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Abstract. The paper is concerned with the modeling of run plays from data obtained from the NFL. Using a parametric
regression model based on the skew–t distribution we estimate the shifts from overall league averages for each team within
the NFL. From the interpretation of the parameters we can investigate what the best teams are specifically doing to achieve
better performance according to the criterion of average yards per play.
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1. Introduction

The NFL has seen offensive development explode
over the last several decades, seeing yards per game
increase from 295 for an average team in the 1970s
to 347 in the 2010s (Gough, 2022). With this much
change, it is hard to imagine further room for
improvement, and therefore identifying factors that
can fundamentally improve a team’s performance
should prove to be a difficult task. The question of
how to improve a team no longer has surface level
answers and the use of high level data analysis to
inform decisions is, we argue, a necessary next step
to seriously consider.

In Biro and Walker (2022), a step towards a data
driven decision theoretic approach to play calling
was made by establishing a method for an optimal
play calling policy. The techniques relied heavily on
the probability transition function that dictates how
states transition from one to another given a speci-
fied action. A state here is represented by a down, a
yardage to go to secure a first down, and the line of
scrimmage.
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The probabilities are estimated from data. At an
average level; i.e. over all football teams in the
NFL, a nonparametric estimator works. There is suf-
ficient data for all the states to get a good estimation
of the probabilities of outcomes following choices
of play. However, when we wish to look at team
specific outcomes, data is more sparse, and hence
parametric models become essential. Provided the
model parameters are interpretable, the change in
estimated parameters for different teams can lead
to an understanding of what activities/decisions the
teams are making which determines how well a team
does. This is an ambitious endeavour and yet we
believe we have found some significant criteria in
team choices which explains to some extent team
offensive proficiencies, specifically relating to run
plays.

Consequently, this paper details the modeling
methods used for creating accurate probability tran-
sition distributions for run plays. Additionally, we
provide insight on some of the interpretable outcomes
of the parameters. We attempt to answer the question:
“What makes a good running football team?" using
information that can be gleamed from the parameters
identified in the modeling efforts.

Much of the current literature regarding the mod-
eling of run plays originated in the 2020 Big Data

ISSN 2215-020X © 2023 – The authors. Published by IOS Press. This is an Open Access article distributed under the terms
of the Creative Commons Attribution-NonCommercial License (CC BY-NC 4.0).

mailto:prestonbiro@gmail.com
https://creativecommons.org/licenses/by/4.0/


206 P. Biro and S.G. Walker / Parametric modeling and analysis of NFL run plays

Bowl, where individuals were tasked with predict-
ing the amount of yards gained using player tracking
data. These projects proved fruitful, identifying many
features of a successful running game, such as a ball
carrier’s effective acceleration (Ploenzke, 2019), the
initial open space generated by offensive linemen
(Stern, 2019), and field control generated by each
team’s positioning (Brighenti, 2019). However, each
of these projects rely on tracking data and there-
fore provide limited insight on the ability to advise
decisions in real time, due to the fact that data is
not available until the end of the play (or more
realistically until after the game). Moreover, NFL
and NCAA teams (at the time of writing) are pro-
hibited from accessing computers during the game,
and although it may be possible that this restric-
tion is lifted in the future, tracking data still would
not be a particularly helpful pre-play predictive tool
because of the uncontrollable nature of the oppo-
nents’ actions. Therefore, the measures created are
better suited for descriptive evaluation metrics, while
the methods proposed in this paper will focus on
generating probability densities that can inform in
game decisions using available online information.
Additionally, these aforementioned projects tended
to focus on evaluation at the player level. The results
of this paper will take a higher level approach to
improving the run game of a team.

Previous work using NFL play by play data has
focused on two topics: creating descriptive statistics
and predicting play types. For the former, research
into expected points and win probabilities have been
exceptionally popular, implemented primarily in the
work of Yurko et al. (2018) and Burke (2010a,b).
These metrics have been widely accepted in the ana-
lytics community, using them as tools to understand
decision making and to evaluate players. The latter
has been explored by multiple groups (Lefort et al.,
2022; Joash Fernandes et al., 2020), attempting to find
models that successfully predict play calls. The scope
of the work is directed towards adversarial strategy,
attempting to find trends in decisions that can be used
to help a defense prevent an offense from advancing.

The closest work to our own, we believe, was
conducted in Lutz, and Kassarnig (2016), where
play by play data was used to predict the number
of yards gained (amongst other variables). These
authors explored several different machine learning
techniques, such as regression trees, support vector
regression, and artificial neural networks, to predict
a number of outcomes of interest using play by play
data. However, their methods used information not

available at the start of the play (such as pass length
and side of the field) in their predictions, whereas our
research will focus on using only presnap information
in order to provide prescriptive decisions. Addition-
ally, their work created point estimators for yards
gained, whereas our results will provide distributions
of all possible events.

