
APPENDIX

A Raw Data

Table A.1: Sample of raw data, first match of every season per tournament
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Tournament/
League

2013-2014 2014-2015 2015-2016 2016-2017 2017-2018 Total

Euroleague 253 251 250 259 260 1273

Eurocup 366 305 304 146 184 1305

Greek League 205 207 207 206 204 1029

Liga ACB 329 328 328 295 327 1607

Total 1153 1091 1089 906 975 5214

Table A.2: Number of games per tournament and season

B Performance Indicators

FGA: Field goal attempts FGA = AP2 +AP3

APk Attempted shots of k points (k = 2, 3)

FGM: Field goal shots made FGM = P2 + P3

Pk Shots of k points made (k = 2, 3)

FGS: Field goal shots
percentage

FGS = FGM/FGA

TREB%: Total rebound
percentage TREB% = 100× TReb

TReb+OTReb
TReb: Total team rebounds
OTReb: Total opponent rebounds

ASST%: Assisted field goal percentage ASST = 100× Assists

FGM

TS%: True shooting percentage TS% = 100× Points

2(FGA+ 0.44FTA)

FTA = Free throws attempted

EFG%: Effective field goal percentage EFG% = 100×
FGM + 1

2P3

FGA

OREB%: Offensive rebound percentage OREB% =
OReb

OReb+ODReb

DREB%: Defensive rebound percentage DREB% =
DReb

DReb+OOReb
OReb: Offensive team rebounds
DReb: Defensive team rebounds
OOReb: Offensive opponent rebounds
ODReb: Defensive opponent rebounds

TO%: Turnover percentage TO% =
Turnovers

FGA+ 0.44FTA+ Turnovers

Poss: Possession Poss = FGA+ 0.44FTA−OReb+ Turnovers

Continued on next page

20



STL%: Steal percentage STL% = 100× Steals

Poss

BLK%: Block percentage BLK = 100× Blocks

Poss

BLKR: Block rate BLKR = 100× Blocks

OAP2
OAP2: Opponent’s attempted two pointers

PPS: Points per shot PPS =
Points

FGA

FIC: Floor impact counter FIC = Points+OReb+ 0.75DReb+Assists+ Steals+Blocks
−0.75FGA− 0.375FTA− Turnovers− 0.5Fouls

AR: Assist rate AR = 100× Assists

FGA− 0.44FTA+Assists+ Turnovers

AST/TO: Assist to turnover ratio AST/TO = Assists/Turnovers

STL/TO: Steal to turnover ratio STL/TO = Steals/Turnovers

Play% : Play percentage Play% =
FGM

FGA−OReb+ Turnovers

Performance Index Performance Index = Points+Rebounds+Assists+ Steals
+Blocks+ Fouls Drawn
−(MFG+MFT + Turnovers+Blocks)
−Fouls Committed

MFG = FGA− FGM : Missed field goals
MFT = FTA− FTM : Missed free throws

GmSc: Hollinger Game Score GmSc = Points+ 0.4FGM − 0.7FGA− 0.4MFT
+0.7OReb+ 0.3DReb+ Steals+ 0.7Assists
+0.7Blocks− 0.4Fouls− Turnovers

Ortg: Offensive rating Ortg = 100× Points

Poss

Drtg : Defensive rating Drtg = 100× OpponentPoints

OpponentPoss

EDiff : Efficiency differential EDiff = Ortg −Drtg

Table B.1: Performance indicators
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C Correlations with Point Difference

Performance Indicator Pearson Correlation

Efficiency differential (Ediff=Offensive - Defensive rating) 0.98

Floor impact counter (FIC) 0.76

Performance Index 0.76

Hollinger game score 0.72

Defensive rating (Drtg) 0.66

Offensive rating (Ortg) 0.66

Play percentage indicator (Play%) 0.62

Shooting percentage (TS%) 0.60

Effective field goals percentage (EFG%) 0.59

Table C.1: Top-ten correlated Performance Indicator with points difference

D Rating Systems Explanation

D.1 Elo rating system

The Elo rating system is updated weekly value after every game-day using the formula

R(t)
a = R(t−1)

a +K
(
w(t)

a − e(t)a

)
, (3)

where R
(t)
a and R

(t−1)
a are the ratings for game-day t and t − 1 for team a, w

(t)
a is the actual game outcome

(win = 1; loss = 0;) for team a at game-day t and e
(t)
a is the expected outcome (probability) for team a based

on R(t−1) given by

e(t)a =
{
1 + exp

(
1

400

(
R

(t−1)

