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Abstract. The Volleyball Nations League is the elite annual international competition within volleyball, with the sixteen best
nations per gender contesting the trophy in a tournament that spans over 6 weeks. The first five weeks contain a single round
robin tournament, where matches are played in different venues across the globe. As a consequence, each team follows an
intensive travel plan, where it happens quite often that there is a large discrepancy between travel burdens of opposing teams.
This is considered a disadvantage for the team that travelled more. We analyse this problem, and find that it is closely related
to the well-known Social Golfer Problem: we name the resulting problem the Traveling Social Golfer Problem (TSGP).
We propose a decomposition approach for the TSGP, leading to the so-called Venue Assignment Problem and the Nation
Assignment Problem. We prove that a solution to the Venue Assignment problem determines the amount of unfairness, and
we also prove that any solution of the Venue Assignment problem can be extended to a solution to the Nation Assignment
problem satisfying the so-called home-venue property. Using integer programming methods, we find, for real-life instances,
the fairest schedules with respect to the difference in travel distance.

Keywords: Social golfer problem, integer programming, volleyball nations league, OR in sports

Prologue

It is the beginning of June 2018 when the Italian
men volleyball team go undefeated in the first round
of the inaugural Volleyball Nations League. They
played their three first-round matches in Kraljevo,
Serbia, and for the next round of three matches they
have to travel, via Belgrade, Rome, Buenos Aires, to
reach the next venue in San Juan, Argentina, after
more than 24 hours of traveling. Playing only a few
days after this trip, their momentum seems lost and
they lose two out of their three games, all played
within a week, upon which they immediately need
to fly to Japan for the third round.

Ultimately, the Italian team had to travel literally
across the globe within a time span of four weeks,
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playing matches against the best volleyball teams in
the world. Even though they started off with three vic-
tories, they ended eighth and did not qualify for the
final stages. In comparison, the French team played
all their matches within Europe and emerged as win-
ner of the main event. Later that year however, during
the World Championship, the Italian team outper-
formed the French team.

1. Introduction

The above example is just one of many that high-
lights how travel times, and specifically disparity
in travel times, influence results in the Volleyball
Nations League (VNL). It is well established within
the scientific literature that extensive travelling has
a negative impact on sport performance. Although
we do not intend to survey the literature on this
subject, this finding is reported for various sports
ranging from rugby (Lo et al. (2020)) to baseball
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(Song et al. (2017), and Winter et al. (2009)) and
from basketball (Huyghe et al. (2018)) to triathletes
(Stevens et al. (2018)); see also the references con-
tained in these papers. We close this paragraph by two
quotes: one from an interview with Anne Buijs, pro-
fessional volleyball player(see Volkskrant (2021)):
“It is quite an advantage to play all VNL matches
at the same location. In the original schedule we
would have travelled from Serbia to Canada to Korea,
which makes the schedule very hard for us.”, and one
from Samuels (2012) who concludes: “Jet lag and
travel fatigue are considered by high-performance
athletic support teams to be a substantial source of
disturbance to athletes.” This phenomenon is illus-
trated in the prologue of this paper, and serves as its
motivation.

The Volleyball Nations League is a tournament
organized every year by the FIVB (Fédération Inter-
nationale de Volleyball), for both men and women
(see https://www.volleyball.world/en/vnl/2021).
This tournament was first organized in 2018 to
replace the World League/World Grand Prix as
annual volleyball tournament. There are 16 teams
participating in the tournament which consists of
multiple phases. In the first phase, lasting for five
weeks, all 16 teams play a single round robin, i.e.,
each team meets each other team once. The best 6
teams then qualify for the second phase, where out
of two groups of three, four teams emerge to play
cross finals. Our interest is exclusively on the first
phase.

In the first phase of the VNL tournament, teams
play in rounds. In each round, each team is in a group
consisting of 4 teams, and each team in a group plays a
match against its three fellow group members. After
5 rounds, each of the 16 teams has played all the
other teams exactly once, and a ranking is made based
on the results in this single round robin tournament.
All 6 matches in a single group are held at the same
venue, however, every round has its 4 groups played
out in different venues. As it is a disadvantage to
have traveled more than your opponent going into a
match, our main interest lies in minimizing a measure
that captures the imbalance in travel times between
opposing teams.

