1949). Every event in a sequence of
trials is determined randomly, with odds determined
by estimated probabilities, and then results are tal-
lied. When repeated many times this provides an
estimate of the properties of the sequence in ques-
tion. However, highly confident estimates from the
Monte Carlo procedure can be mistaken for accuracy
in the underlying probabilities themselves. Issues
of this nature have gained significant public promi-
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nence most recently through election forecasting, of
which Andrew Gelman stated “we ignored correla-
tions in some of our data, thus producing illusory
precision in our inferences” (Gelman 2016). This
paper describes simulations in another problem space
of topical interest: basketball season forecasting.
The question of whether or not a team will make
the playoffs is relevant to many people. It is of interest
to team personnel who wish to accurately understand
their team, to the large sports betting market where
significant sums are wagered, to academics who seek
to apply statistical methods to these questions, and to
the multitude of fans who seek to debate the quality of
their teams. In sports forecasting, Monte Carlo sim-
ulations are widely used, such as by FiveThirtyEight
(Boice 2015), Football Outsiders (Harris 2008), Fan-
Graphs (Agami and Walsh 2013), and Nylon Calculus
(Restifo 2016), among others. These models predict
each game individually, rather than directly model-
ing which teams will make the playoffs. Doing so has
the advantage of addressing many other quantitative
questions about the season, including who will win
any particular game. Even with outcome probabili-
ties for every regular season game, the multitude of
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possibilities makes direct calculation of playoff prob-
abilities infeasible. As such, simulating the season,
and doing so many times, provides a reasonable
estimate. However, many practitioners fall prey to
erroneous use of the Monte Carlo method. In the
model setup demonstrated in this paper, uncertainty in
our parameters needs to be accounted for when mak-
ing inferences about the future. This paper explains
the theoretical underpinnings of Monte Carlo simu-
lations and basketball models, and then demonstrates
the problem in detail by designing a realistic bas-
ketball model. This model is similar to some in use
today in terms of its multilevel structure, but largely
different in its treatment of correlation. The model is
built separately ahead of each of 22 NBA seasons
and evaluated on each out-of-time, demonstrating
systematic and substantial overconfidence in playoff
probabilities when it is simulated without accounting
for variance.

The model demonstrated in this paper addresses
a different problem than most other approaches in
preceding papers. Topics that are well-covered in
the basketball literature on win probability include
attribution of wins to players, evaluating team
strength metrics for existing teams or predicting game
results using in-season information, and testing the
efficiency of market odds.

Manner (2016) uses the first half of an NBA sea-
son to predict the subsequent half, and is interested in
the effectiveness of quantitative models against mar-
ket odds. Likewise, Loeffelholz et al. (2009) use the
first part of a season to predict the remainder, and
compare against expert opinion. Ruiz and Perez-Cruz
(2015) use the course of the NCAA season to predict
its final tournament. None of those papers need to
model minute allocation for previously unobserved
team compositions, unlike this paper.

Berri (1999), Angel Gomez et al. (2008), and Page
et al. (2007) are among a literature that examines
which in-game statistics best correlate with winning,
to decompose which player or team talents are the
most crucial. Barrow et al. (2013) compare different
methods of team strength, using 20-fold cross vali-
dation as their criteria. gtrumbelj and Vraca (2012)
use the four factors (team and opponent statistics for
shooting, turnovers, rebounding, and free throws) to
forecast team win probability. The model developed
in this paper does not decompose the attributes of
player talent, but instead uses overall player quality
to identify the strength of teams.

Vaz de Melo et al. (2012) is similar to this
paper in that it predicts the results of an entire

season based on data prior to that season. It val-
idates results on the model built across all of its
sample, differing from this paper which generates
separate models ahead of every season. They build
models purely on network effects, with a method
that generalizes to any sport. They generate and
evaluate an ordering of teams rather than specific
probabilities.

This paper contributes to the literature of basket-
ball models by predicting an entire season of play
only using data available before a season, compos-
ing a multilevel model that models team strength as a
composition of player strength and player allocation
of minutes, while also incorporating team persis-
tent effects. Much of the prior research relies on
in-season information, such that team strength and
player allocation are largely already known. This
paper is concerned with the accuracy, and not sim-
ply the rank-order, of playoff likelihood, and focuses
on clarifying the use of Monte Carlo simulations for
such calculations in sports.

This topic is approached in this paper through
incremental detail in subsequent sections. Section
2 describes the fundamental problem using a coin
flip example. Section 3 introduces the issue in sports
modeling, describing the types of correlation that
can emerge in sports and how other models have
approached them. Section 4 structures, builds, and
evaluates a reasonable basketball model that provides
accurate playoff probabilities when the Monte Carlo
procedure is used with variance propagation.

2. Classic coin flip demonstration

Suppose we have in our possession a fair coin.
When you toss a coin once, it will be heads 100% or
0% of the time, since it will land either heads or tails,
respectively. However by the time you have tossed a
coin, say, 82 times, you are likely to have seen close
to 50% heads. We can quantify with the binomial
cumulative distribution function (CDF) that there is
nearly an 88% chance that we will observe +/- 5 of the
expected average of 41 heads. The more times we flip
the coin, the more likely we are to be close to the aver-
age value of 50% heads. This is, at its core, the law
of large numbers, which clarifies that as more data is
available, the resulting average eventually becomes
closer to the expected value.

We do not have to derive this coin flip result through
a simulation, but simulation will become important
in cases where exact distributions are unknown.
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This example relies on a perfectly balanced coin.
Suppose instead our coin comes from an impre-
cise coin maker, a mint that tolerates some variation
in their coins. The coins are, after all, designed to
be used primarily as currency, and their balance
is a secondary feature that is probably of little
importance—outside of American football, that is.

Let’s suppose that the balance of the coins from
this mint follows a normal distribution centred at
50% with a standard deviation of 5%. This means
that about 68% of the coins will be between 45% and
55% heads, with 95% of them between 40% and 60%.

