
Journal of Sports Analytics 9 (2023) 171–190
DOI 10.3233/JSA-220639
IOS Press

171

Predictions of european basketball match
results with machine learning algorithms

aAthens University of Economics and Business, Athens, Greece
bDepartment of Statistics, AUEB Sports Analytics Group, Computational and Bayesian Statistics Lab,
Athens University of Economics and Business, Athens, Greece
cDepartment of Informatics, AUEB Data Science Research Group, Information Processing Lab, Athens
University of Economics and Business, Athens, Greece
dData Strategy and Analysis, PPC S.A., Athens, Greece

Received 4 March 2022
Accepted 21 February 2023
Pre-press 31 March 2023
Published 3 July 2023

Abstract. The goal of this paper is to build and compare methods for the prediction of the final outcomes of basketball games.
In this study, we analyzed data from four different European tournaments: Euroleague, Eurocup, Greek Basket League and
Spanish Liga ACB. The data-set consists of information collected from box scores of 5214 games for the period of 2013-
2018. The predictions obtained by our implemented methods and models were compared with a “vanilla” model using
only the team-name information of each game. In our analysis, we have included new performance indicators constructed
by using historical statistics, key performance indicators and measurements from three rating systems (Elo, PageRank, pi-
rating). For these three rating systems and every tournament under consideration, we tune the rating system parameters using
specific training data-sets. These new game features are improving our predictions efficiently and can be easily obtained
in any basketball league. Our predictions were obtained by implementing three different statistics and machine learning
algorithms: logistic regression, random forest, and extreme gradient boosting trees. Moreover, we report predictions based
on the combination of these algorithms (ensemble learning). We evaluate our predictions using three predictive measures:
Brier Score, accuracy and F1-score. In addition, we evaluate the performance of our algorithms with three different prediction
scenarios (full-season, mid-season, and play-offs predictive evaluation). For the mid-season and the play-offs scenarios, we
further explore whether incorporating additional results from previous seasons in the learning data-set enhances the predictive
performance of the implemented models and algorithms. Concerning the results, there is no clear winner between the machine
learning algorithms since they provide identical predictions with small differences. However, models with predictors suggested
in this paper out-perform the “vanilla” model by 3-5% in terms of accuracy. Another conclusion from our results for the
play-offs scenarios is that it is not necessary to embed outcomes from previous seasons in our training data-set. Using data
from the current season, most of the time, leads to efficient, accurate parameter learning and well-behaved prediction models.
Moreover, the Greek league is the least balanced tournament in terms of competitiveness since all our models achieve high
predictive accuracy (78%, on the best-performing model). The second less balanced league is the Spanish one with accuracy
reaching 72% while for the two European tournaments the prediction accuracy is considerably lower (about 69%). Finally,
we present the most important features by counting the percentage of appearance in every machine learning algorithm for
every one of the three analyses. From this analysis, we may conclude that the best predictors are the rating systems (pi-rating,
PageRank, and ELO) and the current form performance indicators (e.g., the two most frequent ones are the game score of
Hollinger and the floor impact counter).
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1. Introduction

Basketball is one of the most popular sports in the
world. It involves two teams of five players each play-
ing on a court and a maximum of seven substitute
players for each team. It is an invasion game whose
events are measured in points. During the game, each
team aims to throw the ball inside the opponent’s
basket. Each successful shot usually accounts for
two points (regular throws). Additionally, we may
have successful shots from free throws (one point) or
long-distance throws (three points). Each game (or
match) length is 40 minutes in FIBA competitions
(including European competitions) or 48 minutes in
the NBA.

A wide variety of data is available during and after
each basketball game: shots, assists, rebounds, fouls,
steals, turnovers and free throws, among many other
statistics. Therefore, basketball is an attractive sport
in terms of available data that can be analyzed using
statistical models or machine learning algorithms for
prediction. The main topic of this article is the pre-
diction of the outcome (in the form of win/loss)
of basketball games. We examine the performance
of three statistical and machine learning algorithms
for basketball prediction using features that have
been obtained from team-specific historical data. We
focus on data from four major European contests:
Euroleague, Eurocup, Greek Basket League, and
Spanish Liga ACB. Although a variety of sports stud-
ies have been published in several journals, extensive
relevant analyses on prediction for European basket-
ball are limited; see for some examples in Horvat et
al. (2018), Giasemidis (2020) and Ball? & ¨ Ozdemir
(2021). This work is a systematic attempt to identify
which is the best-performed method for basketball
outcome prediction in European Basketball.

This paper introduces an enhanced data-set of four
European competitions for five seasons in total (2013-
2018); a total of 5214 games. Furthermore, we have
used new features such as performance indicators
(see Appendix 5) and rating systems such as Elo,
PageRank and pi-rating (see Section 2.3.2). In addi-
tion to the data-set, the paper focuses on answering
the following questions: (a) Which method/algorithm
performs better in each competition or league? (b)
Are the models using box-score statistics, rating sys-
tems and performance indicators better than simple
vanilla models? And, how much do we gain from
the use of additional information? (c) Is the informa-
tion from previous seasons improving the predictive
ability of our models and algorithms? (d) Which fea-

tures are the most relevant? All models implemented
here can be compared with the four-factor model (see
Section 4.1.2) and the climatology model (see Sec-
tion 4.1.3). Finally, the methods and the type analysis
implemented for basketball prediction in this paper
can be easily adapted for studying their predictive
performance in other team sports.

1.1. European basketball vs american basketball

Basketball was born in the late years of the 19th
century at a college at Springfield, Massachusetts in
the USA (see Naismith (1941)). With its genesis tak-
ing place in America soon, the sport has migrated
across the Atlantic and to many other parts of the
world (FIBA was created in 1932). Although bas-
ketball nowadays is spread worldwide, there are still
basketball fans in the US who are not familiar with
European basketball.

American Basketball and more specifically the
NBA, which is the top tournament in the USA nowa-
days, acts independently of the game developments
in other countries. The game itself has a variety of
differences, both in terms of rules and in terms of the
players’ style. One remarkable difference between
European basketball and the NBA is the large differ-
ence in the average points per game of each player.

In the NBA, many implemented analytics meth-
ods have focused on player analysis rather than team
analysis (see Gilovich et al. (1985)). Therefore, the
performance of a team in the NBA might consid-
erably vary depending on the performance or the
availability of the key players. Moreover, a higher
number of passes is observed in Euroleague than in
NBA games (see Milanović et al. (2014). Finally,
there are major differences in the regulations of the
game. For example, the three-point line is closer
than in the NBA, the defensive 3-second violation
is applied in the NBA but not in Europe and the dura-
tion of each quarter of the game is 10 minutes versus
12 minutes in the NBA (hence each game is 8 minutes
longer in the NBA). These regulations have a huge
impact on the game.