O
(t)
a

−R(t−1)
a

)
log 10

)}−1

, (4)

where O
(t)
a is the opponent team of team a at game-day t and R

(t−1)

O
(t)
a

is its corresponding ELO rating as

calculated from the data that were available before game-day t.
Parameter K is a multiplying factor controlling the sensitivity of the rating. This factor allows us to update

the ratings, depending on the points difference, thus rewarding an 80-60 win more strongly than an 80-75.
Following Hvattum & Arntzen (2010), one possibility is to specify K using the formula

K = k0(1 + δ)λ, (5)

with δ being the absolute point difference, while k0 > 0 and λ > 0 are tuning parameters.

D.2 PageRank approach

The PageRank approach for ranking teams is calculated by implementing the PageRank algorithm which
was originally introduced by Page et al. (1999) for ranking websites. This is roughly based on a network
representation where each team is a single node and two nodes are connected if they have played each other in
the tournament we study. The weight of each directed link is important for the calculation of the final PageRank
rating value. After an extensive study and comparison, Lazova & Basnarkov (2015) proposed to specify the
weight using the function

fa,b =
la,b
ga,b

× 1

G− ga,b + 1
, (6)

where

• fa,b : weight of the link from node a to node b,

• la,b : number of games lost by team a amongst all games where a and b compete each other,

• ga,b : number of games played between the two teams and

• G : maximum number of games played between any pair of teams/nodes.

In their publication, this weighting scheme was reported as the best among ten different alternatives. As input
in the PageRank algorithm, we have used statistics based on the last year (365 days) in order to avoid obtaining
outdated team ratings. For the implementation of the PageRank algorithm, we have used the python package
“NetworkX”.
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D.3 Pi-rating

The Pi-rating is a dynamic approach for evaluating the strength of each team. In particular, this rating
is re-calculated after each game (denoted here as time point t). Discrepancies between the predicted and the
observed point difference determine the change (increase or decrease) of the rating. In this approach, each
team is attached to two pi-rating values, one for the home and one for the away games of the team. An overall
pi-rating for a team a is simply obtained by the mean of the two distinct values. Pi-ratings are considered highly
informative rating measures which capture both the current form and the historical strength of each team. In
this work, we have calculated all pi-ratings as in Constantinou & Fenton (2013) by using a translation to Python
of the R package “piratings”. The Pi-ratings learning rates γ which is the impact the home performances have
on away ratings λ which is the change of old ratings with new ratings based on the recent results have been
tuned separately for each tournament based on the mean square error of the expected and the observed point
difference for each game (see Constantinou & Fenton (2013)) for data of seasons 2013/2014 - 2016/2017 for each
tournament. To obtain the optimal values for (γ, λ) we have considered a grid of values from 0.01 to 0.25 with
step 0.005 γ = 0.01, 0.015, 0.2, ..., 0.25 and a grid from 0.01 to 0.9 with step 0.005 λ = 0.01, 0.015, 0.02, ..., 0.9.
The obtained mean square error and the optimal values are depicted in Figure D.3.1. Moreover, Table D.3.1
provides a summary of these values along with the mean square error values and the means of the tuning
parameters across the four tournaments which can serve as a “good” default value for future implementations.

Tournament/
League

γ λ
Minimum

mean square
error

Mean square
error of
average

parameters

Differences of
mean square

errors

Euroleague 0.57 0.09 155.52 155.70 0.18

Eurocup 0.61 0.15 172.84 175.14 2.30

Greek League 0.55 0.09 142.16 142.76 0.60

Liga ACB 0.58 0.08 172.64 173.46 0.82

All leagues (Average) 0.58 0.10 160.79 161.76 0.94

Table D.3.1: Summary statistics of tuned Pi-rating parameters

Figure D.3.1: Plot for finding the optimal mean square error (MSE) of points for a grid of γ and λ Pi-rating
parameter values
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E Final Features

Measures Home vs Away
(Last Game)

Home vs Away
(All Games)

All Games between
the two teams

Percentage of Wins ✗ ✓x1
✓x2

Points Difference ✓x3 ✓x4 ✓x5

Ediff – Efficiency differential ✓x6
✓x7

✓x8

Winnera ✓x9
✗ ✗

a 1 if the winner is the home team, -1 if the winner is the away team.