These parameters imply that the selected coin is on
average fair, but often with some noticeable variation.
If we pull a coin from this distribution and flip it 82
times, our expectation for the resulting distribution
should be wider than if we used the perfectly fair coin,
because we do not know the balance of our coin ahead
of time. Some of the time we will get a coin with a
near perfect balance of 50%, giving the results we saw
earlier. However we will often get a coin with a 48%
probability of heads, or 52% probability of heads,
or any non-discrete number from this distribution.
Crucially, the variation results in error correlation in
any given coin flipping session.

If we incorrectly assumed the coin selected will
always be fair, with long enough sessions we would
incorrectly expect each session to almost always con-
verge to nearly 50% heads and 50% tails. However,
if we account for the possibility of an unbalanced
coin, we should realize that converging to some-
thing other than 50% heads in a given session is very
reasonable.

In this scenario we have a mixture distribution,
where the outcome of our coin flip is a random vari-
able that is contingent on which coin was selected for
flipping, which is another random variable. Similar
to our example, mixture models have been explained
using the example of a small selection of coins to
choose from (Do and Batzoglou 2008; Choudhury
2010).

If we overlay 100,000 simulations of a fair coin
with 100,000 simulations of the mixture distribution,
we can see the variance differences in Fig. 1.

Both are symmetrical, with mean, median, and
mode of 41. The mixture distribution is much more
dispersed. We are now much less likely to see heads
within 41 +/- 5, and much more likely to see extreme
values of heads. Our point estimate of the number of
heads in a session of 82 coin flips is still 41, but that
estimate now has higher variance, visible in much
thicker tails and less central mass.

[ Mixture distribution
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Fig. 1. Difference in sampled distributions

3. Application to predictions in professional
sports

3.1. Intuitive description

Readers with an interest in sports are likely to have
deduced the meaning behind 82 coin flips. 82 is the
length of a National Basketball Association (NBA) or
National Hockey League (NHL) regular season (top
professional leagues in their respective sports). Let’s
apply our insight about Monte Carlo simulations to a
simplified model of the NBA before discussing more
realistic cases.

Suppose we wanted to predict playoff probabilities
for the Cleveland Cavaliers ahead of the 2016-17 sea-
son. Presume they play 82 games against a constant
average opponent. For the moment we shall disre-
gard variance in opponent quality, the NBA’s sizable
home court advantage, and other factors that result
in unequal win probabilities across games. We could
believe that the Cleveland Cavaliers are a strong team
with a 70% win probability in each game, whereby
we expect them to win around 57 games in the season.
This is not an implausible estimate of their team qual-
ity given that it is the bounty of wins they achieved
in the season prior.

However, we cannot be sure that Cleveland will
actually be that good. Perhaps they will be better,
perhaps they will be worse. The team could suffer
unfortunate injuries. If we add a standard deviation
of 5% around the team’s per-game win probability,
suddenly their win distribution becomes much wider.
These two distributions are shown in Fig. 2.

Let’s continue with simplifying assumptions and
presume it takes 44 wins to make the playoffs, as
it did in the prior year. What is the probability of
Cleveland making the playoffs? In both models, on
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Fig. 2. Cleveland win distribution with and without team quality
uncertainty.

average, we expect the Cavaliers to comfortably make
the playoffs, with 57 wins. In the model that does not
account for variance, they make the playoffs about
99.9% of the time. In the model with a bit of variance,
it’s only about 98.1%. That might not seem like a big
difference, but it’s a 15-fold increase in the odds of
them missing the playoffs.

In most studies involving mixture distributions,
the mixture components and their weights are unob-
served, such that a “fundamental statistical problem
is to estimate the mixing distribution” (Chen et al.
2008). However, in our study we start by modeling
the components and then focus on correct inference
when mixing them. In our Cleveland Cavalier exam-
ple, even if the mixture components are known, if
a forecaster makes the mistake of not propagating
uncertainty, they will also overestimate the probabil-
ity of the Cavaliers winning their division, winning
the conference, advancing to the NBA finals, etc., just
as they will underestimate the probability of weak
teams doing any of those. Ultimately, the Cleveland
Cavaliers did make the playoffs, as we would predict
in either case. Given the high level of predictabil-
ity in the NBA season, many observations may be
needed to identify a calibration problem with playoff
predictions.

The point is not to suggest that either playoff
probability is correctly calculated, nor that the ratio
is correct either. This is a vastly simplified exam-
ple with arbitrary parameters. The point is that in
any Monte Carlo simulation, variance in the under-
lying probabilities needs to be passed through into
the simulation itself, or else we are led to thor-
oughly implausible claims about distributions. In
this paper we are concerned with prediction qual-
ity entirely outside of the observed prior data, rather

than of model fit on historical data or the specific val-
ues of parameters. Parameter error and model error
correlation matter because “evidence indicates that
substantial size distortions may result if one ignores
uncertainty about the regression vector” (West 1996).
Fitting the data well in-sample does not guarantee a
strong fit on out-of-sample data, particularly when
the data has time-dependence. Professional sports is
one realm where out-of-time distortions are of par-
ticular importance, because of the monetary sums
wagered on future performance and the public interest
in predicting future team success.

3.2. The effect of error correlation on variance

A lack of independence between observations
can have drastic consequences for models, includ-
ing variance mis-estimation for the predictions and
the coefficients (Diebold and Mariano 2002; Dunlop
1994). We can apply this insight to basketball mod-
els in a simplified example across two games with
correlated errors. Using a very simple model of team
quality, we will demonstrate how error correlation
can lead to increased variance.