1.2. Literature review and related work

Basketball is a sport with a variety of game-related
events and statistics. The most relevant source of
measurement is the box-score, which summarizes
the main events of the game and it reflects the per-
formance of the two competing teams. The most
prominent works in the field are the publications by
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Oliver (2004) and Hollinger (2002, 2005). Hollinger
(2002) and Oliver (2004) introduced a variety of
innovative statistical measures and key performance
indicators for the evaluation of the playing qual-
ity of each team. Additionally, Oliver and Hollinger
provided statistics and projections for NBA players.
Another landmark in basketball analytics research is
the work of Kubatko et al. (2007) which introduced
the basic principles of modern basketball analytics.
This work introduced a variety of modern statistical
performance indicators and statistics that are widely
used in basketball, such as the offensive and defen-
sive ratings, the four factors, the plus/minus statistics,
and the Pythagorean method.

In this work, we focus on team performance eval-
uation and game prediction. One of the first attempts
for prediction at basketball games was the work of
Schwertman et al. (1991) who focused on models for
predicting the probability of each seed winning the
regional tournament. Carlin (2005) improved these
probability models by using regression models to
predict the probability of winning with seed posi-
tions, the relative strengths of the teams and the
point spreads available at the beginning of the tour-
nament. Smith & Schwertman (1999) concentrated
on building more sophisticated regression models for
the prediction of the margin of victory using the infor-
mation provided by seed positions.

Concerning machine learning approaches, the
work of Loeffelholz et al. (2009) was one of the
first attempts for predicting basketball games. They
implemented neural networks, with a variety of per-
formance indicators as inputs, to predict future games
in the NBA. As input variables, they used several
home and away team statistics, including percent-
age of shot success, offensive and defensive game
statistics averages from previous games and the
home effect indicator. Shi et al. (2013) applied three
machine learning algorithms (random forest, naive
Bayes and multi-layer perceptron) in order to predict
NCAA basketball matches for the period 2009–2013.
They achieved a prediction accuracy of 74% − 75%
using the last approach. Similar is the work of Tor-
res (2013) who, after empirical tuning, used a smaller
number of game statistics, taken as an average of the
last eight games, in order to predict the final win-
ner for the NBA games of the period 2006-2012. He
used four different approaches: linear regression for
the final score (and then used the expected difference
to predict the winner), a logistic regression model,
a support-vector machine and a multi-layer percep-
tron. He reported a prediction accuracy of 60 − 70%

with the best results obtained using the multi-layer
perceptron.

Regarding European Basketball, Horvat et al.
(2018) predicted Euroleague basketball outcomes
using the k-nearest neighbors (k-nn) algorithm. After
extensive data manipulation, they implemented the
k-nn method for a variety of values of k, selecting the
optimal value after a detailed comparison. One of the
more recent works on the topic is the publication of
Giasemidis (2020) which focuses on the prediction
of basketball games in the Euroleague competition
using nine machine learning algorithms and statis-
tical models. After this exhaustive implementation
of quantitative and machine learning techniques, the
main finding was that the opinion of the “well-
informed and interested” fans acts better in terms of
prediction (66.8% vs 73%). This gives strong rise to
the use of modern Bayesian techniques, which can
naturally embody both the information coming from
data and information for experts and/or other authors.

An additional contribution to this work is the
adaptation of popular rating systems from football
(soccer). We incorporate in the prediction procedure
of basketball outcomes popular rating systems such
as the Elo-rating similarly in Hvattum & Arntzen
(2010). An alternative rating system we use is the
PageRank approach of Lazova & Basnarkov (2015),
which ranked the football (soccer), National teams,
by considering World Cup results for the period
1930–2015. Finally, we have developed a basket-
ball version of the pi-rating which was introduced
by Constantinou & Fenton (2013). Although these
rating systems were primarily introduced for rating
football (soccer) teams, they can also apply to other
sports.

Finally, we also borrow ideas from the inspiring
work of Hubáček et al. (2019) where they imple-
mented gradient-boosting for relational data in order
to model football (soccer) data. Hence, we predict
basketball outcomes of future games within a selected
time frame using as predictors specific (a) historical
statistics (which reflect the long-term strength of the
teams), (b) current form statistics, (c) team ratings,
(d) match importance (in the form of dummies for
each phase) and (e) leagues statistics.

2. Data description and data-set building

The data consists of four different European tour-
naments from seasons 2013-2018 (five seasons for
more details see Table A.2 at Appendix A): (a)
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Euroleague, (b) Eurocup, (c) Greek Basket League,
and (d) Liga ACB. The data-set contains for each
team:

� the general game information: the competing
teams, in whose stadium each game was per-
formed, the date, the score, and the winner;

� offensive oriented statistics: total number
of shots attempted and successful shots
for one/two/three points, assists, offensive
rebounds;

� defensive oriented statistics: defensive
rebounds, blocks, steals, fouls, turnovers.

A sample of the data can be found in Table A.1 at
Appendix A. Since we are interested in prediction,
any feature we introduce in our analysis should reflect
information that was available before the game. In
order to build/calculate the values of each historical
predictor/feature, we use all results within a time span
of one year prior to the game of interest. Hence, we
use the first season (2013–14) available in our data-
set for calculating the predictors for the first season of
our training data-set (2014–15). Note that only for the
predictors related to the results between the two oppo-
nents of a game, we have considered all available data
of the past games between these two specific teams.
Moreover, the last season of our data-set (2017-18)
was used as a test data-set in order to evaluate the
performance of our implemented methods. This par-
tition of our data-set is depicted in Figure 1 where the
initial season is referred to as “Predictors for Season
2014/15”.

Moreover, for the test data-set, we have examined
two additional scenarios: (a) mid-season prediction
for the 2017/18 tournament by considering as a train-
ing data-set only the results of the first half of the
2017/18 season, and (b) play-off prediction for season
2017/18 by considering in the training data-set all the
results of the season 2017/18. Note that all national
leagues under consideration do have play-offs phases.
For the European tournaments (Euroleague and the
Eurocup), as play-offs, we consider the matches in the

three final knock-out phases (quarterfinals, semifinals
and finals). In addition, for both (a) and (b) predic-
tion scenarios, we have also evaluated and compared
the improvement in the prediction metrics when we
additionally consider extended learning from the data
of all previously available seasons. The main imple-
mentation structure of the prediction algorithms (e.g.
hyper-parameter tuning, important features, etc.) for
all scenarios and leagues has been specified by using
the data from the three previous seasons (2014/15–
2016/17), namely the hyper-parameter tuning of the
machine learning algorithms was accomplished one
time per tournament and algorithm. Therefore, the
main difference between the scenarios is only the
length of the training set and how well the machine
learning algorithms learn in these cases. Conse-
quently, the features for every scenario were extracted
in the same manner as we describe in Section 2.3.