A priori, it is not clear how a round robin sched-
ule that can be decomposed in groups is obtained.
In fact, finding a schedule that fits this VNL-format
is related to the so-called Social Golfer Problem
(SGP). In this problem we are given gp golfers
and w rounds (where g, p, w are positive integers),
and the SGP-question is whether it is possible to

let the gp golfers play in g groups of p golfers in
each of the w rounds, in such a way that every pair
of golfers plays in the same group in at most one
round, see Triska & Musliu (2012), Liu et al. (2019),
Dotú & van Hentenryck (2005). This question is far
from innocent: only for restricted sets of values for
g, p, w the answer to this question is known. For
instance, when g = p = w − 1, solutions are known
to exist when g is a prime power - and no other solu-
tion to these type of instances has been found, nor
has it been proven that these are the only instances
for which a solution can exist (Harvey & Winterer
(2005)).

Of course, in the context of the Volleyball Nations
League, each golfer corresponds to a team (and
groups remain groups and rounds remain rounds).
Since the Volleyball Nations League has g = p = 4
and w = 5, it follows that the answer to the SGP-
question is affirmative, and hence a schedule for the
VNL that consists of 5 rounds, each round consisting
of 4 groups, is known to exist. In this paper, we intro-
duce the Traveling Social Golfer Problem (TSGP), as
a generalization of the SGP; the TSGP allows us to
take fairness, as measured by the difference in travel
times between opposing teams, into account. Recent
other variations of the SGP are discussed in Miller et
al. (2021) and Lester (2021).

A well-known problem related to the TSGP that
also focusses on distances is the Travelling Tourna-
ment Problem (TTP), see Easton et al. (2003) for a
precise description. In contrast to our problem, in the
TTP pairs of teams meet in the venue of one of the
two opposing teams. Moreover, the objective in the
TTP is to minimize total travel distance; difference in
travel time between opposing teams is not considered
in the TTP. We refer to Goerigk & Westphal (2016)
and Durán et al. (2019) for an overview concerning
the TTP.

A number of studies has been devoted to the
scheduling of national volleyball leagues where
mainly for cost reasons, the objective is to minimize
total travel time. We mention Bonomo et al. (2012)
who model the Argentine national volleyball league
as an instance of the Traveling Tournament Problem,
and Cocchi et al. (2018) who investigate the Ital-
ian volleyball league. Further, Raknes & Pettersen
(2018) study the Norwegian Volleyball League; one
of their models, motivated by a cost-objective, is
devoted to minimizing total travel distance in that
league. These leagues are organized in the format of
a Double Round Robin, and as such differ from the
VNL.
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2. The Traveling Social Golfer Problem
(TSGP)

2.1. Definition of the TSGP

As described in Section 1, the Social Golfer
Problem is a well known combinatorial question,
where the task is to schedule golfers in groups of
size p over multiple rounds, such that no golfer plays
with another golfer in the same group twice. In the
Traveling Social Golfer Problem (TSGP), all
groups have to play at (different) venues, where the
objective is to create a schedule that minimizes the
unfairness arising from golfers having different travel
times between the venues.

In order to give a precise formulation of the TSGP,
we use the following notation to describe the input:

• N: the number of teams,
• k: a group size,
• V : the set of venues,
• d(v, w): a distance between each pair of venues

v, w ∈ V , and
• cv: a multiplicity for each v ∈ V .

The multiplicities cv indicate the exact number of
times venue v ∈ V must host a group; indeed, in the
practical situation of the VNL, it is not uncommon
that a venue is host to different groups in different
rounds. The multiplicities allow us to accommodate
such situations.

Furthermore, we use the following notation to
describe a solution:

• R: a set of rounds,
• Pr

i : the set of teams in group i in round r, 1 ≤
i ≤ N

k
, r ∈ R,

• vr(t): the venue of the group in which team t ∈
{1, . . . , N} plays in round r ∈ R.