In game outcomes, positive correlation could come
from many factors, such as injuries, fatigue, or
any streakiness associated with player or team per-
formance. Teams could discover an unpredictably
talented rookie. A team with substantial roster
turnover could find their players complement each
other’s skills better or worse than could have been
forecasted. Players could be suspended due to events
during the season, unknown before the season. A
stochastic set of losses could push a team out of play-
off contention, leading them to trade away quality
players and causing future losses. For all of these
reasons, our hypothesis is that correlation is posi-
tive. There are also reasons why correlation could
be negative, such as losing games galvanizing teams
to find ways to win, or winning teams resting play-
ers since they are already winning enough games.
However, we expect that these are outweighed by the
sources of positive correlation. Teams usually have
strong incentives to maximize their wins at all points
in the season.

Let X| and X» be a team’s quality in two distinct
games, with X preceding X». X1 has mean p and
a stochastic error term €] ~ N (0, 0%). X» also has
mean (4, but with an autoregressive error term €; =
p€1 + w, where w has the same N (0, 02) distribution
as €1, and o and € are independent of each other. In
this setup u is our baseline team quality and p is the
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degree of autocorrelation. If the major factor causing
correlated errors is among the leading factors listed
previously, such as injury, then we could expect a
positive p term.

Our expectation of average quality for the team
across the two-game season is w = . This
holds whether the errors are correlated or not.

However, what is the variance of that team average
quality? By the definition:

Var(X) = E[(X — 1)*] (1)

We derive:

X X
Var (1 —; 2)

_ A4+ p)?E+2(1+ p)we+ €2 @
4
B (1+p)20_2+02
n 4
If p = 0 and there is no autocorrelation, the vari-

) . ... .
ance 18 % If pis positive, then the variance now

exceeds the uncorrelated case of p = O (or if p is neg-
ative and < —2). That is to say, as long as there isn’t
a countervailing and diminishing force, the variance
is larger than in the uncorrelated scenario.

If true errors are correlated, but the model setup
assumes them to be uncorrelated, then variance can
be greatly underestimated.

3.3. Properties of Monte Carlo simulations

The Monte Carlo simulator is where we take inde-
pendent draws from a generating function, with the
goal of estimating properties of that function, such
as its mean. We can calculate the expected value of a
function by repeatedly and randomly sampling from
its distribution.

For any random variable X with expected value p
and variance o, we can use Chebyshev’s inequality
to derive a relevant form of the law of large numbers
(as shown in Rey-Bellet 2010):

- o?

Pl X—pul>¢€) <— 3

(IX—ulze) = 3)

As n increases, our probability of being off by any

given € decreases, meaning that our estimate of X

approaches w in the limit. The Monte Carlo method

of taking independent draws from the distribution

of X is an unbiased and consistent estimator of the
distribution of X.

The Monte Carlo method is particularly useful in
scenarios where the function in question is intractable
and we cannot directly compute its mean, variance,
or other statistical properties. Calculating whether a
team will make the playoffs in the NBA is one such
example, which depends on the outcome of 1,230
games that have different probabilities and may be
conditional on each other. Even if they were inde-
pendent, we would have 2!239 possible permutations,
making an exact playoff probability calculation infea-
sible even if we know accurate probabilities for each
game. Repeated simulation can be performed effi-
ciently to arrive at close calculations. It was evident,
even in 1949, that “modern computing machines are
extremely well suited to perform the procedures
described” (Metropolis and Ulam 1949).

Suppose that X here is a sequence of 0 or 1 playoff
draws indicating whether a particular team makes the
playoffs in a given simulation of our playoff function.
In the binary case, variance of each Bernoulli selec-
tion is p(1 — p), which is maximized at p = 3 (or
50%), and is finite and thus no greater than %. For
any continuous case where we accept probabilities
in the [0, 1] closed range, the greatest possible vari-
ance would be for a distribution where all values are
exactly O or 1, which is the case in binary trials. More
generally, the variance of a random variable p drawn
from any closed interval sequence between [a, b] is
bounded by:

(b—ay
Var(p) = —— “)

Applying this to our Monte Carlo error formula,

when considering probabilities:

P(X —pul =6 <

16ne? ©)

Should we, for example, take 10,000 simulations
(n = 10, 000), the probability of being more than
1% (e = 0.01) off in our estimate is no greater than
6.25%. Further, should our team of interest have a
playoff probability higher or lower than 50%, accord-
ing to our playoff generating function, then we are
much more likely to converge to under 1% error.
While Chebyshev’s inequality defines our limits in
any form of Monte Carlo simulation, it is not the
only result we can use for binomial probabilities.
In many cases we can expect even lower likeli-
hood of deviation, using the central limit theorem,
which defines the conditions under which averages
of a randomly sampled variable will follow a nor-
mal distribution. With some restrictions the binomial
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distribution can be approximated with a normal dis-
tribution (Feller 1945). Either way, regardless of
the playoff function used, after a small number of
Monte Carlo repetitions we are very likely to observe
convergence.

The point is worth repeating: with binary outcomes
our Monte Carlo simulation will converge quickly
whether or not we have a good model behind it.
Running more Monte Carlo simulations should not
give us more confidence in our model—it just means
that we have discovered the properties of our model
with more certainty. The model itself can be entirely
wrong.

In other words, the Monte Carlo is a garbage-in-
garbage-out estimator.

More formally, if the model predicts X', which dif-
fers from the true value of X, then the Monte Carlo
estimator is a biased and inconsistent estimator of X.
It is biased because its expected value is X’ instead
of X, and it is inconsistent because as we increase
the number of simulations, the law of large numbers
establishes that we are more likely to converge upon
a value of X’ than X.

The fallacy of becoming more confident in our
model through more Monte Carlo simulations is com-
pounded when we are incorrectly over-confident in
our playoff function. The further away we are from
a probability of 50%, that is, the more certain our
model is that the team in question will make or miss
the playoffs, the lower variance that estimate has, and
the more quickly the Monte Carlo simulation will
converge. If our model is overly certain, not only do
we have that false certainty, but we may be addition-
ally over-confident through a highly precise Monte
Carlo estimate.