(a) Features of specific game records

Performance Measures
Teams Performance Indices

(Achieved Measures)
Opponent Team Indices
(Conceded Measures)

(Games of one year period / Last 10 matches) Mean Standard
Deviation Mean Standard

Deviation

Wins ✓x10 / x50 ✗ ✗ ✗

Points Difference ✓x11 / x51
✓x12 / x52

✗b ✗b

Ediff – Efficiency differential ✓x13 / x53
✓x14 / x54

✗b ✗b

FIC – Floor Impact Counter ✓x15 / x55
✓x16 / x56

✓x17 / x57
✓x18 / x58

Performance Index ✓x19 / x59
✓x20 / x60

✓x21 / x61
✓x22 / x62

Hollinger Game Score ✓x23 / x63
✓x24 / x64

✓x25 / x65
✓x26 / x66

Ortg – Offensive Rating ✓x27 / x67 ✓x28 / x68 ✗c ✗c

Drtg – Defensive Rating ✓x29 / x69
✓x30 / x70

✗c ✗c

Play% ✓x31 / x71 ✓x32 / x72 ✓x33 / x73 ✓x34 / x74

Points ✓x35 / x75
✓x36 / x76

✓x37 / x77
✓x38 / x78

TS% – Shooting Percentage ✓x39 / x79 ✓x40 / x80 ✓x41 / x81 ✓x42 / x82

EFG% – Effective Field Goal Percentage ✓x43 / x83
✓x44 / x84

✓x45 / x85
✓x46 / x86

b Same with the achieve measure with negative value.
c The opposite of the achieve measure (achieved Ortg = conceded Drtg).

(b) Box Score based performance indicators

All Games/ Last 10 Matches Elo Rating PageRank Pi-ratings

Differences of Values ✓x47 / x87
✓x48

d
/ x88

✓x49 / x89

d For the last one year (365 days).

(c) Team performance ratings

Measures of one year period Mean Standard
Deviation

Dummy
variable

Winse ✓x90 ✗ ✗

Points Differencee ✓x91
✓x92

✗

Ediffe– Efficiency differential ✓x93 ✓x94 ✗

FIC – Floor Impact Counter ✓x95
✓x96

✗

Performance Index ✓x97
✓x98

✗

Hollinger Game Score ✓x99
✓x100

✗

Ortg – Offensive Rating ✗f ✗f ✗

Drtg – Defensive Rating ✓x101
✓x102

✗

Play% ✓x103 ✓x104 ✗

Points ✗g ✓x105
✗

TS% – Shooting Percentage ✓x106
✓x107

✗

EFG% – Effective Field Goal Percentage ✓x108
✓x109

✗

Phase ✗ ✗ ✓x110
e From the side of home teams
f Same with the Defensive Rating (Drtg)
g Same with the mean of points difference

(d) Tournament features

Table E.1: Description and labels of features used for predictive models and algorithms
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Table E.2: Sample of features, first match of every season per tournament

F Machine Learning Algorithms

F.1 Logistic Regression with Regularization

In logistic regression we model the probability of winning for the home team for a given set of values x of
predictors/features X = (X1, . . . , Xp) (explained in Section 2.3). Specifically, a typical logistic regression model
is summarized by

Yi ∼ Bernoulli(πi) with log
πi

1− πi
= β0 +

p∑
j=1

βjXij

where Yi is a binary random variable that takes the value of one for the win of the home team in game i or the
value of zero for its loss, πi is the corresponding probability of a win for the home team, Xij for j = 1, . . . , 110
are the values of the predictors/features described in Section 2.3 for i game, β0 is an overall constant parameter,
and βj for j = 1, . . . , 110 are the corresponding coefficients measuring the effect of each predictor on the log
odds of a win for the home team.

Typically, the model coefficients are estimated by taking the maximum likelihood estimates but here we
considered the regularized versions of it by using either ridge or lasso regression estimates of them. The selection
depends on the optimal solution suggested by K-fold CV for the tuning of the shrinkage parameter in the two
approaches. Under this approach, the aim is to maximize the following penalized maximum log-likelihood
function 7,

J(β) = β0

n∑
i=1

yi +

n∑
i=1

p∑
j=1

yiβjXij +

n∑
i=1

log

1 + exp

β0 +

p∑
j=1

βjXij

+ λ||β||k, (7)

where ||β||k =
∑p

j=1 |βj |k; for k = 1 we have the l1 norm and the lasso method and for k = 2 we have the l2
norm and the ridge regression approach.