Finally, we measure the value of a schedule S by
its unfairness u(S) as follows:

u(S) =
∑

r∈R\{1}

N
k∑

i=1

max
s,t∈Pr

i

|d(vr(s), vr−1(s)) − d(vr(t), vr−1(t))|. (1)

Let us elaborate on this expression. For every group
Pr

i in every round r ∈ R \ {1}, we consider the two
teams (teams s and t) whose difference in travel dis-
tance needed to arrive at the corresponding venue, is
maximum over all pairs of teams in the group; this

quantity is summed over all groups, and all rounds
(except the first round, as we assume that all teams
have ample time to arrive at their first venue). Thus,
a lower value of u(S) indicates that the difference in
travel times between opposing teams was less and
thus the schedule was more fair. The measure u is
applicable to any schedule for N teams that has a
group/round-structure.

Example 2.1. A tournament with N = 4, teams
1, 2, 3, 4, is organized over three rounds, and
groups of size k = 2. There are four venues,
V = {A, B, C, D}, with multiplicities cA = cD = 2
and cB = cC = 1. Distances between venues are
d(A, B) = d(A, C) = d(B, D) = d(C, D) = 1 and
d(A, D) = d(B, C) = 2.

Consider the schedule S depicted in Table 1.
Thus, according to (1), the unfairness of this sched-

ule S equals:

u(S) = |2 − 0| + |1 − 1| + |2 − 1| + |2 − 1| = 4.

We state the following optimization problem that
we call the (N, k)-Traveling Social Golfer Problem,
or (N, k)-TSGP for short.

Problem 2.1. (N, k)-TSGP
Input. A number of teams N ∈ N, a group size k ∈ N,
a set of venues V each with multiplicity cv (v ∈ V ),
and a distance function d : V × V → R.
Output. A schedule S consisting of |R| rounds min-
imizing u(S) such that:

• there is an equi-partitioning of N teams in
groups Pr

1, . . . P
r
N
k

for each round r ∈ R, with

for each pair of distinct teams, a single
group containing both teams, i.e, for each s, t,
(s /= t))∃! i, r with s, t ∈ Pr

i ,
• an allocation of groups to venues that results

in venues vr(t) (r ∈ R, t = 1, . . . , N) such that
venue v ∈ V acts cv times as a host for a group.

It is clear that, depending on the input, a feasible
schedule to (N, k)-TSGP need not exist; in fact, it is
not difficult to find instances where there is no sched-
ule S that satisfies all the constraints. Indeed, as the

Table 1

A schedule S for the instance in Example 2.1

group venue group venue

round 1 P1
1 = {1, 2} A P1

2 = {3, 4} D
round 2 P2

1 = {1, 3} A P2
2 = {2, 4} B

round 3 P3
1 = {1, 4} D P3

2 = {2, 3} C
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schedule asks for a partitioning of the N teams in
groups of size k in each round, we immediately see
that N should be a multiple of k, or N ≡k 0. In addi-
tion, as the schedule should correspond to a single
round robin tournament, and as all teams play k − 1
matches per round, we conclude that N − 1 should
be a multiple of k − 1, or (N − 1) ≡k−1 0. Thus, a
solution of the (N, k)-TSGP can only exist if there is
an integral ρ such that N = k · ((k − 1)ρ + 1).

The above are necessary conditions that need to
be satisfied. In fact, the (N, k)-TSGP can only have a
solution that satisfies the single round robin format,
if the corresponding instance of the SGP is solv-
able. In general, solutions of the SGP are known to
exist when N = k2 and k is a prime power. Thus,
for the Volleyball Nations League, the underlying
N = 16, k = 4-SGP problem will be solvable. In the
remainder of the paper, we assume that N = k2 and
|R| = k + 1; this ensures that the above necessary
conditions are fulfilled (and observe that the VNL
case arises when k = 4).

2.2. Decomposing the TSGP into Venue
Assignment and Nation Assignment

The problem of solving an instance of (N =
k2, k) − TSGP can be decomposed into two phases:

• Venue Assignment. In the first phase, we spec-
ify, for each round r ∈ R, which venues act
as a host. Let Ur ⊂ V , with |Ur| = k, r =
1, . . . , k + 1 be the set of venues that act as
hosts in round r.

• Nation Assignment. In the second phase, we
decide upon the composition of the groups, i.e.,
we choose the sets Pr

i and allocate these groups
to the venues in Ur, r = 1, . . . , k + 1.

By going through these two phases, we find a sched-
ule S. It is crucial to observe that the unfairness of S,
i.e., u(S), follows directly from the venue assignment
when N = k2. We record this observation formally.