2.1. Main response/target variable

In this paper, the aim is to predict the winner of a
basketball game. Hence, the target response variable
of interest is the winner of each game. We denote by
Yi a binary random variable that indicates the winner
of the i game for i = 1, . . . , n: one when the winner is
the home team and zeroes otherwise. Therefore, inter-
est lies in the estimation of the probability that the
home team will win, denoted by π and the probability
of losing given by q = 1 − π.

2.2. Selection of performance indicators and box
score statistics

Initially, we generated a wide variety of perfor-
mance indicators using the box-score statistics of the
original raw data-set; see for details in Table B.1 at
Appendix B. Using the Pearson correlation coeffi-
cient between the score difference of each game and
each of these measures, we have proceeded in our
analysis by considering only the top-ten correlated
performance indicators; see Table C1 at Appendix

Fig. 1. Data-set splitting hierarchy according to their usage.
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C. In the following, we will refer to these per-
formance indicators (including the points of each
team for the past games) as the “major performance
features”.

2.3. Features and predictors

Although past information (history) of “major per-
formance features” can give us a good picture of the
strength of the two opposing teams in each game,
other important characteristics and metrics exist that
can also help us predict the final outcome of a basket-
ball game. Such as the current form of a team (that is,
performance indicators for a shorter period of recent
games) and the overall level of each tournament.
Finally, the measures obtained using retrospective
rating algorithms can balance the historical and the
current form performance of the teams under con-
sideration. So the final selection of features can be
separated into four categories:

1. the historical information features: based on
results and performance indicators of the games
between the two opposing teams and teams’
“major performance features”,

2. the rating systems: team evaluation indicators
such as the Elo rating,

3. the current form: teams’ statistics based on the
last 10 games,

4. the tournament characteristics features: based
on tournament specific statistics and features.

A sample of features can be found in Table E.2 at
Appendix E. The main reason for this process is to
add more predictors by capturing different aspects of
the game. Thus, we can have interpretable informa-
tion per game, and the machine learning algorithms
suggest which of those are can be potentially the
important ones per case. As a referee suggested, we
should have in mind that when the number of fea-
tures is large, then some non-important features may
be indicated as important by any feature selection
method. This might be treated using wrapper fea-
ture selection methods (see Kohavi & John (1997)).
Here, the number of features is moderate and there-
fore we believe that this side effect will be minimal.
Therefore, we did not pursue this issue further.

In order to implement the proposed procedure,
we needed to make some compromises by accept-
ing specific assumptions. As a result, the method has
some disadvantages and limitations that should be
discussed. First, the teams’ roster frequently changes
significantly from one season to another season.

Many of the predictors we consider in this work
depend on the information from the previous season.
However, as the season progresses, all features are
updated with more recent and relevant information,
adjusting to a more realistic picture of the current
season. This problem is more evident in the case that
a new team enters the tournament. In this case, we
do not have any historical information on the data-
set for this team. To resolve the problem, we proceed
with a naive solution by using the value of zero for all
features of this team for the first game of the season.
As the season progresses, the problem diminishes and
the features are updated with the relevant information.
We believe that this approach has a minor effect on
the implemented approach, since the problem is only
for a very small number in the data-set (Euroleague:
2.16%, Eurocup: 6.6%, Greek League : 1.82%, Liga
ACB : 0.32%) and only for the first game of each
season.

In the following sections, we provide details about
these four categories of features used in our predictive
models and algorithms per tournament.

2.3.1. Historical information based predictors
In order to reflect the long-term strength of each

team, we have extracted information from all avail-
able previous games for a series of variables/features.
Using the data from the games between the two
opponent teams, we have considered the percentage
of wins, point difference and Ediff (the difference
between the offensive rating, Ortg, and the defen-
sive rating, Drtg). For these three features, we have
extracted three versions of them:

� previous game (based only on previous match-
up),

� home previous games (based only on games on
the specific home field),

� overall tradition (based on all available games
between the two opponents).

Moreover, we have included as possible predictors
the means and the standard deviations for all (ten)
selected performance features as described in Section
2.2. For all features, we consider two measurements:
the achieved and the conceded measurements by the
two opponent teams of each game for the previous
year (last 365 days); for more details see Table E.1.
For the offensive and defensive ratings (Ortg and
Drtg) and the Ediff, only one measurement was con-
sidered for each of them as defined in Table B.1 and
Section 2.2. Finally, 46 additional potential predic-
tors have been considered by taking the differences
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Fig. 2. Plot for finding the optimal mean absolute difference for a grid of k0 and λ Elo parameter values.

Table 1

Summary statistics of the tuned Elo parameters

Tournament/ League k0 λ Minimum mean
absolute
difference

Mean absolute
difference of
average
parameters

Differences of
mean absolute
differences

Euroleague 8.00 2.50 0.36 0.37 0.01
Eurocup 19.00 2.50 0.39 0.42 0.03
Greek League 39.00 1.80 0.28 0.31 0.03
Liga ACB 53.00 2.10 0.34 0.34 0.01
All leagues (Average) 29.75 2.25 0.34 0.36 0.02

between the measurements of the home and away
teams (see Table E.1).

2.3.2. Rating systems
In this category of predictors, we consider three

measures based on the rating systems, namely
the ELO, PageRank and Pi-rating (for details see
Appendix D). Furthermore, the Elo rating system
(Appendix D.1) and Pi-rating system (Appendix D.2)
have extra tuning parameters that we have to spec-
ify in order to optimize them in terms of their
selected error measure for these specific basketball
tournaments. This adaptation is necessary for their

implementation in basketball since these rating sys-
tems were initially tuned for football (soccer).

For the Elo rating system, we tune the parameters
after considering values of k0 = 1, 2, 3, . . . , 60 and
λ = 0.1, 0.2, 0.3, . . . , 3.5 (see Appendix D.1). We
tune the parameters by minimizing the mean absolute
difference between the probability of the home team
winning and the actual game outcome for the accumu-
lated data of seasons 2013/2014 - 2016/2017 for each
tournament (Euroleague, Eurocup, Greek League,
Liga ACB). Figure 2 depicts the minimization val-
ues for each tournament while Table 1 summarizes
the tuned values for each tournament. In the last row
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of Table 1, you can find the means of the optimal k0
and λ across the four tournaments. These values can
serve as default “good” values when the ELO rating
is applied to other basketball tournaments. The same
procedure is followed for Pi-rating, see Appendix
D.3, Table D.3.1 and Figure D.3.1. From these mea-
surements, we calculate the value of each rating for
each opponent team in a game, and then we consider
their differences; see Table E.1c for a summary of the
predictors used in this category.

A standard practice is to use these rating systems
as standalone predictions (see Hvattum & Arntzen
(2010), Lazova & Basnarkov (2015),Constantinou
& Fenton (2013)). An evaluation of the predictive
performance of these rating systems is presented in
Appendix H.1. For each rating, we calculated the rat-
ing value of each team before the match of interest
and we predicted the winner according to the higher
rating/rank of the two opponents. In table H.1.1,
we present the predicted accuracy of these simplis-
tic rating system-based approaches for the season
2017-2018. The results are quite competitive com-
pared to simple statistical models or machine learning
algorithms; see Section 4.1.1 for more details. More-
over, as we will see in the following (see Section
4.6) all rating systems are extremely good predic-
tors/explanatory variables when they are used as input
features in the machine learning algorithms under
study.