We maximize the penalized log-likelihood of the logistic regression with LIBLINEAR implementation (see
Fan et al. (2008)) in scikit-learn library which apply a trust region Newton method (see Lin et al. (2007)).
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Through the parameter λ we can control the impact of the regularization term. Higher values lead to smaller
coefficients and lower model complexity. Careful tuning and specification of λ are needed since very high values
may lead to under-fitted models while very small values may lead to over-fitted models.

F.2 Random Forest

Random Forest is essentially a method that combines inferences by multiple optimal decision trees obtained
by bootstrap subsamples. Hence, a decision tree (see Li et al. (1984)) is the main ingredient of a Random
Forest (see Breiman (2001)). Decision trees similarly make classifications to implementing a real life sequence
of queries about the available data until we arrive at a final decision (or here prediction). The final form of the
queries and the implied trees is specified using different mathematical algorithms. For the CART algorithm,
which is the most popular one, a decision tree is built by determining a sequence of binary (yes/no) questions
(called splits of nodes) that, when answered, lead to an improvement of a prediction measure such as the Gini
Impurity. The Gini Impurity of a node is the probability of misclassification for a randomly chosen observation
or individual in this node. In order to obtain the Gini Impurity, we first need to obtain the probability of
winning of the home team for all games in Cm for any node m of a decision tree. The set Cm defines all the
games with the characteristics/features splits defined by node m. Hence, the proportion of wins for node m is
given by

Pi(m) = P (Yi = 1|X = xi : i ∈ Cm) =
1

nm

nm∑
i=1

I(yi = 1)I(i ∈ Cm) with nm =

nm∑
i=1

I(i ∈ Cm) . (8)

As a result, the Gini impurity of node m is given by:

IG(m) = 2Pi(m)
(
1− Pi(m)

)
(9)

Finally, we classify each observation i ∈ Cm as a win for the home team if Pi(m) > 0.5 otherwise we classify it
as a loss for the home team.

As we already mentioned, in random forests we consider different bootstrap sub-samples for training but in
each sub-sample, we also consider a reduced number of features when looking for the best split, this reduced
number of covariates which is usually set equal to the

√
p or log2(p) (reminder: p is the total number of features

we consider – here p = 110). The selection of the different number of features in each tree aims in reducing
the correlation between the optimal trees obtained by each sub-sample, resulting in variance reduction of the
overall prediction (see Hastie et al. (2009)). The hyperparameters in Random Forests are

(a) the number of trees we consider,

(b) the number of features we consider (for the best split) in every sub-sample,

(c) the maximum number of levels in each tree (i.e. how many sequential splits we are going to impose on
our features), and

(d) the minimum number of observations/individuals required at each node (essentially we need to specify
two parameters here: one for the initial nodes and one for the terminal nodes/leafs; these parameters are
labeled as min samples split and min samples leaf, respectively, in the scikit-learn implementation).

F.3 Extreme Gradient Boosting

Boosting is a method of converting weak learners into strong learners. The method combines the outputs
of many “weak” classifiers to produce a powerful “committee”. Extreme Gradient Boosting (XGBoost) Chen
& Guestrin (2016), is a novel classifier based on an ensemble of classification trees (CART). In XGBoost, the
trees are optimized using gradient boosting (see Friedman (2001)).

Let us consider a tree with a prediction score, for a set of covariates x, given by f(x) = wz(x); where x
is the vector of features, z is a function assigning each data point to the corresponding leaf of a given tree,
z(x) is the specific leaf defined by x for this tree and wz(x) is the corresponding prediction score of the specific
leaf z(x) of the same tree. Generally w = (w1, . . . , wT ) is the set of tree weights (prediction scores) for leafs
1, . . . , T , respectively, for this specific tree under consideration. Here we consider an ensemble output of all

b = 1, . . . , B trees hence we rewrite this expression as fb(x) = w
(b)
zb(x)

in order to define the b specific tree

quantities. Moreover, the prediction based on these B trees is given by

ŷi =

B∑
b=1

fb(xi).F, (10)
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The XGBoost algorithm tries to find the best vectors of weights w(b) for each tree b by minimizing the loss
function

ℓ(t) =

n∑
i=1

l(yi, ŷi) +

B∑
b=1

Ω(fb) (11)

where the first term contains the train loss function l which in our case is the logistic loss given by

l(yi, ŷi) = − ln fBin

(
yi, πi =

eŷi

1 + eŷi

)
= yi ln(1 + e−ŷi) + (1− yi) ln(1 + eŷi), (12)

between the observed score/class yi and the predicted one ŷi for each i = 1, . . . , n games. The second term in
(11) is the regularization term, which controls the complexity of the model and helps to avoid overfitting. In
XGBoost, the complexity is defined as:

Ω(fb) = γTb +
1

2
λ

T∑
t=1

{
w

(b)
t

}2
(13)

where Tb is the number of leaves of tree b, γ is the pseudo-regularization hyperparameter, depending on each
data-set and λ is the shrinkage tuning parameter controlling the regularization of the ridge in the methodology.