Theorem 2.1. For each schedule S of a given instance
of (N = k2, k) − TSGP , u(S) is determined only by
the Venue Assignment, for each integer k ≥ 2.

Proof. We claim that for each schedule S:

u(S) =
∑

r∈R\{1}

k∑
i=1

max
s,t∈Pr

i

|d(vr(s), vr−1(s)) − d(vr(t), vr−1(t))|

=
∑

r∈[1,...,k]

∑
u∈Ur+1

max
v,w∈Ur

|d(v, u) − d(w, u)|.

The latter equality follows from the fact that, inde-
pendent of the composition of the groups, the k teams
that play in a group in some round, will not meet again
in a next round, and hence these k teams will travel
to each of the k distinct venues in the next round. �

Theorem 2.1 allows us to compute the unfairness
of a schedule S, u(S), without specifying the schedule
S. As a consequence, it becomes much easier in prac-
tice to find schedules for which u(S) is minimum. Or,
rephrasing Theorem 2.1, finding a Venue Assignment
suffices to know the unfairness of any schedule com-
patible with the Venue Assignment. In fact, a similar
statement can be made with respect to the total travel
time (see Section 5).

3. The complexity of Venue Assignment

In this section, we formally establish the com-
plexity of Venue Assignment. Given that feasible
schedules to the (N = k2, k)-TSGP exist, Theo-
rem 2.1 implies that our task of finding an optimal
solution to (N, k)-TSGP is reduced to finding an opti-
mal venue assignment. Clearly, this is related to the
differences in traveled distance between two oppos-
ing teams, which in turn follows from the venues that
are selected in each round.

In an extreme case, if only a single venue v is given
(with multiplicity cv = k(k + 1)), then all matches in
all groups in all rounds are played in the same venue,
and there is no travel distance. However, in general,
the set of venues V and their pairwise distances, are
instrumental in finding good venue assignments. Of
course, we assume that

∑
v∈V cv = k(k + 1). We now

give a formal description.

Problem 3.1. Venue Assignment (VA)
Input. A value k ∈ N, a set of venues V , an integral
multiplicity cv for v ∈ V , and a distance matrix
d(v, w) for each v, w ∈ V .

Output. For r ∈ {1, . . . , k + 1}, subsetsUr ⊂ V with
|Ur| = k, such that ∀v ∈ V , cv = |{r : v ∈ Ur}| that
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minimizes:

� =
∑

r∈{1,...,k}

∑
u∈Ur+1

max
v,w∈Ur

|d(v, u) − d(w, u)|. (2)

To establish the hardness of Venue Assignment,
we use the following decision problem.

Problem 3.2. Longest Hamiltonian Path on a
Complete Graph (LHP)
Input. A complete graph G = (H, E), |H | = n with
nonnegative, symmetric weights w(h1, h2) for each
h1, h2 ∈ H , and an integer B.
Question. Does there exist a Hamiltonian Path
(hi1 , . . . , hin ) in G such that

∑n−1
j=1 w(hij , hij+1 ) ≥

B?
LHP is well-known to be NP-complete.

Theorem 3.1. Venue-Assignment is NP-Hard.

Proof. We prove this statement by a reduction
from Longest Hamiltonian Path on a Complete
Graph.

Given an instance of LHP, with vertex set
H = {h1, . . . , hn} and weights w : H × H → R, we
construct an instance of the decision problem corre-
sponding to VA, using a parameter K, in the following
way.

We choose k := n − 1. Further, the set of venues V

consists of V = V1 ∪ V2, where V1 := H and |V2| :=
n − 2. For each v ∈ V1, cv := 1 and for each v ∈ V2,
cv := n. Let D = maxh1,h2∈H w(h1, h2) and define a
symmetric distance function d in the following way:

d(u, v) :=

⎧⎪⎨
⎪⎩

w(u, v) u, v ∈ V1

2D u ∈ V1, v ∈ V2

0 u, v ∈ V2.

(3)

Notice that the resulting distances satisfy the tri-
angle inequality when the instance of LHP does.
Finally, we set K := k2 · 2D − B, and ask whether
there exists a venue assignment with unfairness at
most K. We have now specified an instance of the
decision version of VA.

Let us argue that if there exists a solution to VA
with unfairness at most K, LHP is a yes-instance,
and vice versa.