3.4. The implausibility of existing models

This is a problem that is emblematic of how pre-
dictions are commonly made in the sports analytics
community. Quality models are used as inputs for
Monte Carlo simulation, but without accounting for
the unavoidable error correlation in those models.

In particular, there have been published simula-
tions that every year suggest that multiple teams
(including, of course, the aforementioned 2016-17
Cleveland Cavaliers) have a 100% chance of mak-
ing the playoffs, with several other teams having
over a 99% chance of making the playoffs. Likewise
with the weakest teams not making the playoffs, even
sometimes in 0% of a large number of simulations.
100% and 0% not only violate civilized concepts

of probability given model uncertainty, but they feel
incorrect.

The example of the Cleveland Cavaliers is apt
because they are carried disproportionately by one of
the most dominant players in NBA history, LeBron
James. Although they have other very good players,
in the absence of James they would perhaps be a
marginal playoff team, one that could quite plausibly
miss the playoffs if they had other bad luck. What are
the odds of an injury to LeBron James causing him
to miss most of a season? Certainly greater than 0%.
These rather unfortunate events do happen occasion-
ally. Take the 2005-06 Houston Rockets, victims of
injuries to both Tracy McGrady and Yao Ming, who
fell to 34 wins from 51 the year before. Or the 1996-
97 San Antonio Spurs, who went from 59 wins to 20
wins due to the absence of David Robinson, former
league Most Valuable Player, for almost the entire
season.

In Table 1, the effect of losing a key player is
demonstrated. In all cases the teams had substan-
tial decreases in wins compared to their prior season
and their subsequent season, due to the absence of at
least one dominant player who was part of their roster
during all three seasons. Within the injured season,
when the player was present in more than a handful
of games, the team performed much better in those
games than in the rest of the season.

Not only do some existing models make the mis-
take of not accounting for error correlation, but it
is a serious enough error that their predictions may
be unusable for evaluating unlikely scenarios. Their
point estimates of wins are generally reasonable, but
if anyone was to bet on distributional probabilities,
such as chances of making the playoffs, chances
of winning the division, or chances of winning the
championship, they could be using numbers that are
substantially and systematically incorrect.

Some forecasters do not make an adjustment for
error correlation, while others are not sufficiently
detailed enough for observers to know definitively
whether they do or not. Absence of details on how
correlation is handled is most likely an indication that
the problem was not addressed in the calculations.
FanGraphs simply states that to “generate the play-
off odds [they] simulate each season 10,000 times”
(Agami and Walsh 2013). Football Outsiders pro-
vides the detail that the “playoff odds report plays
out the season 50,000 times. A random draw assigns
each team a win or loss for each game. The prob-
ability that a team will be given a win is based on
an equation which considers the current Weighted
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Table 1
Effect of key injuries on team wins
Year Team Player Prior Year With Player Without Player Next Year
1988-89 BOS Larry Bird 57-25 2-4 40-36 52-30
1996-97 SAS David Robinson 59-23 3-3 17-59 56-26
2005-06 HOU Tracy McGrady 53-29 27-20 7-28 52-30
2009-10 NOH Chris Paul 49-33 23-22 14-23 46-36
2014-15 OKC Kevin Durant 59-23 18-9 27-29 56-27

[Defense Adjusted Value over Average] ratings of the
two teams as well as home-field advantage” (Harris
2008). At Nylon Calculus (now part of FanSided),
Nick Restifo states that he “also simulated the season
and resulting draft lottery 10,000 times to estimate
the range of wins a team may fall into, the percent
chance of netting certain draft picks, and the percent
chance of breaking certain records” (Restifo 2016).
FiveThirtyEight, which will be evaluated in more
detail in Section 4, provides significantly more detail
on how they simulate, and are not only aware of the
problem, but devise a strategy to counter it. They
update team Elo ratings after each simulated game in
a simulated season, such that team strength through
the season has path dependence. They claim that
this is important, and “matters more than you might
think,” backing up this paper’s claim that the effect is
very substantial in sports (Boice 2015). Their method
has both strengths and weaknesses. It implies that
team strength is gained and lost through winning and
losing, iteratively through games at a rate defined by
the Elo formula. This is different than the scenario
where a team should be consistently worse or bet-
ter than expected through an entire season, due to
unexpected minute allocations or significant injury.

4. Empirical example: Basketball models

4.1. A slightly less simplified model of how wins
are currently projected

Playoff projections are a common pastime of fans
and analysts alike. Intrinsic to being a sports fan is
the willingness to debate your opinions against those
of your peers. Casual fans can argue the merits of
their teams and the respective likelihood of them
making the playoffs. Professional bettors participate
in a zero-sum (or negative-sum) field in which it
is only sensible to participate if they believe their
reasoning to be stronger than that of others. Team
managers will ultimately be judged on performance,
whether their ex-ante reasoning resulted in ex-post

success. Analytical fans and statisticians can test out
their methodologies on sports, a realm with defined
rules, conclusive outcomes, and suitable randomness.
Predicting the collective results of a season, which
encompasses the question of which teams make the
playoffs, is a metric of how astute our reasoning can
be. A common approach to predicting the playoffs is
to predict each game in the regular season, across all
the teams, and then use Monte Carlo simulations to
evaluate how the standings are likely to turn out.

We have strong metrics of player quality, based
primarily on prior quality and aging, which correlate
well with wins and have season-over-season pre-
dictability (as demonstrated in the models in this
paper). We also have good accuracy in predict-
ing player minutes. These are the salient features
of current strong NBA models (see the discussion
at Association for Professional Basketball Research
2016). This is by no means limited to NBA analysis,
but it is a particularly demonstrative case. A team’s
quality can be represented by the sum of its players’
qualities, weighted by how much time they will play.

If thus we have an accurate prediction of how
strong every team is, given knowledge of the schedule
we can predict the probability of each team winning
any given game, after other key factors such as home
court advantage are accounted for. Since the NBA
schedule does not follow any sort of studied statis-
tical distribution, nor is it constant year-over-year,
we then simulate the season many times. This gives
us point estimates for how many games we should
expect each team to win.