Central to our paper is the modeling of the yards
gained outcome following the choice to run for an
NFL team. This will be formulated using a regression
model where the features are line of scrimmage, yards
to first down, and down number. These were success-
fully assumed to be the key features from Biro and
Walker (2022). The key model is the skew–t distribu-
tion, which we claim provides a good fit for the data
and allows us to separately model important aspects
of a distribution; i.e. the mean, the variance, the skew-
ness and the heaviness of tail. The skew–t model is
described in detail in section 2. In section 3 we indi-
cate how we analysed the data and present the raw
results. Our analysis of the results is to be found in
section 4 and section 5 concludes with a discussion.

2. Modeling

At each state, which we have indicated is the triple
down, line of scrimmage and yards to a first down,
we adopt the idea that there are four actions a team
can choose from: a run, a pass, a punt, or a field goal
attempt. For each state-action pairing, our goal is to
model the probability of outcomes which is tanta-
mount to estimating the transition probabilities from
state to state. In this paper, we will focus exclusively
on the modeling of run plays. First we will begin
by modeling the population; i.e. all the teams in the
league, and then model the team adjustments. Such
a model would be known in the statistical modeling
community as a random effects model.

2.1. Data

The data used is NFL play-by-play data span-
ning the 2017 and 2018 regular seasons, obtained
via the nflscrapR package (Horowitz et al., 2017).
Specifically, the data used for modeling purposes
are the plays marked as run plays in the play type
column. We will primarily use the down, ydstogo,
yardline 100, posteam, and yards gained columns;
however, other markings will be used in the analy-
sis section. To ensure data consistency, we removed
plays that do not constitute standard run plays,
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namely penalized plays, quarterback scrambles, and
quarterback kneels. Additionally, we removed plays
where the pre-play run probability is near one or zero,
as these scenarios would result in the defense being
over- or under-prepared to stop the run and therefore
would not be closely comparable to the rest of the
data. Specifically, we will exclude run plays that fall
into 2-minute drill, 4-minute drill, extreme score dif-
ferential scenarios, 3rd and long, and 4th and long
situations.

After filtering, the data contains 19881 run plays,
with each team represented by a minimum of 518
plays and a maximum of 739 plays. The values of
the down column span 1 to 4, yardline 100 column
span 1 to 99, yards gained column span 1 to 99,
which represent their theoretical spans. The theoret-
ical span for the ydstogo column is 1 to 99, however,
the observed span is much more limited, spanning
1 to 40, with 99% of the observations having val-
ues less than 20. We will refer to the values of
down, ydstogo, and yardline 100 on a particular play
as (xi) = (DOWNi, DISTi, LOSi) and yards gained
as (yi). In addition to the data used for model-
ing, we obtained data for analysis purposes. This
included the play-by-play data used for modeling,
with the addition of several columns for analysis such
as run gap, run location, defteam, qb scramble,
shotgun, rusher player id, score differential, and
game seconds remaining.

2.2. The Skew-t distribution

The family of distributions used to model the data
is provided by the skew–t distribution, as defined
in Arellano-Valle and Azzalini (2013). The density
function is given by:
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ω
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where �(·) is the gamma function and 2F1(·) is the
hypergeometric function.

The skew–t distribution has four parameters:
(ξ, ω, α, ν). These parameters can be understood

broadly as (but not fully separately from a mathemat-
ical point of view) as mean, variance, skewness, and
degrees of freedom, which controls the heaviness of
the tails. Figure 1 shows a few examples of the skew-t
density evaluated for changing values of each param-
eter. As can be seen in the images, the ξ parameter
shifts the location of the mode, the ω parameter has a
large influence over the spread of the distribution, the
α parameter influences the symmetry and skewness
of the distribution, and the ν parameter controls the
size of the tails. Each of the parameters also has some
influence over other effects; for example, increas-
ing ω changes the spread but also slightly shifts the
mode. However, we will use the terms mean, vari-
ance, skewness, and degrees of freedom, aka kurtosis,
interchangeably with their respective parameters for
ease of discussion.

This distribution displays smooth, unimodal
behavior, with parameters that allow for relative con-
trol over the occurrence of extreme and one-sided
events. We observe similar structure in the distribu-
tion of run plays, and therefore believe the skew-t
distribution is a good choice as a parametric model
for the data.