2.3.3. Current team form
The performance of athletes and/or teams fluctu-

ates during a season with a period of higher or lower
performance, which can depend on several character-
istics such as psychology, practice program, stamina
or the level of difficulty of games played. This is com-
monly known by the fans as the “current form” of the
team and it refers to the performance of the team or
athlete over the recent past (say the last ten games).
The category of features described in this subsection
is used in our predictive models and algorithms in
order to record the current form of the European Bas-
ketball teams we study. To do so, we have included all
features of Table E.1b and the ratings of Table E.1c
but calculated only for the last ten matches.

By using as features a mix of historical summary
information (within one year time span) and cur-
rent form information (within 10 games time span),
we consider both the long and the short term effect
of box-score statistics and rating systems on the
final match outcome. As a referee proposed, a more
appropriate approach would have been to consider a

weighting scheme that gives more importance to the
latest matches that naturally better reflects the current
performance of a team. Ideally, such weights should
have been estimated from our data-set.

This is an interesting research direction that the
authors are intrigued to pursue in the near future but,
we believe, outside the scope of this article where we
identify the effect of specific features and models.

2.3.4. Tournament specific statistics and
characteristics

Following Hubáček et al. (2019), the fourth group
of features we consider in our predictive analysis con-
sists of tournament-specific characteristics. In this
way, we try to account for and adjust our predic-
tions for the difficulty of each league or competition.
Hence, we consider all measures of Table E.1b over
the last year (365 days) for each tournament. Note,
that unlike Hubáček et al. (2019) where the cor-
responding league-specific features were constant
within each tournament, here the tournament features
are dynamically updated after every game-day. Three
features (percentage of wins, point difference and
Ediff) have been calculated from the perspective of
the home team while, for the remaining ones, we have
considered the difference between home and away
teams. Finally, we have further included a tournament
phase indicator since the phase of each tournament
(regular season, play-offs, final four, etc.) can deter-
mine the performance and the motivation of each
team. This variable was included by using a set of
dummy indicator variables.

2.3.5. Final Details: Feature dimension and
transformation

A total of 110 features are finally used in this
study. Therefore, we cover a wide variety of fea-
tures of interest that, hopefully, capture all possible
aspects of the game. The aim of considering such a
large number of covariates is to act in an exploratory
fashion and discover or reveal hidden patterns in the
game of basketball. Hence, in our analysis, we leave
each machine learning algorithm to suggest which are
the important features via the implementation of the
appropriate variable selection method for each algo-
rithm. As one referee pointed out, the large number of
features may be a problem due to the multiple com-
parisons we consider (multiplicity problem) resulting
in false positive features. Nevertheless, we have con-
sidered different analyses and different methods and
we report in how many of these cases each variable
was found to be important. This hopefully avoids sys-
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tematic false positives. Hence, a feature that is not a
true explanatory variable for the match outcome may
appear in a limited number of cases as important but
its overall reported percentage will be low.

Due to differences in the scaling and distribu-
tions of features, we have transformed all arithmetic
features in order to lie in the [0,1] interval. The trans-
formation is implemented within each tournament
separately. To do this, we have used the min-max
normalization which is given by:

xscaled = x − min(x)

max(x) − min(x)
. (1)

Another alternative would have been to use z-
scores given by z = x−x

sd(x) instead of the zero-one
normalization. Nevertheless, the latter transforma-
tion was finally preferred since the use of zero-one
normalized scores in our models resulted in better
predictive measures. Moreover, the zero-one normal-
ized scores are easier to be explained to non-experts
than z-scores.

3. Classification models and algorithms

Due to the large number of predictors we con-
sider in this work, we focus on the implementation
of methods where a variable selection or screening
methods could be implemented in an automatic way.
In this wise, we have better predictions and we can
emphasize in the interpretation. For this reason, we
have implemented three major interpretable predic-
tive approaches:

1. Logistic Regression with Regularization (see
Appendix F.1)

2. Random Forest (see Appendix F.2)
3. Extreme Gradient Boosting (see Appendix F.3)

All methods were implemented using scikit-
learn and XGBoost python libraries. The tuning
parameters and the variable selection or screening
procedures for every classification algorithm have
been implemented using randomized search with 10-
fold cross-validation (CV) in the training set for every
tournament separately (see in Section 2). We tune our
models in the 10-fold CV by using Brier score (BS)
(see Appendix G.1). In the following, besides the
Brier score (BS), we use the accuracy (see Appendix
G.2) and the F1 scores (see Appendix G.3) for check-
ing the final predictive ability of the implemented
methods.

3.1. Ensemble learning

Ensemble learning methods are essentially model
averaging techniques that consider the mean of
predictions of different predictive models and/or
algorithms. The intuitive idea of combining different
models’ predictions is that each model can cap-
ture different aspects of the game or correct for a
poor assumption made by a model; see Cai et al.
(2019) for implementation of basketball data. The
Random Forest and the XGBoost techniques, for
example, are ensemble types of algorithms that com-
bine predictions from many trees. Nonetheless, the
two algorithms are completely different in logic,
usually leading to different predictions. Hence, the
idea here is to combine all three different algorithms
implemented in this work (logistic regression, ran-
dom Forrest and XGBoost) by taking the average of
the predicted probabilities. This will hopefully lead
to more robust and reliable predictions.

4. Empirical results

In our main analysis (referred to in the following
as full season analysis), the first season (2013/14)
is used to build our initial predictors of the predic-
tive models for season 2014/15. The three sequence
seasons (2014/15, 2015/16, 2016/17) are used as our
training data-set, while the last one (2017/18) is used
as a test/validation data-set.

We have further considered two predictive analy-
ses which are of interest from the basketball fan or
bettor’s perspective:

(a) Mid-season predictive analysis using the fea-
tures of the first half of the regular season
2017/18 for training, in order to predict the out-
come of the games of the second-half,

(b) Play-offs predictive analysis using all features
of the regular season 2017/18 for training in
order to predict the play-offs final results for
season 2017/18.

In both of these situations, it is common to use only
the features of the specific season for training, since
these features are considered to be more relevant since
they reflect more accurately the current trends of the
season (see García et al. (2013)). In order to learn
about the hyper-parameters of each method, we have
used 10-fold cross-validation (10-fold CV) in sea-
sons 2014/15 - 2016/17 (see Section 3 for details).
Finally, for both (a) and (b) prediction scenarios, we
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study whether the additional inclusion of the full his-
toric data (for all three previous seasons) improves
the prediction over just using the current season fea-
tures which intuitively seem to be more relevant with
the current team performance.