The problem exists when player quality and min-
utes played are estimated, and then taken as given for
the Monte Carlo simulation. While excellent play and
35 minutes per game were very reasonable expec-
tations for LeBron James for the 2016-17 season,
variance is needed around both of these numbers (for
example, he ended up playing nearly 38 minutes per
game). Yes, when LeBron James does manage to play
35 minutes per game through the season, and to play
excellently, the Cavaliers missing the playoffs would
be unfathomable. However there are many combi-
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nations of poorer play with significant missed time
to injury that could make that happen, and absolutely
none of those scenarios are accounted for under many
current models. Current models establish the proba-
bility of Cleveland missing the playoffs due to poor
luck that strikes separately for each game, within a
framework where we assume that both LeBron James
and Kyrie Irving play significant minutes and play
well.

In a stochastic model there is variance due to true
randomness of the underlying event in question, but
there is also variance due to the imprecision with
which we can estimate accurately. Monte Carlo sim-
ulations, taking player quality and minutes played
predictions as fixed, fail to acknowledge that these
predictions contain substantial prediction variance.
These simulations assume that the models are cor-
rect. However, errors in these models propagate into
errors across a number of games, since the games are
not independent events, and simulations need to be
adjusted accordingly.

4.2. Designing a multi-level model

Theory without data is boring.

Forecasters build NBA models each year, to pre-
dict the immediately upcoming year. We shall do
the same, using prior data to predict each season
incrementally, updating our model for each season,
and always evaluating out-of-time on the season in
question.

We can build the NBA model described previously.
Victory in a given game depends on the quality of the
respective teams, which we can predict based on the
quality and minute allocation of their players.

For notation, we will use a hat (or circumflex) over
the predicted values in each regression, and use g, v,
and § as symbols to indicate the coefficients that are
fit by the regressions.

For the purpose of this demonstration, we predict
player quality as measured by Box Plus/Minus, or
BPM (Myers n.d.), which we estimate with linear
regression using prior BPM and other factors. Specif-
ically, we model player BPM as a function of their
prior year BPM, their average BPM in the prior five
years, their age, and their games played (GP) in the
prior season.

BPM =py + 1 - PriorBPM + B> - Avg PriorBPM
+B3 - Age + B4 - PriorGP (6)

Likewise we predict player minutes played (MP)
with linear regression where MP is modeled using
MP in the prior year, average MP in the prior five
years, and player age.

MP = o+ v1 - PriorMP + y» - AvgPriorM P
+vys - Age @)

Collective BPM for any given team is structurally
estimated as an average of estimated player quality,
weighted by expected minutes played. Rosters are
assigned based on the rosters that were present in
the first game of every season, which acts as a proxy
for what a forecaster would have known immediately
prior to the start of the season. While this slightly
breaks our out-of-time condition, it may still leave our
model at a disadvantage relative to other forecasters,
since rosters in the first game may not reflect informa-
tion about the severity of injuries for any temporarily
absent players.

Then the probability of the home team winning
a given game is modeled as a logistic regression
that uses expected team quality for both teams
as inputs, along with several other factors, includ-
ing prior season ratings of the teams using the
Simple Rating System (SRS) as calculated by
basketball-reference.com (Lynch 2015). The proba-
bility of the home team winning a game is modeled
with the following variables: home team predicted
BPM weighted by predicted minutes, away team pre-
dicted BPM weighted by predicted minutes, home
team prior SRS, away team prior SRS, days of rest
for the home team, days of rest for the away team,
and age of the away team (weighted by minutes in
the prior year). H and A are used as subscripts for
the home and away teams, respectively.

Wing
log D
L —WinHl

=80 + 61 - BPMy + 62 - BPM s+ (8)
83 - PriorSRSy + 64 - PriorSRSs+
85 - Resty + 8¢ - Restg + 87 - Agea

The data used for these models comes from the
website basketball-reference.com, which contains
data on every game played in each season, as well
as summary information about each team for each
season. Since the website contains unique addresses
for each game, and each team for each season, we
can precisely trace the history of each team based on
the prior list of games. When teams relocate and their
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identifiers are discontinuous across seasons, such as
when the Vancouver Grizzlies moved to Memphis,
these are treated as continuations of the same fran-
chise. Rather than identifying these algorithmically,
an author-identified set of migratory teams is used to
deterministically match pairs of identifiers.

Since the number of teams in the league has
increased over time while the games per team has
stayed constant through our sample (aside from the
lockout-shortened 2011-12 season), the number of
players and total games played has increased over
time. Our sample size for the BPM and MP regres-
sions has increased from a low of 3,018 players in
the 15-year sample ending in the 1994-95 season
to a high of 4,135 players in the 2015-16 season.
The win model has similarly increased from a low
of 11,504 games to a high of 13,800 games in those
same samples.

All inputs (aside from rosters in the first game) are
calculated based on data from the previous seasons,
as if we forecast an entire season immediately before
it begins. All regressions are based on a moving win-
dow of 15 seasons prior to the season in question, as
if we build new models in each off-season to predict
the upcoming season. As such, the results demon-
strated in the rest of this paper are on out-of-sample
validation for each predicted season.

4.3. Model evaluation and inference error

These models are generally effective. There is
some year-to-year variance in the coefficients, but
overall the relationships are consistent, with limited
variance and distinctly different from zero. The player
strength model has R? ranging from a low of 0.316
for the regression ending in the 2007-08 season, to a
high of 0.447 for the regression ending in the 1996-
97 season. The minutes played model has higher R?
values, ranging from 0.496 for the regression end-
ing in 2012-13 to 0.555 for the regression ending in
1997-98. The win model has pseudo- R? values rang-
ing from 0.07 for the regression ending in 2013-14 to
0.103 for the regression ending in 2000-01.