2.3. Goodness of fit

Following the aforementioned theme, here we sta-
tistically assess the fit of a skew-t distribution for the
data. While a visual inspection shows the model fits
the data well, a statistical test for fit is necessary. How-
ever, it is infeasible to evaluate the goodness of fit for
all states, and therefore we will consider the most

common state; namely a 1st and 10 on the offensive
team’s own 25 yard line; i.e. DOWN = 1, DIST =
10, LOS = 75. This state represents where a team
obtains the ball after a kickoff touchback (amongst
other options), and therefore is the most common
state, with 1555 plays. We remove the six touch-
down outcomes, for reasons that will be elaborated
on in proceeding sections, leaving n = 1549 non–
touchdown plays with the amount of yards gained
spanning −9 to 70 yards. Figure 2 shows this data
fit with the corresponding skew-t model. The spe-
cific density is obtained by minimizing the objective
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Fig. 1. Plots of skew-t densities for changing parameter values.

function over (ξ, ω, α, ν);

70∑
y=−9

{Fn(y) − F(y|ξ, ω, α, ν)}2

Fn(y)
,

where Fn(·) is the empirical cumulative distribution
function for yards gained evaluated at y and F (·) rep-
resents the cumulative distribution function of the
skew-t.

Using Pearson’s χ-squared goodness of fit test
(Pearson, 1900), we obtain a test statistic value of
83.46. For df = 80, this corresponds to a p-value
of 0.374, and hence there is no reason to reject the
hypothesis that the data arose from a skew–t distribu-
tion. Performing a test for all states is not appropriate;
smaller sample sizes and the play of chance in the
testing procedure would not lead to a 100% fit. Noth-
ing seen or checked would suggest the skew-t is not
suited for the modeling of the data.

2.4. League average run modeling

The nature of run plays is smooth, with yards
gained typically having a unimodal distribution with

a single heavy tail on the positive part. We choose
to build a Bayesian model around a skew-t likeli-
hood. The skew-t distribution is truncated at each end
to represent the constraints of the game limiting the
yards gained to a touchdown on the positive part and
a safety on the negative part. Additionally, the skew-t
is mixed with a point mass probability of scoring a
touchdown; since touchdown scoring events tend to
happen with higher frequency than other heavy tail
events. Not including this point mass for touchdowns
would result in an overcorrection of the parameters
to fit the heavy tail of the skew-t, and therefore sepa-
rating these points allows for more accurate fits. We
do not observe the same behavior in the negative part,
and therefore do not include a point mass for safety
plays.

To incorporate state information, the parameters
of the skew-t distribution and the point mass proba-
bility are formed as linear combinations of the down,
distance, and line of scrimmage with parameters esti-
mated via Markov chain Monte Carlo simulation. The
following set of equations represents the skew-t mix-
ture model used for the modeling of yards gained,
denoted by yi for play i and with state xi:
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Fig. 2. Skew-t fit for most common state, with the histogram bars
indicating the amount of yards gained on observed plays and the
black line indicating the predictive density.

p(yi|xi, β, wi) = wi F (yi|ξi, ωi, αi, νi) [yi ∈ (LOSi − 100, LOSi]] + (1 − wi) [yi = LOSi] (4)
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ξ
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with the prior for all the β parameters are independent
normal with zero mean and a large variance, and wi ∼
Beta(19 + ni,ST , 1 + ni,TD). Here

ni,j =
N∑

i=1

[di = j],

where di = ST , ST = coming from the skew–t, with
probability

P(di = ST ) = wi F (yi|ξi, ωi, αi, νi) [yi ∈ (LOSi − 100, LOSi]]

wi F (yi|ξi, ωi, αi, νi) [yi ∈ (LOSi − 100, LOSi]] + (1 − wi) [yi = LOSi]

and di = TD with probability 1 − P(di = ST ).
The ωi and νi parameters are modeled on log
scale to ensure positivity. Thus, the task of
identifying the probability distribution for yards
gained on a run play comes down to estimat-
ing the parameters β = βθ

COV , for each com-
bination of COV ∈ {INT, DOWN = 1, DOWN =
2, DOWN = 3, DOWN = 4, DIST, LOS} and θ ∈

{ξ, ω, α, ν}, along with the point mass weight param-
eters wi.