4.1. Benchmark models

4.1.1. Baseline vanilla models as starting
reference analysis

A standard approach in data science and machine
learning is to consider a simple “vanilla” or “bench-
mark” model as a starting point in our analysis (see
Stefani (1980)). Such models are constructed using
only the minimum pre-game information available as
predictors. Hence, the predictors are only based on
the team names (or labels) playing in each game and
which team is the host (playing at its home stadium).
The standard approach is to consider a constant home
effect for all competing teams. The assumption of the
constant home effect has been validated and tested
on several occasions in basketball (Harville & Smith
(1994)).

We have fitted our Baseline Vanilla Model to the
three different prediction scenarios under considera-
tion (full season, mid-season and play-offs). For the
logistic regression, we have considered a regularized
version of the model, which implies that a refer-
ence group of teams of similar strength is formed
automatically by the imposed methodology. In order
to implement the Baseline Vanilla Model, we have
specified one feature/covariate for each team. These
features are coded in the following form of dummy
variables:

xi,j =

⎧⎪⎪⎨
⎪⎪⎩

1, if xj is a home team in match i

− 1, if xj is an away team in match i

0, Otherwise

.

(2)
We will refer to this model as the “Baseline Vanilla

Model”. The exponent of the intercept of the vanilla
logistic regression model can be interpreted as the
common home effect of the teams in the tournament;
see Table H.4.1 for the estimated intercept parameters
for the four tournaments under study under the full
season prediction scenario. Specifically, the intercept
is equal to the log-odds of the win for the home team
when two teams of equal strength compete with each
other.

4.1.2. Oliver’s four factor model
A benchmark logistic regression model was cre-

ated with Oliver’s four factors as covariates (see
Oliver (2004)), namely: (a) the effective field goal
percentage, (b) the offensive rebounding percentage,
(c) free throw rate and (d) turnover percentage. These
factors were reported by Oliver (2004) as predictors
highly correlated with the final game result in bas-
ketball. In this implementation, Oliver’s factors are
calculated as the average of the last 10 matches of
each team. The results of this benchmark model are
presented in Appendix H.2.

4.1.3. Climatology model
Finally, a simple climatology model (see Brier et

al. (1950), Murphy (1973)) was also used as a refer-
ence, after the suggestion of a referee. This model is
essentially a model which assumes a constant prob-
ability of success for the home (and away) team, see
Giasemidis (2020 (“the home team always win”). In
our case, we have used as baseline win probability
for the home team values in the interval of 55-65%.
The brier skill scores from this simple approach are
provided in Appendix H.3.

4.2. Predictive evaluation of the full season
2017/18

For the full data-set of season 2017-2018, all final
models are compared with

(a) the Baseline Vanilla Model introduced in Sec-
tion 4.1.1

(b) the Full Information Model (i.e. predictive mod-
els with features of Table E.1) introduced in
Section 2.3.

From Tables 2 and 3, it is evident that the Full
Information Model performs better in terms of Brier
score, accuracy and F1-score for all tournaments;
see Figure 3 for a graphical representation of the
differences between the two models. The lowest dif-
ferences between the predictive scores of the two
models are observed in Euroleague. Especially, the
Brier score difference is very close to zero, indi-
cating that the extra included does not considerably
improve the predictive performance of the model.
This might be because the Euroleague is the most
balanced and unpredictable tournament, since all par-
ticipating teams are top-class European teams. On
the contrary, the Full Information Model presents its
highest predictive improvement in comparison to the
Baseline Vanilla Model in Eurocup, where the results
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Table 2

Summary prediction measures for the Baseline Vanilla Model in the full season prediction scenario; see Table H.4.2a for more details

Tournament/ Brier Score Accuracy F1
League Interval Best Model(s) Interval Best Model(s) Interval Best Model(s)

Euroleague 0.213–0.215 RF/EL 0.650–0.665 RF 0.745–0.767 RF
Eurocup 0.232–0.238 LG/EL 0.625–0.636 LG/RF 0.717–0.729 RF
Greek League 0.167–0.181 LR 0.735–0.745 RF/EL 0.804–0.814 RF/EL
Liga ACB 0.208–0.218 LR/RF 0.648–0.688 RF 0.733–0.767 RF

LR: Logistic Regression; RF: Random Forrest; XGB: Extreme gradient boosting; EL: Ensemble learning; Interval: Min - Max evaluation
score of ML algorithms

Table 3

Summary prediction measures for the Full Information Model in the full season prediction scenario; see Table I.1a for more details

Tournament/ Brier Score Accuracy F1
League Interval Best Model(s) Interval Best Model(s) Interval Best Model(s)

Euroleague 0.208–0.220 XGB 0.662–0.692 XGB 0.749–0.778 XGB
Eurocup 0.205–0.216 RF 0.641–0.690 XGB 0.748–0.761 RF
Greek League 0.145–0.150 LR/EL 0.755–0.784 EL 0.818–0.839 EL
Liga ACB 0.197–0.201 EL 0.697–0.719 EL 0.783–0.788 EL

LR: Logistic Regression; RF: Random Forrest; XGB: Extreme gradient boosting; EL: Ensemble learning; Interval: Min - Max evaluation
score of ML algorithms

Fig. 3. Comparison of the differences of evaluation metrics between the best performed methods of the Full Information and the Baseline
Vanilla Model for the full season prediction scenario.

are more predictable. The Eurocup is more unbal-
anced in terms of competitiveness of the participating
teams than the Euroleague, characterized by a small
group of strong teams and another group of teams that
are not interested in this tournament. Teams of the lat-
ter group do not perform in a reliable way, making
the corresponding predictions difficult when game-
specific information is not included in our predictive
model. Hence, the Full Information Model seems to
capture these differences efficiently in Eurocup via
the extra information introduced by the additional
features taken into consideration.

Figure 4 presents the Brier score for the Full
Information modeling approach for all classification
models under consideration for each tournament (pre-
sented on each line). From this figure, it is obvious
that the Greek league is the most predictable of the
four tournaments under consideration with all mod-
els achieving similar Brier scores. On the other hand,
both Euroleague and Eurocup seem to be less pre-
dictable with similar levels of predictive performance
(Brier score ∼ 0.205 - 0.22). The logistic regression
was found to systematically perform slightly worse
than the other two methods. Finally, the Spanish Liga
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Fig. 4. Comparison of methods and algorithms in terms of Brier Score for Full Information Models for each tournament for the full season
prediction scenario.

ACB is also close to the European tournaments but
slightly more predictable (Brier score 0.197-0.201).
All three classification models are identical in terms
of predictive performance, as in the Greek league.
Similar are the conclusions (with more variability in
the values) for the accuracy and the F1-score; see
Figure J.1 at Appendix J.