To find a solution to any instance of VA, we need
to find Ur ⊂ V for each r ∈ {1, . . . , k + 1} such that
∀v ∈ V , cv = |{r : v ∈ Ur}|. As we know that for all
v ∈ V2, cv = k + 1, we see that any feasible solu-
tion must have V2 ⊂ Ur for each round r. Moreover,
as cv = 1 for v ∈ V1, we get that any feasible solu-
tion must schedule every venue v ∈ V1 exactly once.

Thus, any feasible solution to VA consists of Ur =
V2 ∪ vir with vir ∈ V1 and vir = vi′r ⇐⇒ r = r′. In
other words, any feasible solution to VA corresponds
to an ordering (vi1 , . . . , vik+1 ) of the venues in V1.
Given such an ordering, we obtain the following
expression for the unfairness of a schedule S that uses
the ordering (vi1 , . . . , vik+1 ):

u(S) =
k∑

r=1

(
(k − 1) · 2D + (2D − d(vir , vir+1 )).

)

(4)

The first term in the summation results from the fact
that there are k − 1 venues from V2 in every round and
one from V1, and since d(v, w) − d(v, v′) = 2D − 0
for all v, v′ ∈ V2, w ∈ V1, we get k − 1 venues where
the maximal travel difference is 2D. The second term
equals the difference in travel distance between the
teams traveling from any of the v ∈ V2 to the vir+1 ∈
V1, and the team traveling from vir ∈ V1.

Let us now suppose that the instance of LHP is a
yes-instance, implying the existence of a Hamiltonian
Path such that

∑n−1
j=1 d(hij , hij+1 ) ≥ B. We choose as

the ordering of venues in V1 the sequence of nodes in
this Hamiltonian path. We find:

u(S) =
k∑

r=1

(
(k − 1) · 2D + (2D − d(vir , vir+1 ))

)

(5)

= k2 · 2D −
k∑

r=1

d(vir , vir+1 ) (6)

= k2 · 2D −
n−1∑
j=1

w(hij , vij+1 ) (7)

≤ k2 · 2D − B = K. (8)

Hence, the unfairness of this schedule S is bounded
by K.

Finally, suppose there exists a schedule S whose
unfairness is bounded by K, we obtain:

u(S) = k2 · 2D −
k∑

r=1

d(vir , vir+1 ) ≤ K,

which is equivalent to (9)

n−1∑
j=1

w(hij , vij+1 ) ≥ k2 · 2D − K = B. (10)
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Thus, solving this instance of the decision ver-
sion of VA is equivalent to solving the corresponding
instance of LHP, which implies that VA is NP-Hard.
�

4. The VNL in practice: about the
home-venue-property

Motivated by the current practice in the VNL, we
incorporate the following issue in our problem for-
mulation: each venue has a team that considers this
venue as its home-venue. Next, in any feasible sched-
ule for the VNL it must be the case that when a venue
is hosting a group, the group must contain the team
for which this venue is the home-venue. And in case
there are multiple venues that are the home-venue
of the same team, it is a fact that those venues are
never a host of a group in the same round. Thus, each
venue is a home venue to a single team; however, a
team can have multiple home venues. In the context
of the VNL, this property specifies that each venue
always hosts a group that contains the national team;
this team can be regarded as the home playing team,
or host nation. As an aside, it is interesting to note
here that Alexandros et al. (2012) find the presence of
(a significant) home advantage in volleyball matches
played in Italian and Greek national leagues.

We will refer to solutions having the property
that the venue hosting a group is the home-venue
for some member of the group, as the home-venue
property. A relevant question now becomes:

Do feasible schedules satisfying the home-venue
property exist?

In fact, solving the Venue Assignment problem
does not automatically lead to a schedule that satis-
fies the home-venue property. In other words, it is
not true that, when given an assignment of venues
to rounds, a schedule is guaranteed to exist such that
every venue is a home venue. Then, in such a case,
a venue hosts a group of teams, none of which plays
home. Example 4.1 shows how a feasible solution of
the Venue-Assignment problem cannot be extended
to a solution having the home-venue property.