We consider the di to be latent labels of each of
the plays as coming from either the skew-t distri-
bution or the point mass distribution. For all plays
that do not result in touchdowns, di is determinis-
tic as a standard play (ST). However, for touchdown
plays, there is a high (but not 100%) probability
that di = TD. This mixing gives the interpretation
of allowing for the total touchdown probability to be
a combination of gaining exactly LOSi yards com-
ing from the skew-t distribution plus the probability
of more yards that could be gained had the yards
gained not been truncated by the touchdown, rep-
resented by 1 − wi. Additionally, we have chosen to
smooth the (wi) values using a rolling average filter

(K = 2, two-sided) to create a smooth representation
of the touchdown probabilities, removing the effects
of outliers at specific yard lines. Figure 3 shows the
touchdown probabilities (for 1st and goal or 1st and
10 for LOS > 10) plotted against the respective fre-
quency at that yard line.

This model yields results both accurate and inter-
pretable. With n = 19881 plays and 28 parameters
to fit (with 99 (wi) parameters that are nearly inde-

pendently fit from the βθ
COV ), each parameter has

a sufficient amount of plays that can be used to
inform its value. The components of this model are
a composition of standard approaches for Bayesian
mixture models, with the added novel component
of the skew-t distribution to account for the nature
of run plays. The model assumes that the distribu-
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Fig. 3. Modeled probability of scoring a touchdown versus empir-
ically observed touchdown probability for 1st and 10 scenarios, or
1st and goal scenarios for LOS less than 10.

tion of yards gained on a run play is dictated by the
βθ

COV terms. Each of the individual βθ
COV parameters

(excluding the βθ
DOWN terms) are modeled assuming

a linear relationship between the skew-t parameters
and the state information. For example, incrementing
DISTi by one implies the ξ parameter will incre-
ment by β

ξ
DIST . We assumed the relationship between

DOWNi and the skew-t parameters would likely be
far from linear, as the difference in the distributions
between 1st and 2nd plays is not similar to the dif-
ference between 2nd and 3rd down plays. Treating
this relationship as linear would imply an equal shift
in parameters for all values of DOWNi, therefore we
instead chose to treat DOWNi as a categorical vari-
able, giving each value its own βθ

DOWN . We assumed
no interaction effects between covariates, assuming
a change in one covariate does not affect another
covariate’s relationship with the parameters. This
assumption tends to seem fair for most situations, as
the observed data only changes slightly from state to
state and therefore a more complex model would only
provide marginal accuracy improvements at the cost
of computational burdens and intuitive explanations.

2.5. Team adjusted run modeling

Given the estimated parameters for the league aver-
age data, we can now identify trends at the team level.
To make team adjustments, the model is an extension
which allows for team additive shifts from the average
values as follows:

p(yi|xi, β
θ
Team, βθ

COV , wi) = wiF (yi|ξj
i , ω

j
i , α

j
i , ν

j
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with

ξ
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where j is an indicator for the team. Here, the
(ξ�

i , ω
�
i , α

�
i , ν

�
i ) represent the average parameters of

the league model. Additionally, the (xi) now contain
information indicating the team.

These values were identified using a weighted
MLE approach, where the weights were assigned
according to the team’s run frequency for each state
component relative to the league average frequency.
This weighting was used to counter the effects of team
specific trends for running in situations significantly
more or less than the league average and to force the
parameters to be a function of the team’s proficiency
rather than their usage rate in a particular area. Team
effects were computed over the entire two-year sam-
ple, acknowledging that coaching and roster turnover
would naturally result in differing parameters from
year to year, but are likely small changes in com-
parison to the effects of controlled covariates. Note
that the values of βθ

COV and wi do not need to be
recomputed.

3. Results

3.1. League average model results

Table 2 shows the average parameter values
obtained for the league average run modeling meth-
ods. Using these values, one can obtain an accurate
distribution for a league average run play for any
state. For example, for a 1st and 10 scenario from
the teams own 25 yard line, the distribution of yards
gained would be modeled using a mixture of a skew-t
distribution with mean parameter ξ = 0.221, vari-
ance parameter ω = 4.150, skewness parameter α =
1.811, and degrees of freedom parameter ν = 2.505,
mixed with the touchdown probability point mass
with mixing parameter w = 0.997.

Examining these values can provide some funda-
mental insights as to how the model controls the shape
of the distribution. For example, as the value of DIST
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Table 1