For the other two benchmark models (Oliver’s
four factor model and the climatology model), we
observe that the Full Information Model is system-
atically better (as expected). To be more specific,
from Table H.2.1 we observe that the accuracy for
the four leagues ranges from 0.62 to 0.75, which is
systematically lower than the corresponding values
for the Baseline Vanilla Model (0.63–0.735) and the
full information model (0.64-0.77; differences 0.02–
0.052). The only case where the four factor model is
better in terms of accuracy than the Baseline Vanilla
Model is the Greek league with accuracy values of
0.75 vs. 0.735, respectively. For the other three com-
petitions, the accuracy differences are 0.016, 0.023
and 0.037 in favor of the Baseline Vanilla Model (in
ascending order). Finally, for the climatology model,
the percentage improvement induced by the use of
the Full Information Model instead of the climatol-
ogy one ranges, in terms of Brier score, from 5% to
40% depending on the tournament, the method used
and the assumed probability of winning for the home
team.

4.3. Mid-season predictive evaluation

In this section, we focus on the prediction for the
second half of season 2017/18. This approach tries to

follow the interest of the basketball fans and bettors
for specific landmarks of the season. The prediction
in the middle of the regular season is commonly used
in related bibliography (see for example Heit et al.
(1994)) since the accumulated information is enough
to learn/estimate the model parameters and obtain
reliable predictions. Here, we use the structure and
the values of the hyper-parameters obtained by the
analysis of seasons 2014–17 (three seasons in total) as
described at the beginning of Section 4. Then, given
the model structure and the hyper-parameter values,
the data of the first half of Season 2017/18 were
used for learning about the parameters of each clas-
sification model. By using this approach, intuitively
some effects may be estimated more reliably from the
data of the current season rather than from previous
seasons where the roster and team performance was
different (see Zimmermann (2016.

We expect this to be true in the vanilla model-
ing approach. Nevertheless, for the Full Information
Model, learning from all previous data (i.e. of sea-
sons 2014–17 and the first half of 2017/18) might be
more effective in terms of prediction since the covari-
ate/feature information (which indirectly reflects the
performance and the quality of the roster of a team) is
adopting from season to season (e.g. the feature mea-
suring each team performance in the last ten games).

Summary of the predictive performance measures
for the Baseline and the Full Information Models is
given in Tables 4 and 5, respectively. Concerning the
differences between the best models (see Figure 5),
the predictive performance is similar to the full sea-
son analysis (Section 4.2) where we observe that the
Full Information Model is identical to the Baseline
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Table 4

Summary prediction measures for the Baseline Vanilla Model in the mid-season prediction scenario; see Table H.4.2.b for more details

Tournament/ Brier Score Accuracy F1
League Interval Best Model(s) Interval Best Model(s) Interval Best Model(s)

Euroleague 0.204–0.214 XGB 0.650–0.692 XGB 0.753–0.776 XGB
Eurocup 0.216–0.245 LR 0.560-0.667 RF 0.718–0.754 RF
Greek League 0.171–0.189 RF 0.703–0.747 EL 0.809–0.827 EL
Liga ACB 0.210–0.220 EL 0.634–0.686 EL 0.723–0.774 EL

LR: Logistic Regression; RF: Random Forrest; XGB: Extreme gradient boosting; EL: Ensemble learning; Interval: Min - Max evaluation
score of ML algorithms

Table 5

Summary prediction measures for the Full Information Model in the mid-season prediction scenario; see Table I.1b for more details

Tournament/ Brier Score Accuracy F1
League Interval Best Model(s) Interval Best Model(s) Interval Best Model(s)

Euroleague 0.215–0.221 LR 0.600–0.692 EL 0.733–0.804 EL
Eurocup 0.203–0.235 XGB 0.571–0.726 RF 0.723–0.793 RF
Greek League 0.146–0.171 LR 0.747–0.78 LR/EL 0.813–0.841 LR/EL
Liga ACB 0.205–0.223 LR 0.614–0.712 LR 0.751–0.798 LR

LR: Logistic Regression; RF: Random Forrest; XGB: Extreme gradient boosting; EL: Ensemble learning; Interval: Min - Max evaluation
score of ML algorithms

Fig. 5. Comparison of the Differences in Evaluation Metrics between the best performed methods of the Full Information and the Baseline
Vanilla Model for the mid-season prediction scenario.

Vanilla Model (differences are very close to zero)
for Euroleague. On the contrary, for the Eurocup, we
observe the highest differences for the reasons dis-
cussed in Section 4.2. From Figure 6, we observe
again that the Greek league is the most predictable
tournament while the other three tournaments are
quite close in terms of Brier score. A difference with
the results of Section 4.2 is that the logistic regres-
sion model here seems to outperform its competitors
for all tournaments except for the Eurocup. This is
mainly due to the simpler structure of the logistic
regression model in comparison with the other pre-

dictive models which require larger datasets in order
to learn efficiently and provide reliable predictions.

4.4. Play-offs predictive evaluation

The second season landmark we use for prediction
is the end of the regular season where we wish to
predict the results of the play-offs game which are
the highlight of the whole season. Hence, we imple-
ment a similar procedure as in Section 4.3 but now
the test set is comprised only of the games of the
play-offs for season 2017/18. For the Euroleague and
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Fig. 6. Comparison of methods and algorithms in terms of Brier Score for Full Information Models for each tournament for the mid-season
prediction scenario.

the Eurocup, we consider as play-offs the quarterfi-
nals and the games of the subsequent phases. In this
analysis, a point of caution is the fact that the size of
the test set is small. Therefore, the variability of the
prediction evaluation metrics can be high or consid-
erably influenced by the inefficient performance of a
specific algorithm in one game. A surprising result
in this analysis is the fact that the baseline model
outperforms the Full Information Model for the Liga
ACB play-offs. Notably, the accuracy in Liga ACB
for the random forest full information implementa-
tion was found to be only slightly better than the
pure chance (53%). This is partly due to the fact
that our models have been trained with regular season
results, which can be different from play-offs, since
it includes games that are of no interest for particu-
larly strong teams. For the rest of the tournaments,
the Full Information Model outperforms the baseline
as expected.

Summary of the predictive performance measures
in the play-offs for the Baseline and the Full Informa-
tion Models are given in Tables 6 and 7, respectively.
Concerning the differences in the predictive measures
between the best models (see Figure 7), the results are
different from the ones obtained in the full and mid-
season analyses (Sections 4.2 and 4.3) since now we
observe that the Baseline model is slightly better, in
terms of predictive performance than the Full Infor-
mation Model, for the Liga ACB (as noted before)
and the two models are identical for Eurocup. For
the other two tournaments (the Greek league and
Euroleague), the Full Information Model achieves
better predictive performance in the play-offs as pre-
viously in the full and mid-season analysis.

From Figure 8, we observe again that the Greek
league is the most predictable tournament in terms
of Brier score, while the Liga ACB is the least pre-
dictable one with the two European tournaments
somewhere in the middle. In terms of classification
methods, XGBoost and Random Forest outperformed
the other two approaches, with the first one being bet-
ter for the two national leagues under study (Greek
and Spanish), while the latter method was for the
European Tournaments.