The coefficients in Tables 2-5 are the models gen-
erated for the 15-season build samples ending in each
given year, with only the first and last of the 22 mod-
els shown here, for brevity. For example, the rows
labeled “1995” show regressions using the 15 years
from the 1979-80 season through the 1994-95 sea-
son, which are then used to generate our predictions
for the 1995-96 season. This process is repeated for
every year, to the point where the 2016-17 season is
predicted using data from the 15 years prior, includ-
ing the 2015-16 season. Standard errors are provided
in parentheses below each coefficient, with most of
the values implying highly precise estimates. These
models are powerful, but that is not a necessary con-
dition for the point this paper makes about Monte
Carlo simulations. Whether the model is very strong
or quite weak, if there is error correlation present,
then passthrough variance is needed. Logistic and
linear models were chosen not because they would
be stronger or weaker than other models, but because
they could be succinctly explained, such that readers
will have high confidence that the models are sensi-
ble and simulation problems are due to the simulation
process itself.

The models are reasonably consistent, with decent
predictive accuracy on out-of-time games, as shown
in Fig. 3, and are well calibrated, as shown in Fig. 4.
Figure 3 shows the receiver operating characteristic
(ROCQ), since this is a commonly understood rank-
order metric for binary outcomes. A random model
would approximately follow the dashed diagonal line
and have an ROC Area Under Curve (AUC) of 0.5,
while a perfect model would touch the upper left point
in the graph, with an AUC of 1.

Now that we have reasonable individual game
probabilities we can perform Monte Carlo simula-
tions to evaluate the probability of each team making
the playoffs for each season.

In the popular example of presidential election
forecasting, we may never truly know if our mod-
els are calibrated correctly, since we only observe
an election every four years. However, for basket-
ball predictions we observe up to 30 observations

Table 2
Regression coefficients predicting player BPM in 15-season period ending in year shown
Period end Intercept Lag BPM Prior average Age Lag games
BPM played
1995 3.0629 0.3737 0.4219 -0.1869 0.0214
(0.539) (0.04) (0.043) (0.018) (0.003)
2016 3.2528 0.1489 0.6359 -0.1838 0.0189
(0.389) (0.027) (0.031) (0.013) (0.003)
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Table 3
Regression coefficients predicting player MP in 15-season period ending in year shown
Period end Intercept Lag MP Prior average Age
MP
1995 1765.6 0.484 0.3477 —57.684
(103) (0.026) (0.031) (3.922)
2016 1506.4 0.4354 0.3907 —47.904
(68) (0.021) (0.025) (2.534)
Table 4
Regression coefficients predicting home team win in 15-season period ending in year shown (Part 1)
Period end Intercept P[Home BPM] P[Away BPM] Lag home SRS
1995 1.2388 0.3618 -0.332 0.0630
(0.447) (0.044) (0.048) (0.008)
2016 1.7321 0.4507 -0.357 0.0539
(0.306) (0.035) (0.035) (0.005)
Table 5
Regression coefficients predicting home team win in 15-season period ending in year shown (Part 2)
Period end Lag away SRS Home rest Away rest Away age
1995 —0.0642 0.057 -0.0758 -0.021
(0.009) (0.019) (0.019) (0.017)
2016 —-0.0523 0.057 -0.0569 —0.0473
(0.006) (0.017) (0.017) (0.011)

each year. We have sample to statistically evaluate
accuracy. Since in any specific season we only have
up to 30 teams, and we have 22 years of attempted
modeling, we end up with 651 playoff or non-playoff
outcomes. For simplicity, rather than incorporate the
actual playoff criteria, which has varied over time
and includes a system of tiebreakers, we instead eval-
vate with an approximation. The approximation is
whether the team ends up in the top eight teams in
their conference by win-loss record. For most teams,
this correctly identifies whether they made the play-
offs of not. Aslong as we apply the same criteria to all
of our playoff estimation procedures, our comparison
is fair.

As shown in Fig. 5, the model very effectively
ranks playoff probabilities. For the purpose of try-
ing to predict, before the season even begins, which
teams will make the playoffs, this system shows con-
siderable precision.

However, the playoff probabilities are very poorly
calibrated, meaning that while the simulation ranks
the teams correctly, the probabilities it generates are
systematically inaccurate. This is despite the win
model itself being well calibrated, as shown previ-
ously in Fig. 4. Across 10,000 simulations of each
season, 47 teams were predicted to make the play-
offs all 10,000 times, and 29 were predicted to miss

Game winner ROC curve
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Fig. 3. Individual games have substantial variance, but are pre-
dicted well.

it each of the 10,000 times, giving us Monte Carlo
probabilities of 100% and 0%. That implies 76 of the
651 team seasons have certain outcomes, which is a
clear canary in the coal mine. Given enough simu-
lations the odds would not be exactly 100% or 0%,
but to be so extreme is an indication of a severe prob-
lem. For context, in betting markets, ahead of the
2016-17 season no NBA team was given worse than
500-1 odds of winning the championship, and none
had worse than 200-1 odds of winning their confer-
ence, let alone making the playoffs (Fawkes 2016). In
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Calibration of win model
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Fig. 4. The probability of winning a given game is well-calibrated.
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Fig. 5. The rank-ordering accuracy of playoff predictions.

our simulations without accounting for error correla-
tion, 244 of the 651 teams are given odds of below 1%
or above 99%. Fig. 6, with the distribution of playoff
predictions, shows that only a minority of seasons are
given unsure probabilities.