Table of βθ
COV

values after MCMC optimization. Values of COV

are shown going down and values of θ are shown going across

βθ
COV

ξ ω α ν

INT -.777 1.508 2.909 1.221
DOWN = 1 .151 -.447 -1.291 -.104
DOWN = 2 .417 -.393 -1.423 -.022
DOWN = 3 .439 -.615 -1.221 -.336
DOWN = 4 .833 -.979 -1.664 -.363
DIST .0553 .0257 -.0115 .0288
LOS .00392 .00140 .00410 -0.00649

decreases (holding all other values constant), the
mean parameter increases, while the skewness
parameter will decrease. Hence, comparing the dis-
tribution of a 2nd and 10 run play to a 2nd and 1
run play at the same yardline, one would expect the
center of the distribution to be slightly larger (shifted
right) for the 2nd and 1, but the probability of gaining
a large amount of yards to be lower as the skewness
decreases. This is likely due to the defense’s response
to the offense in each situation, with the defense more
worried about giving up a larger play on a 2nd and
long play than on a 2nd and short, and thus proba-
bly would have lighter personnel on the field (more
defensive backs, less defensive linemen and lineback-
ers) to prevent a pass, making them more vulnerable
to allowing small gains, but less likely to give up a
big gain.

The following set of plots shows the league aver-
age predictive posterior distributions for run plays
shown for several states, along with correspond-
ing histograms of observed plays coming from the
respective states (or closely similar scenarios).

3.2. Team model results

Table 1 shows the parameter values obtained for
the team adjustments from the league average run
model to create a team specific run model.

Similar to the coefficients in the league average
model, we can interpret the individual effects of
the team adjustment coefficients as well. For exam-
ple, a negative β

ξ
Team value, as seen for teams like

the Detroit Lions (DET), implies that the center of
the skew-t has been shifted negatively from league
average. This implies that holding all other parame-
ters constant, the predicted mean yards per carry on
comparable states would be lower for Detroit than
the average team. However, this team also has a
positive βω

Team adjustment, implying their spread of
results is higher than the average team. This (hold-
ing βα

Team and βν
Team constant) indicates the team

likely has a fairly boom or bust running game, per-
haps with a small proportion of 4 to 6 yard gains,
but more extreme results such as a 5 yard loss or
15 yard gain. This aligns with their results over
the sample period. Interpretations such as these can
be continued for the other parameters, providing
insight into a team’s trends and proficiencies. To
ensure the validity of these estimates, we created
several plots of the predictive distributions, indicat-
ing a strong fit for each of the individual teams.
Several of these plots have been included in Fig-
ure 5. Furthermore, we assessed goodness of fit under
the skew-t distribution for the 1st and 10 from the
team’s own 25 yardline state for each team. Fig-
ure 6 shows the distribution of p-values, showing
no unexpected behavior as indicated by distribution

Table 2

Table of βθ
Team values. Values of Team are shown going down and values of θ are shown going across

βθ
Team ξ ω α ν βθ

Team ξ ω α ν

ARI 0.221 -0.727 -0.2087 -0.174 LA 0.184 1.200 0.3438 0.083
ATL -0.540 0.464 0.2189 -0.582 LAC -0.320 -0.081 0.3193 -0.820
BAL 0.124 0.164 0.0369 -0.085 MIA -0.424 0.243 0.1106 -0.232
BUF -0.349 0.034 -0.3103 0.225 MIN 0.113 -0.588 -0.2633 -0.671
CAR 0.071 0.287 0.5128 -0.471 NE 0.086 0.897 1.0385 0.178
CHI 0.173 -0.174 -0.2609 -0.558 NO 0.377 -0.604 0.3960 -1.140
CIN -0.304 0.201 0.1803 -0.345 NYG 0.333 -0.711 -0.4769 -1.044
CLE 0.021 -0.135 0.1540 -0.762 NYJ -0.704 -0.254 0.4933 -0.508
DAL -0.024 0.451 0.4805 -0.045 OAK -0.208 0.209 0.4227 -0.151
DEN 0.160 -0.058 0.2322 -0.327 PHI -0.013 0.268 -0.0043 -0.209
DET -0.615 0.302 0.6383 -0.180 PIT 0.417 -0.283 -0.0489 -0.479
GB -0.250 0.611 0.6774 0.260 SEA -0.414 0.351 0.4147 -0.041
HOU -0.091 -0.070 -0.0066 -0.142 SF -0.668 0.483 0.6205 -0.210
IND 0.136 -0.136 -0.0745 0.036 TB -0.066 -0.225 -0.1695 0.539
JAX 0.241 -0.368 -0.0148 -0.116 TEN -0.332 0.113 0.1412 -0.312
KC -0.200 0.311 0.7544 -0.676 WAS -0.251 -0.132 -0.1239 -0.300
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Fig. 4. Several examples of randomly chosen predictive distributions for run plays for a specific state, with observed data from similar states
shown in histograms. Distributions have been truncated at -10 yards gained to expand images.

appearing relatively uniform, as is assumed under the
null hypothesis.