The optimization/learning procedure is performed in an additive manner by optimizing the first tree in the
first round of the algorithm, then optimizing the second added tree conditional on the values of the first and
so on, each tree added modifies the overall model but the magnitude of the modification is controlled by a
shrinkage parameter ν which is called the “learning rate”. To simplify the procedure, a second order Taylor
expansion is used in the loss function (11) in order to find the optimal weights (see Chen & Guestrin (2016)).

XGBoost identifies the shortcomings of weak learners (decision trees) by using high weight data points and
gradients in the loss function. The loss function is a measure indicating how good is the model concerning the
fit of the underlying data. The method requires a considerable number of parameters that must be tuned. The
hyperparameters in this model that we need to tune are

(a) the learning rate that shrinks the contribution of each tree in order to prevent overfitting ( ν ),

(b) the number of trees (B),

(c) the maximum depth of each tree (and therefore the maximum number of leaves T > Tb for all b = 1, . . . , B),

(d) the percentage of data points taken to build each tree,

(e) number of features used by each tree,

(f) minimum loss reduction required to make a further partition on a leaf of the tree (γ the pseudo-regularization),

(g) L2 regularization term on weights (parameter λ).

G Evaluation Metrics

G.1 Brier Score

Brier score (BS), Brier et al. (1950), which is a special case of Ranked Probability Score (RPS) (Epstein
(1969)) when using binary outcomes. On our occasion, the BS (or RPS) is given by:

BS(π;y) =
1

n

n∑
i=1

(πi − yi)
2 =

1

n

n∑
i=1

[
(1− πi)

yi(πi)
1−yi

]2
(14)

for a given set of prediction probabilities π = (π1, . . . , πn) and observed binary data y = (y1, . . . , yn); where πi

is the probability of a win for the home team in i game and yi is the observed value for the event of win of the
home in i game.

G.2 Accuracy

The accuracy is given by

Accuracy =
1

n

n∑
i=1

I(πi > 0.5) (15)

and is simply the proportion of correct predictions over the total number of games n we consider; where I(A)
is the indicator function taking the value of one when condition A is true and zero otherwise. Here we classify
our final predictions using the threshold of 0.5 for the prediction probability πi.
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G.3 F1-score

The F1-score (see Van Rijsbergen (1979)) is the harmonic mean of the precision (or positive predictive value)
and the recall (or sensitivity) measures. Hence the F1 is given by

F1 =
1

1
2

(
Precision−1 +Recall−1

) = 2
Precision× Recall

Precision + Recall
, (16)

where Precision (or positive predictive value) is the proportion of games with correct predicted home wins over
the sum of the total games with predicted home wins. Equivalently, the recall (or sensitivity) is the proportion
of games with correct predicted home wins over the number of games of actual home wins. Hence, they are
given by

Precision =

∑n
i=1 I(πi > 0.5)I(yi = 1)∑n

i=1 I(πi > 0.5)
(17)

Recall =

∑n
i=1 I(πi > 0.5)I(yi = 1)∑n

i=1 I(yi = 1)
. (18)

From the above equations, we can rewrite F1 as:

F1 = 2

∑n
i=1 I(πi > 0.5)I(yi = 1)∑n

i=1 I(πi > 0.5) +
∑n

i=1 I(yi = 1)
. (19)