Our hypothesis is that unpredictable model errors
will be correlated within a season, due to multi-game
injuries, persistent player quality differences from the
model, team streakiness, or other factors. This will
lead the model without variance propagation to suffer
from outcomes that are too similar across simula-
tions, leading to overconfident playoff predictions. If
this is true, then we should see error correlation from
our game win model. If teams win (or lose) games
they were not predicted to win (or lose), they are
more likely to continue to win (or lose) more games

Distribution of teams without variance propagation
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Fig. 6. The model offers extremely low or high probabilities for
many team seasons.

than expected, for the reasons explained above. The
nature of correlation could take many forms, but at
its simplest it could be correlation between adjacent
games. Across our out-of-sample game win predic-
tions, home teams have an error correlation of 0.04,
while away teams have an error correlation of 0.043,
both of which are highly significant, given samples of
27,391 and 27,436, respectively. The counts of home
and away pairs need not match, because our series
are discontinuous at the end of seasons, and there
need not be an equal amount of teams starting the
season at home as on the road. Both correlations are
positive, fitting our hypothesis. That these correla-
tions are not larger speaks to the multitude of factors
affecting games and the substantial randomness
involved, two factors key to the entertainment value of
sports.

In Fig. 7 we can clearly see that our certainty is
misguided. This chart groups team seasons by their
playoff likelihoods, and then plots the number of
teams making the playoffs versus the average pre-
dicted value. A well-calibrated model should be close
to the 100% line, where the number of teams making
the playoffs matches the amount we would expect
based on the estimated probabilities. Instead, the
low probability groups below 20% probabilities are
all actually drastically underestimated by the Monte
Carlo simulation, even by a factor of 5 in the below
10% group. In that group the model predicted under
2% of teams (3.7 of the 180) to make the playoffs,
yet 20 (over 11%) did. Likewise, although it is not as
obvious due to the scale, all of the high probability
groups are overestimated. The Monte Carlo method
leads us astray, overly certain that likely events will
happen and that unlikely events will not happen.
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Fig. 7. Playoff probabilities are substantially inaccurate.

4.4. Propagation of uncertainty

Depending on our modeling approach, correla-
tion of errors in our first level models may result in
unbiased estimates of win probabilities, but variance
which is unaccounted for, resulting in incorrect play-
off probabilities. If we can instead incorporate error
correlation we can reach more plausible estimates.

When calculating probabilities, “stochastic sim-
ulation requires that an assumption be made about
the distribution of the error terms and the coefficient
estimates” (Fair 1986). Studies that do not directly
incorporate error variance are implicitly choosing to
assume no errors in the first level models, which can
be particularly calamitous in cases of hierarchical
models such as those demonstrated here. When we
simulate we not only need to simulate using the prob-
abilities given by the win model, but also across the
values that we use in the player strength and minutes
played models.

A simple method for the structure described above
is to directly propagate the variance of the player
quality and player minute predictions into our team
quality metric, and thus into our win predictions.
Instead of predicting each player’s quality and min-
utes and then holding those values constant in every
simulation, we let those values vary. In each simulated
season we generate stochastic error terms for each
player for each of the BPM and MP models, and hold
those constant across the season. The distributions
“are almost always assumed to be normal, although
in principle other assumptions can be made” (Ibid.).
When we simulate the season again, we generate new
error terms from the same distributions. These error
terms are normally distributed, with means of 0 and
standard deviations matching the prediction standard
errors from the respective regressions.
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Fig. 8. The propagated model offers less certain probabilities.

This is not the only reasonable approach. Bayesian
methods have long been used to explicitly struc-
ture and identify parameter uncertainty, since “at its
core, Bayes’ theorem is a device for accounting for
uncertainty” (Allenby et al. 2005). Box and Tiao
(1965) directly frames this problem in a Bayesian set-
ting, and Ansari et al. (2000) describes heterogeneity
in Bayesian hierarchical models. Bayesian methods
provide a strong theoretical base for how to reach pos-
terior distributions for parameters given uncertainty
and observed data. However, this paper retains the
structure of multilevel regressions with playoff prob-
abilities identified through Monte Carlo simulations.
This is closer to the approach used by the sources we
cited (Agami and Walsh 2013; Harris 2008; Restifo
2016; Boice 2015).

Our simulation gives us in-season error correlation
that could mimic true error correlation. In Section 3.4
we described the situation of teams performing far
worse than expectation due to long-lasting injuries
that affect most or all of a season. If the forecaster
makes predictions before the season, not knowing
about upcoming injuries, they may have substantially
correlated errors. The errors are not independent if
they share a common cause. Simulating with stochas-
tic error terms that are held constant across the
season can generate these unlucky situations, which
would otherwise never be simulated if each game was
independent.

Applying this method we get distinctly less certain
playoff predictions (Fig. 8) that are better calibrated
and do not show consistent patterns of under- or over-
estimation (Fig. 9).

When evaluating multiple forecast models, the
“standard procedure for ex post comparisons is to
compute ex post forecasts over acommon simulation
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Fig. 9. Playoff probabilities with propagation do not show system-
atic bias.

Table 6
MSE by probability range and simulation method

Probability Variance Variance not
propagated propagated
(0-10%] 0.04 0.10
(10-20%] 0.07 0.21
(20-30%] 0.15 0.19
(30-40%] 0.23 0.20
(40-50%] 0.23 0.24
(50-60%] 0.24 0.24
(60-70%] 0.23 0.25
(70-80%] 0.15 0.23
(80-90%] 0.03 0.31
(90-100%] 0.03 0.04

period, calculate for each model and variable an error
measure, and compare the values of the error mea-
sure across models” (Fair 1986). Mean squared error
(MSE), also known as Brier score in forecast evalua-
tion, is a common and simple metric for probability
forecasts (Brier 1950). Overall, the simulation with
variance propagation is similar by MSE to the unad-
justed simulation, with a MSE of 0.1288 compared to
0.1323. However, the difference is most substantial
in the extreme values. We can quantify the calibra-
tion differences by looking at the scale of errors in
each simulation method, splitting into score ranges to
show the dramatic error differences at low and high
probabilities. For all of the lowest and highest prob-
ability ranges, the model with propagated variance
improved on the naive model by having much lower
mean squared error, as shown in Table 6.