We also found it to be a fruitful task to compare the
predictive distribution of run plays across the differ-

ent teams to identify that we are able to distinguish
between different team proficiencies and weaknesses.
Figure 7 show a few different team predictive run
distributions plotted against one another for identical
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Fig. 5. Several examples of randomly chosen predictive distributions for run plays for a specific team for a specific state, with observed data
from similar states for the team shown in histograms.

scenarios. In these plots, one is able to compare the
different properties of the predictive distributions for
different teams in a visual manner. For example, one
can see that the Los Angeles Rams (LA) has a heavier

positive tail than the their divisional opponents (the
NFC West), indicating they are more likely to have a
larger gain than the Cardinals, Seahawks, and 49ers
(ARZ, SEA, and SF). However the positive heavy tail
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Fig. 6. Goodness of fit p-values for team parameters for 1st and 10 at their own 25 yardline state. Uniformity implies the skew-t remains a
reasonable distribution with which to model to data.

Fig. 7. Comparison plots showing differences in predictive run distributions for different teams for a common state. Colors provided via R’s
teamcolors package (Baumer and Matthews, 2020).

has a cost, specifically by having a larger negative tail
as well, indicating they also are more likely to have
a run play for a loss. It is apparent that the predictive

distributions are both proper fits for the individual
teams and that they are useful in distinguishing trends
at the team level.
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4. Analysis

With these team adjustment parameters identified,
we can examine them to identify what trends exist
and correlate with successful run games. To do this,
we created plots for each of the four sets of parame-
ters against the team cumulative yards per carry over
the two year dataset period. The choice to use yards
per carry as the metric for effective rushing offense
was chosen due to its simplicity in interpretation as
well as its ability to avoid volume issues. Other met-
rics were checked to ensure consistency, such as EPA
per run (Yurko et al., 2018), percentage of successful
runs (Carroll et al., 1988), and each team’s ranking
amongst the league for each of these statistics. All
of these metrics have similar relationships with the
parameters, and therefore we will proceed using yards
per attempt. We will discuss a potential analysis that
could be conducted using EPA/attempt, along with
appropriate caveats, in Section 4.1.

Figure 8 shows these plots of the parameters
against yards per attempt, where a relationship can
clearly be seen between βω

Team (the variance param-
eter) and βα

Team (the skewness parameter) with the
average yards per carry for each team in the period
(correlations of -0.432 and -0.515 respectively). A
test for significance for these correlations finds signif-
icant p-values for both parameters (p = 0.0135 and

0.00257 respectively). The relationships with β
ξ
Team

(the center parameters) and βν
Team (the degrees of

freedom parameters) were negligible, and therefore
determined to have no meaningful relationship with
running success.

It is a usual phenomenon that high variance, and
as a consequence higher skewness, while the mean
is held fixed, indicates greater risk. Hence, the natu-
ral interpretation is to assume that the better rushing
teams were willing to attempt more “high risk" run
plays, implying that they are more likely to run the
ball in a way that increase the probability of a non-
successful or even negative play in order to maximize
their ability to generate a large run. It is well known
that high variance has long been associated with high
risk (Winterhalder, 2007; Coombs and Pruitt, 1960),
and thus we will henceforth refer to high variance and
skewness runs as high risk runs.

Consequently, there is something fundamental
about the style of offense run by the successful teams
that can be tied to high risk runs. One conjecture is that
outside runs (regardless of the actual play scheme)
are considered high risk runs. The idea of outside
runs being more effective was partially studied in
Seth (2020), but we plan on extending this analysis
with a more directed approach employing the para-
metric regression skew-t model. The nature of an
outside run requires the ball carrier to run towards

Fig. 8. Parameters from team adjusted run model plotted against team yards per attempt, indicating a correlation between the high risk
parameters and successful running teams.
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Fig. 9. Overlapping histograms of yards gained on run plays, with blue bars indicating inside runs and red bars indicating outside runs. Plays
are matched using one-to-one nearest neighbor matching based on Mahalanobis distance, with exact matching enforced on some factors.

Fig. 10. Scatterplot of yards per attempt versus percentage of runs to the outside for individual runners, specifically for each team’s primary
runner, showing a positive correlation in between the variables of interest.

the perimeter of the field prior to moving downfield
to gain yards, implying that the risk of losing yards
may be greater than a play where the ball carrier
runs directly downfield. This higher risk of losing
yards should also come with a higher chance of cre-
ating large gains, as moving outside may allow the
back to avoid the larger potential tacklers (typically
defensive linemen and linebackers) and may be more
likely to induce a broken tackle from a smaller player
(defensive backs). Therefore, we expect an outside

run to have an association with high risk run activ-
ity.