H Benchmarks

H.1 Predictions based on Rating Systems

Tournament/League Accuracy

Rating Systems Pi-rating PagaRank Elo

Euroleague 0.662 0.612 0.581

Eurocup 0.647 0.647 0.636

Greek League 0.745 0.755 0.725

Liga ACB 0.694 0.602 0.627

Results are obtained by using rating systems for prediction (team with the higher rating/rank wins) and they are evaluated in

season 2017–2018

Table H.1.1: Accuracy of rating systems

H.2 Predictions based on Oliver’s four factors

Tournament/League Accuracy

Euroleague 0.627

Eurocup 0.620

Greek League 0.750

Liga ACB 0.645

Results are obtained by using the average of the last 10 matches

of Oliver’s four factors of both teams for prediction of winner and

they are evaluated in accuracy for the season 2017–2018

Table H.2.1: Accuracy of Oliver’s four factors

H.3 Climatology model home advantage 55-65%

Evaluating Full Information Model predictions with climatology model based on home advantage between
55-65%, for full season implementation by calculating the Brier Skill Score given by:

Brier Skill Score = 1− Brier Score of full information model

Brier Score of reference home advantage
(20)
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Tournament/League 55% 60% 65%

Models LR RF XGB EL LR RF XGB EL LR RF XGB EL

Euroleague 0.080 0.126 0.130 0.124 0.056 0.103 0.107 0.101 0.053 0.100 0.104 0.097

Eurocup 0.111 0.154 0.137 0.138 0.102 0.146 0.128 0.129 0.112 0.156 0.138 0.139

Greek League 0.393 0.374 0.373 0.393 0.378 0.358 0.358 0.379 0.376 0.356 0.356 0.377

Liga ACB 0.180 0.175 0.171 0.185 0.170 0.164 0.160 0.175 0.176 0.171 0.167 0.182

Results are obtained using 2014–2017 data for training and 2017–2018 for validations

Table H.3.1: Climatology model for full season implementation

H.4 Baseline Vanilla Models

Home Effect Euroleague Eurocup Greek League Liga ACB

Intercept of LR / exp(Intercept) 0.817 / 2.264 0.662 / 1.940 0.632 / 1.880 0.547 / 1.730

Table H.4.1: Estimated common home effect of the standard Baseline Vanilla Logistic Regression (LR) Model
(All baseline vanilla logistic regression models are regularised providing as a byproduct a group of teams serving as reference)

Tournament/League Brier Score Accuracy F1

Models LR RF XGB EL LR RF XGB EL LR RF XGB EL

Euroleague 0.215 0.213 0.215 0.213 0.650 0.665 0.650 0.650 0.745 0.767 0.756 0.753

Eurocup 0.232 0.237 0.238 0.232 0.636 0.636 0.625 0.625 0.717 0.729 0.723 0.721

Greek League 0.167 0.171 0.181 0.171 0.735 0.745 0.735 0.745 0.806 0.814 0.804 0.814

Liga ACB 0.208 0.208 0.218 0.209 0.682 0.688 0.648 0.679 0.764 0.769 0.733 0.762

Results are obtained using 2014–2017 data for training and 2017–2018 for validations

(a) Full season implementation

Tournament/League Brier Score Accuracy F1

Models LR RF XGB EL LR RF XGB EL LR RF XGB EL

Euroleague 0.212 0.214 0.204 0.207 0.667 0.650 0.692 0.675 0.762 0.753 0.776 0.766

Eurocup 0.216 0.235 0.245 0.225 0.607 0.667 0.560 0.607 0.723 0.754 0.718 0.732

Greek League 0.189 0.171 0.179 0.175 0.703 0.725 0.736 0.747 0.809 0.809 0.812 0.827

Liga ACB 0.214 0.214 0.220 0.210 0.647 0.673 0.634 0.686 0.745 0.750 0.723 0.774

Results are obtained by using the data in the middle of regular season as a training set in order to validate our results with the

data of the rest of the regular season (for season 2017–2018).

(b) Mid-season implementation

Tournament/League Brier Score Accuracy F1

Models LR RF XGB EL LR RF XGB EL LR RF XGB EL

Euroleague 0.221 0.283 0.260 0.246 0.700 0.600 0.650 0.650 0.800 0.692 0.759 0.759

Eurocup 0.206 0.168 0.213 0.189 0.688 0.750 0.688 0.750 0.762 0.833 0.762 0.818

Greek League 0.160 0.197 0.202 0.169 0.727 0.727 0.636 0.773 0.786 0.769 0.750 0.815

Liga ACB 0.195 0.221 0.194 0.190 0.714 0.714 0.714 0.714 0.786 0.786 0.769 0.786

Results are obtained by using the data in the regular season as a training set in order to validate our results with the data in the

play-off phase (for season 2017–2018).