While we can compare the model against exter-
nal predictions, we are limited by data availability
for other models. Many create predictions before a
particular season and do not repeat the process the
next year, giving us only one year of out-of-time pre-

dictions. We can compare against those published at
FiveThirtyEight, where predictions are stored from
before and during the 2015-16 and 2016-17 season
(Boice et al. 2015; Boice et al. 2016). Two years
of data gives us only 60 binary playoff outcomes,
with 32 teams making the playoffs, so suitable cau-
tion should be taken with deriving any conclusions.
However this comparison will still provide a gen-
eral indication of how confident and accurate the
models are. Here we compare against the actual
playoff outcomes instead of an approximation, since
FiveThirtyEight publishes them as such.

The authors of the FiveThirtyEight model are
aware of the error correlation problem, and took steps
to ensure some correlation in their season samples by
having their team strength metric increase or decrease
with each simulated win or loss (Boice 2015). This
creates momentum in team strength over a season,
which could approximate some of the team quality
changes that occur over time.

Even with this correlation strategy, the FiveThir-
tyEight model offers more certain predictions than
our propagated model, with an average absolute

Table 7
2015-16 playoff outcomes and probabilities (rounded)

Team  Playoffs Wins  FiveThirtyEight  Our Model
GSW 1 73 98% 99%
SAS 1 67 97% 90%
CLE 1 57 99% 94%
TOR 1 56 78% 91%
OKC 1 55 97% 84%
LAC 1 53 95% 90%
ATL 1 48 85% 90%
BOS 1 48 90% 80%
CHO 1 48 60% 58%
MIA 1 48 48% 59%
IND 1 45 50% 55%
DET 1 44 45% 45%
POR 1 44 23% T4%
DAL 1 42 29% 49%
MEM 1 42 81% 69%
HOU 1 41 88% 78%
CHI 0 42 88% 70%
WAS 0 41 66% 52%
UTA 0 40 65% 55%
ORL 0 35 43% 18%
DEN 0 33 5% 7%
MIL 0 33 34% 50%
SAC 0 33 28% 18%
NYK 0 32 6% 3%
NOP 0 30 62% 42%
MIN 0 29 2% 2%
PHO 0 23 30% 26%
BRK 0 21 3% 13%
LAL 0 17 1% 5%
PHI 0 10 3% 9%
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Table 8
2016-17 playoff outcomes and probabilities (rounded)

Team  Playoffs Wins  FiveThirtyEight  Our Model

GSW 1 67 99% 100%
SAS 1 61 87% 99%
HOU 1 55 68% 80%
BOS 1 53 86% 93%
CLE 1 51 98% 98%
LAC 1 51 78% 78%
TOR 1 51 94% 92%
UTA 1 51 87% 79%
WAS 1 49 52% 47%
OKC 1 47 83% 90%
ATL 1 43 49% 82%
MEM 1 43 21% 46%
IND 1 42 46% 52%
MIL 1 42 25% 34%
CHI 1 41 80% 53%
POR 1 41 2% 52%
MIA 0 41 28% 43%
DEN 0 40 45% 36%
DET 0 37 57% 46%
CHO 0 36 79% 58%
NOP 0 34 21% 19%
DAL 0 33 31% 41%
SAC 0 32 20% 28%
MIN 0 31 2% 30%
NYK 0 31 39% 43%
ORL 0 29 49% 34%
PHI 0 28 15% 3%

LAL 0 26 3% 1%

PHO 0 24 12% 8%

BRK 0 20 3% 7%

deviation from 50% of 28% (i.e. the typical team
has 78% or 22% playoff likelihoods) compared to
the 26% of our model. The FiveThirtyEight model is
not more confident of playoff or non-playoff status
for every team, but it is for the majority of them (34
of 60). We can reasonably expect that other models
that do not use any variance propagation will be more
confident. Team-by-team results are shown in Tables
7 and 8.

Note that our model did not predict the 2016-17
Golden State Warriors would make the playoffs in
literally 100% of simulations as the rounded table
value would indicate, but rather 99.9% of simulations.

The FiveThirtyEight model had a mean squared
error of 5.11% and a mean absolute deviation of
30.4%, compared to 4.25% and 25.7% for our model.

Among the predictions that did not succeed,
FiveThirtyEight had the 2015-16 Bulls at 88% play-
off odds and the Portland Trailblazers at 23%, and the
2016-17 Charlotte Hornets at 79% and the Mempbhis
Grizzlies at 21%. Those Trailblazers and Grizzlies
ultimately made the playoffs, while the Bull and Hor-
nets did not. Our model has these teams at 70%, 74 %,

58%, and 46%, respectively. While our model like-
wise classified incorrectly (or unluckily) in three of
those cases, it did so to a lesser extent. Our model’s
worst outcomes were those Bulls, and the 2016-17
Milwaukee Bucks at 34%—another case where the
FiveThirtyEight model was incorrectly more confi-
dent, predicting only a 25% playoff chance.

Two seasons is very little to draw conclusions from,
and these results are driven by only a handful of unex-
pected outcomes. Nevertheless, it should give some
comfort in the plausibility of the model presented
here.

5. Conclusion

Playoff predictions in sports are commonly based
on Monte Carlo simulations of underlying statistical
models, and quite often these are subject to system-
atic bias. As described in this paper, Monte Carlo
simulation unbiasedly estimates team win probabil-
ities based on underlying models. However, playoff
probabilities can be biased when the Monte Carlo
procedure is applied without accounting for error cor-
relation. These errors exist because the unpredictable
variations in player performance and player health are
correlated over time and are not, instead, i.i.d. across
games within a season. This paper describes the prob-
lem in detail and demonstrates it through a plausible
empirical model that accurately predicts game out-
comes. If we fail to account for error correlation, we
may predict extremely high or low playoff probabil-
ities, which are demonstrably mis-calibrated when
evaluated against realized outcomes. We can solve
our calibration problem with passthrough variance,
through which our powerful model will yield playoff
probabilities that are not overconfident.
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