Finally, as the referee suggested, we also present
the accuracy measures for the predictions of the series
of games in play-offs; see Table K.1 at the appendix K
for details. Figure 9 depicts the accuracy differences
between the Full Information Model and the Baseline
Vanilla Model concerning the individual games and
the winner of each play-offs series of games. Gen-
erally, the accuracy differences are close for the two
cases with no clear patterns.

4.5. Comparison training sets for mid-Season
and play-offs

The aim of this section is to compare the per-
formance of the predictive models under different
learning data-sets for the mid-season and the play-off
prediction scenarios for both model versions (Base-
line Vanilla Model and Full Information Model). We
examine whether using the full history (including fea-
tures from all previous three seasons additionally to
the features from the current season) improves the
predictive performance of the fitted models in com-
parison with the case of using only the features of the
current season (i.e. using only the first half-season
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Table 6

Summary prediction measures for the Baseline Vanilla Model in the play-offs prediction scenario; see Table H.4.2c for more details

Tournament/ Brier Score Accuracy F1
League Interval Best Model(s) Interval Best Model(s) Interval Best Model(s)

Euroleague 0.221–0.283 LR 0.600–0.700 LR 0.692–0.800 LR
Eurocup 0.168–0.213 RF 0.688–0.750 RF/EL 0.762–0.833 RF
Greek League 0.160–0.202 LR 0.636–0.773 EL 0.750–0.815 EL
Liga ACB 0.190–0.221 EL 0.714 ALL

LR: Logistic Regression; RF: Random Forrest; XGB: Extreme gradient boosting; EL: Ensemble learning; Interval: Min - Max evaluation
score of ML algorithms

Table 7

Summary prediction measures for the Full Information Model in the play-offs prediction scenario; see Table I.1c for more details

Tournament/ Brier Score Accuracy F1
League Interval Best Model(s) Interval Best Model(s) Interval Best Model(s)

Euroleague 0.192–0.226 RF 0.650–0.750 XGB/EL 0.774–0.839 XGB/EL
Eurocup 0.165–0.191 RF 0.688–0.875 LR/RF/EL 0.783–0.846 LR
Greek League 0.125–0.148 XGB 0.773–0.864 XGB 0.815–0.889 XGB
Liga ACB 0.217–0.249 XGB 0.524–0.667 XGB 0.668–0.759 XGB

LR: Logistic Regression; RF: Random Forrest; XGB: Extreme gradient boosting; EL: Ensemble learning; Interval: Min - Max evaluation
score of ML algorithms

Fig. 7. Comparison of the differences in evaluation metrics between the best performed methods of the Full Information and the Baseline
Vanilla Model for the play-offs prediction scenario.

results or the full season result respectively for the
two prediction scenarios).

Figure 10 presents the mean Brier score of all four
models using bars. Additionally, the variability of the
prediction efficiency across the four methods is rep-
resented via error bars. Narrow error bars imply that
all classification methods have similar predictive per-
formance as measured by Brier score, while wide
error bars indicate differences in the predictive per-
formance. Hence, in the latter case, selecting the best
performing model might considerably improve the
predictive efficiency.

From Figure 10 (and Figure J.4 in Appendix J), we
observe that the larger training data-set improves the
predictive performance for the two national basket-
ball leagues under study (Greek and Spanish) and
the mid-season scenario (in terms of all measures
we consider, i.e. Brier score, accuracy and F1-score)
while the variability of the predictions across the dif-
ferent classification models is very small. Therefore,
for these two leagues, the historical features offer
valuable information which considerably improves
predictions, possibly due to the performance of each
team remaining constant across time. Moreover,
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Fig. 8. Comparison of Brier Score for Full Information Models for each tournament for the play-offs prediction scenario.

Fig. 9. Comparison of the accuracy differences of evaluation metrics between the best performed methods of the Full Information and the
Baseline Vanilla Model for series and individuals play-offs match-ups 2017-2018.

the fact that all methods provide similar predic-
tions implies that collecting more data for these two
leagues is more important than selecting an “optimal”
classification model. The use of extended historical
data-set in the picture is the same for both models
(Baseline Vanilla Model and Full Information Model)
with the latter being better using either of the two
training data-sets.

The situation is different for the two European
basketball tournaments. For the Eurocup, the larger
training data-set seems to deteriorate the prediction
quality of the Full Information Model (for all metrics)
while it slightly improves the prediction performance
of the Baseline Vanilla Model. For the Euroleague,
the larger training data-set considerably improves the
prediction quality of the Full Information Model (for
all metrics), while for the Baseline Vanilla Model

the differences are minor (with the different metrics
giving conflicting results about the predictive perfor-
mance under the two training data-sets).

For the play-offs prediction scenario, the results
are mixed. In general, the Full Information Model
seems to perform better in terms of Brier score. Nev-
ertheless, for national leagues (Greek and Spanish),
the Baseline Vanilla Model also provides competi-
tive predictions. The Baseline Vanilla Model for the
Greek league using all historic data is identical (but
slightly worse in terms of Brier score) than the Full
Information Model using only the current regular sea-
son data. Moreover, the Full Information Model does
not earn any additional value, in terms of prediction,
by the use of additional historic data. Hence, in this
specific case, the Baseline Vanilla Model needs more
data than the Full Information Model to reach a sim-
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Fig. 10. Comparison of methods and algorithms in terms of Brier score performance in the mid-season scenario for the Full Information
and Baseline Vanilla Models over different tournaments/leagues and different set of training data-sets (current mid-season vs. all previous
games).

Fig. 11. Comparison of Brier score performance in the play-offs scenario for the Full Information and Baseline Vanilla Models over different
tournaments/leagues and different sets of training data-set (current mid-season vs. all previous games).

ilar prediction level, while for the Full Information
Model the features from additional seasons do not
seem to be relevant, since the predictive performance
of this model does not improve.

For the Spanish league, the play-offs results are
totally different. The Baseline Vanilla Model based
only on the data of the current season outperforms
all other implementations (which are of the same
level in terms of Brier score). For Euroleague and the
Eurocup, the Full Information Model is much bet-
ter in terms of prediction than the Baseline Vanilla
Model, while the use of the extensive historical data
does not change dramatically the Brier score in both

European tournaments. If we focus on the accuracy
and F1-score, then the Full Information Model using
the regular season data is better for the Euroleage
while the same model is better when using the full
historic data-set for the Eurocup.

As we have already mentioned in Section 4.4, in
the play-off analysis, a point that needs careful treat-
ment is the small sample size of the test dataset, which
means that a surprising or outlying result in this set
might greatly influence the prediction metrics. This
is the reason why, in some cases, the error bars in Fig-
ure 11 indicate large variability between the different
methods.
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Fig. 12. Barplot of top features according to their frequency of importance over all prediction scenarios.