We should make a clarification here of how we
identify an inside or outside run. For the purposes of
this paper, we will classify “outside" runs as plays
where the run gap column is marked as “tackle" or
“end" according to the nflfastR labeling scheme (Carl
and Baldwin, 2022). A visual inspection of the film
of these runs show that these typically align with
runs that are run to a gap located at least outside the
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Fig. 11. Parameters from team adjusted run model plotted against team EPA/attempt.

guard (commonly referred to as the B gap), and are
more commonly restricted to being outside the tackle
(C gap) or even end (D gap). Additionally, the “run
location" is marked as “left" or “right", as opposed
to “middle", which seems to correspond nearly per-
fectly with “run gap" being labeled “NA", implying
that the run is always “middle", “guard", “tackle" or
“end". These runs being labeled as “outside" for our
purposes encompass about 47% of all runs, with all
other runs being labeled as “inside" runs.

It is also important to note that we recognize that
a coach does not call “inside" or “outside" run as
their play. While inside and outside zone run concepts
exist, these concepts do not fully correspond to what
we are labeling as inside and outside runs. The run
is classified by an external source that is agnostic to
the actual play calling scheme and is determined (by
what it seems) solely by the final location of where
the back runs. Any run scheme can be used in accor-
dance with the findings of this paper, and therefore
the results should be taken into consideration prop-
erly in order to determine how an individual team can
adjust their scheme to be in line with more successful
run behavior.

With these caveats in mind, we calculated the cor-
relation between a team’s percentage of outside run
plays called with the parameters of interest. Finding a
correlation of .448 with the team variance parameter

(and a slightly less interesting .323 correlation with
the team skewness parameter), our hypothesis was
supported by the moderate relationship. Furthermore,
we conducted a test of significance to determine
whether the relationship is statistically significant.
Using a significance level of 5%, we performed a
hypothesis test for the regression slope of percentage
of outside runs. To account for the bounded nature of
the percentage of outside runs statistic, we converted
the value to the log odds of percentage of outside runs
and used it as a covariate in a linear regression model
for βω

Team. This model creates a regression coeffi-
cient of 0.594 (standard error of 0.216), resulting
in a p-value of 0.00991, implying there is evidence
to suggest that increasing the percentage of outside
runs has a significant relationship with the variance
parameter of this skew-t run model. Since we are
aware that this variance parameter also has a positive
relationship with the overall team offensive running
proficiency, we are inclined to believe that this means
that teams that run the ball outside more should expe-
rience higher levels of rushing success.

We will attempt to back this claim via two meth-
ods. First, if outside rushes are truly linked to positive
results in the running game, we should expect a causal
relationship to exist between rushing outside and
yards gained on carries. To test this, we conducted a
matched pairs observational study, using inside ver-
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sus outside run as the treatment variable and yards
gained as the outcome. We matched plays (Ho et al.,
2011) according to several variables, requiring exact
matches for offensive team, defensive team, season
(2017 or 2018 regular season), and early/late down,
and relatively close matches (using Mahalanobis dis-
tance) for distance to 1st down, line of scrimmage,
and score differential. After matching, we had 2628
pairs of plays. After confirming balance amongst
covariates, we calculated the average treatment affect
(Rubin, 1974) of running outside on yards gained. We
observe an expected difference of 0.503 yards gained
(95% confidence interval: (0.160, 0.846)), implying
that running outside has a significant causal effect
on yards gained. Figure 9 shows the distribution of
each play in the matched pairs sample, with the color
of the histogram bars indicating inside versus out-
side runs. It again becomes apparent in this plot that
outside runs are associated with high risk behavior,
as large losses and gains happen at a much more
frequent rate than what is observed for inside runs.
But it also becomes clear how outside runs would
generate more yards on average, with a much larger
proportion of big gains occurring, bringing the overall
average up.

Furthermore, we would expect the same trend to
exist at the individual level. Figure 10 shows the
relationship between yards gained and percentage of
outside runs. Each point represents a player who was
the primary rusher for their team during the sample
period, removing one outlier (as determined by a stan-
dard Cook’s distance outlier test (Cook, 1977)) and
all non-primary runners to avoid players with lower
sample sizes from clouding the trend. It becomes
clear that the trend exists on the individual level, as
seen by the positive correlation (r = 0.40) between
the two variables. From this, we conclude that there
is evidence to suggest that running outside more will
generally lead to a more efficient rushing offense, as
measured by yards per attempt.