(c) Play-off implementations

(All baseline vanilla logistic regression models are regularised providing as a byproduct a group of teams serving as reference)

(Abbreviations: LR: Logistic Regression; RF: Random Forrest; XGB: Extreme gradient boosting; EL: Ensemble learning)

Table H.4.2: Evaluation metrics for the Baseline Vanilla Model
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I Full Information Models

Tournament/League Brier Score Accuracy F1

Models LR RF XGB EL LR RF XGB EL LR RF XGB EL

Euroleague 0.220 0.209 0.208 0.209 0.662 0.665 0.692 0.681 0.770 0.749 0.778 0.774

Eurocup 0.216 0.205 0.210 0.209 0.641 0.668 0.690 0.668 0.748 0.761 0.759 0.753

Greek League 0.145 0.150 0.150 0.145 0.770 0.755 0.779 0.784 0.833 0.818 0.833 0.839

Liga ACB 0.198 0.200 0.201 0.197 0.697 0.713 0.709 0.719 0.763 0.783 0.784 0.788

Results are obtained by using 2014-2017 data for training and 2017-2018 for validations.

(a) Full season implementation

Tournament/League Brier Score Accuracy F1

Models LR RF XGB EL LR RF XGB EL LR RF XGB EL

Euroleague 0.215 0.238 0.221 0.219 0.683 0.600 0.658 0.692 0.793 0.733 0.781 0.804

Eurocup 0.235 0.206 0.203 0.210 0.571 0.726 0.679 0.667 0.723 0.793 0.765 0.763

Greek League 0.146 0.151 0.171 0.152 0.780 0.747 0.747 0.780 0.841 0.813 0.824 0.841

Liga ACB 0.205 0.220 0.223 0.209 0.712 0.686 0.614 0.693 0.798 0.769 0.751 0.789

Results are obtained by using the data in the middle of regular season as a training set in order to validate our results with the

data of the rest of the regular season (for season 2017-2018).

(b) Mid-season implementation

Tournament/League Brier Score Accuracy F1

Models LR RF XGB EL LR RF XGB EL LR RF XGB EL

Euroleague 0.226 0.192 0.206 0.204 0.650 0.700 0.750 0.750 0.774 0.813 0.839 0.839

Eurocup 0.191 0.165 0.179 0.174 0.750 0.750 0.688 0.750 0.846 0.818 0.783 0.833

Greek League 0.148 0.132 0.125 0.132 0.818 0.773 0.864 0.818 0.857 0.815 0.889 0.857

Liga ACB 0.249 0.232 0.217 0.229 0.571 0.524 0.667 0.571 0.710 0.668 0.759 0.710

Results are obtained by using the data in the regular season as a training set in order to validate our results with the data in the

play-off phase (for season 2017-2018).

(c) Play-off implementations
(Abbreviations: LR: Logistic Regression; RF: Random Forrest; XGB: Extreme gradient boosting; EL: Ensemble learning)

Table I.1: Evaluation metrics for the Full Information Model using all features

J Plots Full Information Models

Figure J.1: Comparison of methods and algorithms in terms of accuracy and F1 for Full Information Models
for each tournament for the full season prediction scenario
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K Prediction of series of play-offs match-ups

Tournament/League Baseline Vanilla Model Full Information Model

Models LR RF XGB EL LR RF XGB EL

Euroleague 0.750 0.500 0.625 0.625 0.625 0.750 0.625 0.750

Eurocup 0.714 0.571 0.714 0.714 0.429 0.714 0.571 0.571

Greek League 0.625 0.750 0.500 0.750 0.875 0.750 1.000 0.875

Liga ACB 0.714 0.857 0.714 0.714 0.571 0.429 0.714 0.571

Results are obtained by predicting the series of play-offs match-ups with Baseline Vanilla Model and Full Information Model over

different leagues.

(Abbreviations: LR: Logistic Regression; RF: Random Forrest; XGB: Extreme gradient boosting; EL: Ensemble learning)

Table K.1: Accuracy of predictions of series of play-offs match-ups
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L FEATURE IMPORTANCE