4.6. Feature importance

Here we present and summarize the most impor-
tant features in our analysis. More specifically, we
are interested in the consistency of the importance of
each feature. Hence, we count how many times each
feature is identified as an important determinant of the
winner in each combination of classification model
and type of predictive scenarios using different data-
sets (full season, mid-season or play-off prediction
analysis). As a result, we present the percentage of
times each feature was found to be important in each
of the nine different analyses (i.e. for three classifiers
combined with three evaluation data-sets/scenarios).
In regularized logistic regression, we consider a fea-
ture with non-zero effects are considered as important
determinants of the outcome. For the other two meth-
ods (which both involve trees), a feature is considered
to be important when it participates as splitting node
in the fitted decision tree that improves the perfor-
mance measure.

Table L.1 in Appendix L presents the percentage
of importance for each feature for each tournament
along with their mean percentage of importance
(across the four tournaments). Features are sorted
according to their overall mean importance. Only
features with mean higher than 50% are included in
Figure 12 depicts the overall mean importance of each
feature with value higher than 60%. From this figure,
it is evident that two rating systems (pi-rating and
PageRank) are the most consistent important deter-
minants of the winner. Current form measurements
appear to be consistently important features for the

prediction of the winner since 42% of the most impor-
tant features appearing in Figure 12 are related with
this characteristic. Moreover, four current form mea-
surements follow in positions 3–6. On the other hand,
five history and two tradition related measurements
appear in the list of the most important features (out
of 19). This might be indirectly implying that history
and tradition might be less important determinants
of the winner than the features related to the current
form. Finally, the two ELO measurements (current
form and total measurement) are marginally included
in the top-list since they appear in ∼ 60% of the exam-
ine prediction scenarios as important determinants of
the final basketball outcome.

5. Discussion and final conclusions

Prediction of sports outcomes is a challenging task.
All statistical and machine learning methods can pre-
dict the final result up to a level. Actually, the reason
why sports are so attractive for fans is the uncertainty
and the possibility that the weakest team or oppo-
nent can have a chance to win. In this study, we have
implemented three popular statistical and machine
learning techniques on basketball data from four dif-
ferent European leagues: two cross-country European
tournaments (the Euroleague and the Eurocup) and
two national ones (the Greek and the Spanish). We
have focused on four different aspects:

1. Which method is better in terms of prediction?
2. Which modeling strategy or algorithm is better

for prediction?
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• A simple vanilla style model(which includes
only the information about the competing
teams and where they play), or

• a Full Information Model where a group of
good features is used to boost our predic-
tions?

3. Which data-set should be used for prediction?
We have studied whether using the full historic
data-set (of three years) results in better predic-
tive models than using current season data. This
was implemented in three different cases:

(a) full season prediction scenarios,
(b) mid-season prediction scenarios, and
(c) play-off prediction scenarios.

4. Which features are more consistent in terms of
importance across different leagues and predic-
tion scenarios?

5. Which league is easier to predict?

Concerning which method is better for predicting
the winner in European basketball games, we can
reach the following two main conclusions: (a) the
overall prediction ranges from 52% to 86% in terms
of accuracy, and (b) there is no clear winner between
the methods since they provide identical predictions
with small differences when large data-sets are used
for training and learning. In this work, we have used
data from three seasons in order to predict the fourth
one.

We have compared two main modeling strategies
for prediction. The first one is the so-called Base-
line Vanilla Model which uses only the information
about the two opponents and which is the home team,
while the second one (Full Information Model) uses
a variety of features as predictors. In general, the Full
Information Model seems to outperform the Base-
line Vanilla Model as expected. But the differences
are lower than expected considering that we have
included a lot of additional information in the form
of features/predictors and the extra effort required for
the analysis and the feature extraction and selection.
To be more specific, the Full Information Model is
better in terms of accuracy by 3 − 5% when using
all previous three seasons in order to predict the last
available season. The corresponding improvement is
also at the same levels for the mid-season and the
play-off prediction is with the exception of some lim-
ited cases (for example, in the play-offs prediction
scenarios for the Spanish league and the mid-season
prediction scenarios for Euroleague), where the Base-
line Vanilla Model outperforms the Full Information
Model in terms of accuracy.

The main reason that the two modeling strategies
have similar performance, is that most of the infor-
mation about the winning ability of a team is included
in the simple approach of the vanilla model. The spe-
cific performance in each game can be recorded by
box-score statistics and this will be more precise,
but it seems that this variability is not as important
as we might believe in some tournaments (e.g. the
Euroleague). The big difference between those two
approaches, is that the Vanilla model needs data from
the current season, while Box-score based models
use general characteristics of the basketball game and
therefore, data from previous seasons can be used to
efficiently train the model.

Regarding the size of the data required to set
reliable predictions, we have performed analysis
using full historical data and the current season data
for the mid-season and the play-off prediction sce-
narios. For the mid-season analysis, using the full
data-set results improves prediction models in four
tournaments except for the full information analysis
implemented for the Eurocup. For the latter, it seems
that the current season data was more relevant. For
the play-off analysis, using the full historic data did
not lead to improved prediction, which implies that
the current data might be more relevant for the pre-
diction of the play-off games. Moreover, the data of
the current season is usually well balanced, leading to
efficient and accurate parameter learning and models
with good prediction properties.

Concerning the feature importance, we have found
the current form related features are the most rele-
vant ones, appearing consistently in different models
and implementations. The rating systems of PageR-
ank and Pi-rating were also highly relevant features,
while the third rating system metrics of ELO were
found to be important in about 60% of the imple-
mentations. Finally, some features related to history
and tradition between the opponent teams were also
involved in our prediction models.

From this analysis, we can also reach, indirectly,
some conclusions about the competitiveness of the
teams participating in the corresponding leagues.
Leagues or tournaments where the models achieve
“better" prediction metrics are the ones with less com-
petition and the prediction of the winner is easier.
From our results, the Greek league is the less balanced
tournament in terms of competitiveness, since all our
models achieve better predictions (with an accuracy
of 78%). This is reasonable since this league is dom-
inated by two very powerful teams (Olympiakos and
Panathinaikos). The second less balanced league is
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the Spanish one with an accuracy of 72% while for the
two European tournaments the prediction accuracy is
lower (about 69%).

Finally, future work should be focused on the pre-
diction of the point difference or the game score
itself. In this way, we will be able to incorporate
enhanced information into our analysis which may
lead to higher and more accurate estimation/learning
about the strength of the teams and the efficiency
of the features. Such models can be implemented
via simple Gaussian regression models (for the point
difference), by bivariate Gaussian regression models
(for the score) or by using more sophisticated models
based on appropriate distributions for the problem,
such as the Poisson or the Binomial. Moreover, we
can further incorporate historical data or informa-
tion by using prior distributions within the Bayesian
framework, which will possibly lead to models of
improved prediction accuracy.

Supplementary material

The Appendix section is available in the elec-
tronic version of this article: https://dx.doi.org/
10.3233/JSA-220639.
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