4.1. Comparison with EPA

One might suggest that it would be helpful to com-
pare the run parameters with expected points added
(EPA) per attempt, as EPA has a direct relationship
with points scored in the game. One could obtain a
similar plot to Figure 8 for EPA/attempt and notice
similar correlations (r = 0.411, p = 0.0195 for vari-
ance, r = 0.418, p = 0.0173 for skewness), as seen
in Figure 11. The high risk parameters still are asso-
ciated with an increase in the success metric. One

may even wish to explore the relationship between
the β

ξ
Team parameter, which now seems to have a more

meaningful relationship.
However, an analysis of this type should be done

with caution. First, the team adjustment parame-
ters were derived using a model built around yards
gained as the output. While correlations likely exist
between other metrics related to successful offenses,
we should not expect the relationship to necessarily
be meaningful or replicable unless the modelling pro-
cess were adapted to the metric of interest. To do so
would require a different density for representation,
as EPA does not have the same unimodal, smooth
features as seen in the skew-t. Moreover, we find that
yards are a better tool for discussion, as EPA is not
easy for those with a non-technical background to
comprehend, as it can not be directly translated to the
game as easily as a physical quantity. When possible,
tools such as these should be tailored to the target
audience.

5. Conclusions

The skew-t mixture model allows for an accurate
and efficient calculation of the probability transition
distribution for run plays that can be used for the
play recommendation system described in Biro and
Walker (2022). In addition, the parametric nature
created reveals trends that allow us to understand
underlying factors related to successful rushing. The
variance and skewness shifting parameters led us
to finding a preference towards high risk run plays,
specifically revealing the benefits of outside running.
Exploring this directly led us to finding clear evidence
that outside runs are associated with an increased
yards per attempt.

The benefits of the parameterized approach are
clear, not only providing accurate and consistent dis-
tributions, but also allowing for interpretable results.
This marries the needs of both the data scientist and
the coach, where other models may prove too sim-
plistic to incorporate all necessary features or may
be too difficult to be accessible by non-technical
audiences.

This work opens up room for several followup
projects. The most natural would be the extension of
similar parametric models for pass plays. However,
the structure of pass plays is dissimilar to run plays,
with additional point masses needed for incomplete
passes and interceptions, along with a non-unimodal
curve that would make a skew-t likelihood unsuit-
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able. Therefore, another parametric approach would
be necessary for pass plays.

Furthermore, there are many ways a team could
utilize these results in game preparation. This model
provides insight into individual team proficiencies
and deficiencies in the run game, and therefore can
help a team choose which situations are more appro-
priate for run plays. A team with a larger positive
tail in their predictive distribution would generally
be better at generating large runs, and therefore run-
ning on 2nd and long may be more appropriate than
a team with a larger mean but smaller tail, which
would be more apt to pick up short yardage situa-
tions. Moreover, a team could adversarially influence
an opponent to run in situations which they struggle in
by properly aligning their defenders. Finally, a team
could examine these results thoroughly to determine
which run situations they should spend more time
practicing.

In addition, there is room for more expansions to
the modeling approach here. For example, the model
assumes no dependency between plays, and there-
fore the sequential nature of plays in a football game
are lost, as well as the trends that may be captured
within a season. For example, over the course of an
NFL season, the main runner of a team may become
weary or injured, causing the relative success of the
team’s running game to decline from week to week.
Conversely, at the individual game level, a team may
use a run (or pass play) early in the game that tests the
defense’s response. How the defense responds could
be an indicator to the offensive play caller, and may
lead them to use a certain run play for a similar look
later in the game that may have more success due
to the information revealed in the prior plays. While
features like this may be present, it would be diffi-
cult to represent them in the current model without
well labeled data regarding the nature of the effects in
question, which is currently not available. Addition-
ally, adding in dependency effects would reduce the
ratio of the number of plays to estimated parameters,
implying a lower fidelity in the values obtained.

Finally, adversarial tactics could be considered
in future approaches. For example, defensive minds
such as Vic Fangio and Brandon Staley have recently
been lauded by the analytics community in their
ability to invite teams to run the ball in situations
typically viewed as detrimental for the offense (Piz-
zuta, 2021). Thus, using just the offensive team and
state information to model run plays (or pass plays)
will lack information regarding the defensive struc-
ture. However, it still remains necessary to refrain

from including post-snap or even at-snap informa-
tion (such as safety alignment or box counts) in these
modeling efforts, as the ability to create prescriptive
recommendations would be lost. There are alterna-
tives to these measures, such as using metrics such
as defensive trend statistics to inform models, such
as expected defensive structure in response to certain
offensive alignments. This would require additional
data to supplement the current methods such as offen-
sive personnel, formations, and defensive response to
each feature, which is not currently publicly available
and therefore not explored.
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