Example 4.1. Let N = 4 be the number of teams
with group size k = 2, and let V be the set of home
venues. All countries t have a venue vt ∈ V , where
for countries t = 1, 2, their venue has a multiplicity
of 2 and the other venues have a multiplicity of 1, i.e.,

Table 2

A venue-assignment that does not satisfy the home-venue property

Group Round 1 Round 2 Round 3

1 v1 v1 v3
2 v2 v2 v4

cv1 = cv2 = 2 and cv3 = cv4 = 1. Solving the corre-
sponding instance of Venue-Assignment can result
in a solution as is given in Table 2.

The venue assignment in Table 2 clearly satisfies
the given multiplicities. However, it is impossible to
schedule match (t1, t2) in any round when restrict-
ing teams to play at their home venue whenever it is
scheduled in a round. Moreover, venue assignments
satisfying the given multiplicities yielding a feasible
schedule do exist for the given example.

Thus, we see that solving the Venue-Assignment
alone is not necessarily the same as solving the VNL-
problem in practice.

However, and perhaps surprisingly, the following
theorem shows that for the particular dimensions of
the VNL (N = 16, k = 4), a Venue-Assignment can
always be extended to a solution for the Volleyball
Nations League.

Theorem 4.1. Let N = 16 be the number of teams
and k = 4 the group size. Let V be the set of venues,
with corresponding multiplicities cv (v ∈ V ) such that
each team has at least one home venue, and all venues
need to be scheduled at least once (never with two
venues of the same team hosting simultaneously), i.e.,
cv ≥ 1 for each v ∈ V , and

∑
v∈V cv = 20. Then any

solution of the corresponding Venue-Assignment
instance, can be extended to a feasible solution of the
VNL-instance satisfying the home-venue property.

Proof. We organize the proof as follows. First, we
specify the groups (called our ‘blueprint’). Second,
we provide a partial designation of home venues.
Then we consider the possibilities that exist for the
vector cv, and for each of these possibilities, we con-
sider the set of distributions over the rounds. Finally,
we outline how, for each of these distributions, we
can arrive at a solution that satisfies the home-venue
property.

Consider Table 3, where column “Ri” stands for
Round i, i = 1, . . . , 5, and where each number from
{1, . . . , 16} stands for a team. We refer to this com-
position of groups as a ‘blueprint’, and we will argue
that, for any possible set of multiplicities, and for any
distribution of these multiplicities over the rounds,
this blueprint can be turned into a venue assignment
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Table 3

Blueprint that specifies the composition of the groups

R1 R2 R3 R4 R5

1, 5, 9, 13 1, 6, 11, 16 1, 4, 10, 15 1, 3, 12, 14 1, 2, 7, 8
2, 6, 10, 14 2, 5, 12, 15 2, 3, 13, 16 2, 4, 9, 11 3, 4, 5, 6
3, 7, 11, 15 3, 8, 9, 10 6, 7, 9, 12 5, 7, 10, 16 10, 11, 12, 13
4, 8, 12, 16 4, 7, 13, 14 5, 8, 11, 14 6, 8, 13, 15 9, 14, 15, 16

Table 4

Partial and provisional designation of teams that act as host

R1 R2 R3 R4 R5

1 · · · ·
2 12 16 11 6
3 10 9 5 13
4 7 8 15 14

satisfying the home-venue property, and hence into a
nation assignment.

Of course, Table 3 does not constitute a feasible
solution, as it has not been specified for each group
which team plays at its home-venue. This clearly
depends on the multiplicities; in Table 4, we provide
a partial specification of the teams that play at their
home-venue.

In fact, Table 4 provides an initial assignment such
that each team is the host in exactly 1 group, i.e., each
of the numbers 1, . . . , 16 occurs once.

We will now identify all possibilities for cv, the
vector of multiplicities. Without loss of generality,
we can assume that the entries in this vector are non-
increasing. As stipulated in Theorem 4.1, we have
cv ≥ 1 for each v ∈ V , and

∑
v∈V cv = 20, which

implies that there exist 5 distinct possibilities for the
first four entries of cv, namely:

(c1, c2, c3, c4) ∈ {(5, 1, 1, 1), (4, 2, 1, 1),

(3, 3, 1, 1), (3, 2, 2, 1), (2, 2, 2, 2)}. (11)

It is important to realize that, for each of these pos-
sibilities, the distribution of the multiplicities over
the rounds may differ, and that each of these distribu-
tions should be considered separately. As an example,
consider the case where (c1, c2, c3, c4) = (3, 3, 1, 1).
One possible solution of the Venue Assignment prob-
lem is that there are three rounds where the venues
of both team 1 and team 2 are host. Another possible
solution of the Venue Assignment problem is that in
rounds 1, 2, 3, the venue of team 1 is host, whereas in
rounds 3, 4, 5 the venue of team 2 is host. We refer to
each such solution as a distribution. We call two dis-

tributions distinct when no permutation of the rounds
maps one distribution to the other.