Features Euroleague Eurocup
Greek
League

Liga
ACB

Overall
Mean

pi ratings 0.56 1.0 0.78 0.89 0.81

PageRank 0.78 0.78 1.0 0.56 0.78

Current form EDiff 0.67 1.0 0.89 0.33 0.72

Current form Game Score received 0.56 1.0 1.0 0.22 0.69

Current form pointsdiff 0.44 1.0 0.78 0.56 0.69

Current form FIC 0.67 0.67 0.78 0.56 0.67

history Game Score 0.56 0.89 0.78 0.44 0.67

history FIC 0.44 0.78 0.78 0.67 0.67

Current form Play 0.56 0.67 0.67 0.67 0.64

Current form Performance
0.33 1.00 0.78 0.44 0.64

Index received

history Play received 0.67 0.89 0.78 0.22 0.64

Current form EFG received sd 0.44 0.89 0.67 0.56 0.64

history Ediff 0.56 0.78 0.89 0.33 0.64

tradition pointsdiff general 0.33 0.67 0.78 0.67 0.61

history pointsdiff 0.44 0.78 0.78 0.44 0.61

tradition pointsdiff match 0.67 0.56 0.67 0.56 0.61

Current form FIC received sd 0.67 0.44 0.78 0.56 0.61

Current form elo 0.33 0.89 0.78 0.44 0.61

elo 0.44 1.0 0.89 0.11 0.61

history EFG 0.67 0.44 0.89 0.33 0.58

Current form EDiff sd 0.44 0.89 0.78 0.22 0.58

Current form Play sd 0.44 0.78 0.78 0.33 0.58

Current form Ortg 0.44 0.56 0.78 0.56 0.58

history TS received 0.44 0.78 0.78 0.33 0.58

history Points 0.33 0.67 0.78 0.56 0.58

Current form FIC received 0.33 1.0 0.67 0.33 0.58

history Ortg 0.67 0.56 0.78 0.33 0.58

history Drtg 0.44 0.67 0.78 0.44 0.58

Current form Points 0.44 0.78 0.67 0.44 0.58

history winner 0.56 0.67 0.67 0.44 0.58

history Ediff sd 0.56 0.56 0.78 0.44 0.58

history TS sd 0.33 0.89 0.67 0.33 0.56

history EFG received 0.78 0.67 0.67 0.11 0.56

Current form winner 0.33 0.89 0.67 0.33 0.56

Current form TS sd 0.44 0.89 0.67 0.22 0.56

Current form Drtg sd 0.33 0.89 0.56 0.44 0.56

Current form Points sd 0.56 0.89 0.67 0.11 0.56

tradition winner general 0.44 0.33 0.78 0.67 0.56

history pointsdiff sd 0.56 0.56 0.78 0.33 0.56

Current form Points received 0.44 0.78 0.67 0.22 0.53

history Play 0.44 0.56 0.78 0.33 0.53

history Points received 0.44 0.78 0.67 0.22 0.53

history Play received sd 0.56 0.67 0.67 0.22 0.53

history Performance Index 0.67 0.78 0.67 0.0 0.53

history Points received sd 0.44 0.67 0.67 0.33 0.53

Current form Performance
0.56 0.67 0.78 0.11 0.53

Index sd

Current form TS 0.56 0.89 0.67 0.0 0.53

History Performance
0.44 0.78 0.78 0.11 0.53

Index received

Current form Drtg 0.44 0.78 0.78 0.11 0.53

tradition Ediff general 0.56 0.56 0.67 0.33 0.53

Current form pointsdiff sd 0.44 0.89 0.67 0.11 0.53

Table L.1: Relative frequencies of feature importance across different prediction scenarios and implementations;
Features are sorted according to the overall proportion of importance
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M APPENDIX: DATA AND CODE

All data used in this article have been kindly provided to the authors by the Greek Organization of Football
Prognostics (OPAP). Due to confidentiality reasons, we cannot publicly provide access to the actual data-set
of this study. For this reason, we provide the code and an alternative data-set obtained via scrapping to
the Git repository https://tinyurl.com/Baskeball-Machine-Learning of the article. More specifically, in
the Git repository, you can find two sets of code and files: one referring to the paper implementation (with
no data available) and a second one with implementation to the crawled data obtained by https://www.

basketball-reference.com/. For the crawled data-set we obtained results from eight tournaments including
the ones presented in this work (Greek league, Liga ACB, Euroleague and Eurocup) for a period of five years:
2014/10/04-2020/06/30. The Git repository contains data, along with Python code and Jupyter notebooks for
the pre-processing of the data and the tuning of the hyper-parameters for all algorithms. Moreover, two main
modeling approaches have been implemented: one with Baseline Vanilla Model and a second one using the Full
Information Model. For the analyses with the publicly available data, we have specified the training data-set by
considering results from four seasons (2014–2018) while season 2018/19 was used for evaluating the prediction
efficiency of the methods.
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