Given a particular choice for (c1, c2, c3, c4), it is
not immediately clear how many pairwise distinct
distributions exist. Let D(c1, c2, c3, c4) denote
the set of pairwise distinct distributions compat-
ible with (c1, c2, c3, c4). By a case analysis, we
claim that |D(5, 1, 1, 1)| = 1, |D(4, 2, 1, 1)| = 2,
|D(3, 3, 1, 1)| = 3, |D(3, 2, 2, 1)| = 11, and
|D(2, 2, 2, 2)| = 17. In fact, Table 5 displays the sets
D(c1, c2, c3, c4).

We now describe how Table 5 can be read such that
it provides a feasible solution satisfying the home-
venue property for each distribution. To do so, we
use the labels A, B, C, D for those teams whose home
venues have a multiplicity higher than 1.

Each entry of Table 5 should be interpreted in the
following way:

• Use the group composition from the blueprint in
Table 3 and the partial venue assignment from
Table 4 as a start. Notice that the latter may be
altered; the former will not change.

• The second column in Table 5 gives the set
D(c1, c2, c3, c4). Each of these entries indicates
which labeled teams are hosts in round R1 to R5.

• The third column assigns a specific team to
each label. As a consequence, this may induce
a change to the partial venue assignment spec-
ified in Table 4. Indeed, the labeled team hosts
a group in the rounds where it is supposed to
be host according to its distribution specified in
the second column.

• By exercising the previous step, some teams
might lose their current group to host. In
the fourth column “Altered Venues” additional
changes to the schedule are denoted, where for
every round altered compared to Table 4, the
new hosting teams are given.

In this way, Table 5 gives, for every possible venue
assignment, a schedule that satisfies the home-venue
property, thereby completing the proof. �
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Table 5

Extending the blueprint to a feasible schedule satisfying the home-venue property

(c1, c2, c3, c4) Multiplicity distribution Teams to label Altered Venues
over rounds (R1, . . . , R5),

i.e., D(c1, c2, c3, c4)

(5, 1, 1, 1) (A, A, A, A, A) A : 1
(4, 2, 1, 1) (AB, A, A, A, B) A : 1, B : 2

(AB, AB, A, A,−) A : 1, B : 4 R5 : 7

(3, 3, 1, 1) (AB, A, A, B, B) A : 1, B : 2 R1 : 11, R4 : 3

(AB, AB, A, B, −) A : 1, B : 2 R3 : 11, R4 : 12, R5 : 8

(AB, AB, AB,−, −) A : 1, B : 2 R1 : 16, R2 : 4, R4 : 12, R5 : 7

(3, 2, 2, 1) (ABC, ABC, A,−, −) A : 1, B : 2, C : 4 R4 : 12, R5 : 7

(ABC, AB, AC,−, −) A : 1, B : 7, C : 8 R1 : 6, R4 : 3, R5 : 2, 4

(ABC, AB, A, C,−) A : 1, B : 4, C : 3 R5 : 7

(AB, AB, AC, C,−) A : 1, B : 2, C : 12 R2 : 14, R5 : 7, 9

(ABC, A, A, BC, −) A : 1, B : 14, C : 11 R4 : 6, R5 : 2, 3, 15

(ABC, A, A, B, C) A : 1, B : 3, C : 2
(AB, AC, A, BC,−) A : 1, B : 2, C : 12 R3 : 11, R5 : 8

(AB, AC, A, B, C) A : 1, B : 3, C : 7
(AB, AB, A, C, C) A : 1, B : 4, C : 14 R5 : 7

(AB, A, A, BC, C) A : 1, B : 4, C : 14 R3 : 11, R5 : 8

(A, A, A, BC, BC) A : 1, B : 7, C : 14 R2 : 5, 13, R5 : 12

(2, 2, 2, 2) (ABCD, ABCD,−, −, −) A : 1, B : 2, C : 3, D : 4 R3 : 10, R4 : 12, R5 : 7

(ABCD, ABC, D,−, −) A : 1, B : 2, C : 3, D : 4 R3 : 5, R4 : 10, 12, R5 : 8

(ABC, ABC, D, D, −) A : 1, B : 2, C : 4, D : 15 R4 : 12, R5 : 7

(ABCD, AB, CD,−, −) A : 1, B : 2, C : 3, D : 4 R3 : 5, R4 : 16, 12, R5 : 8

(ABCD, AB, C, D, −) A : 1, B : 2, C : 4, D : 3 R2 : 13, R5 : 7, 12

(ABC, ABD, CD,−, −) A : 1, B : 2, C : 4, D : 8 R2 : 13, R4 : 12, R5 : 7, 10

(ABC, ABD, C, D, −) A : 1, B : 10, C : 4, D : 5 R4 : 12, R5 : 2

(ABC, AB, CD, D, −) A : 1, B : 2, C : 4, D : 11 R4 : 12, R5 : 8

(ABC, AB, C, D, D) A : 1, B : 3, C : 8, D : 14 R2 : 4, R3 : 10, R5 : 7

(AB, AB, CD, CD, −) A : 1, B : 4, C : 15, D : 16 R2 : 5, R4 : 12, R5 : 7

(AB, AB, CD, C, D) A : 1, B : 2, C : 15, D : 8 R4 : 12

(ABCD, A, B, C, D) A : 1, B : 4, C : 3, D : 2
(ABC, AD, BD, C, −) A : 1, B : 4, C : 3, D : 8 R1 : 10, R5 : 2

(ABC, AD, B, C, D) A : 1, B : 4, C : 3, D : 7
(AB, AC, BD, CD, −) A : 1, B : 4, C : 12, D : 11 R5 : 8

(AB, AC, BC, D, D) A : 1, B : 16, C : 4, D : 14 R5 : 7

(AB, AC, BD, C, D) A : 1, B : 4, C : 12, D : 8

Thus, Table 5 can be read as an instruction of how
to find a feasible schedule satisfying the home-venue
property for any solution of the Venue Assignment
problem.

As an example, consider the distribution
(ABC, AB, AC, −, −) which is an element of
D(3, 2, 2, 1). The corresponding entries in the third
column of Table 5 imply that in R1, teams 1, 7 and
8 act as host. Next the fourth column corresponding
to this distribution, contains “R1 : 6”, implying that
team 6 also acts as host in R1. Continuing in this
way, it follows that teams 1, 12, 10, and 7 act as
hosts in R2, teams 1, 16, 9, and 8 act as hosts in R3,
teams 3, 11, 5, and 15 act as hosts in R4, and teams
2, 4, 13, and 14 act as hosts in R5. It is interesting to
observe that in each of the schedules needed in the
proof of Theorem 4.1, the composition of the groups

as specified in the blueprint from Table 3 is identical.
Lastly, we like to point out that a nation might have

multiple venues where it can/must host. In the proof
of the previous theorem, we assumed every nation
to have one venue with a specific multiplicity. When
there are multiple venues, when calculating the travel
distance it matters which one is used to host a group.
To address this, we solve the Venue Assignment on
the complete set of all venues, with the restriction
that venues from the same nation cannot host in the
same round. For the Nation Assignment however, it
does not matter which venues are used specifically
- in this stage, we only assign nations to groups, in
such a way that a host nation will be scheduled to play
in its own venue(s). Hence, when solving the Nation
Assignment using the blueprint, we may assume that
every nation has exactly one venue.
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5. Solving real-life instances of the VNL

In Section 5.1, we give an integer programming
formulation of the Venue-Assignment Problem.
Section 5.2 presents the outcomes.

5.1. An Integer Programming Formulation

Let xv,r be the binary variables that indicate
whether venue v ∈ V hosts a group in round r ∈
{1, . . . , 5} = R. Further, we need real variables sv,w,r

(capturing distances between venues v and w acting
as host in rounds r and r + 1), mv,r (capturing the
largest distance traveled to venue v in round r), and
Kv,r (capturing the difference in travel distance to
venue v in round r). Let � = maxv,w d(v, w), and let
W ⊂ V × V be the set of pairs of venues that cannot
both host a group in the same round. The following
IP minimizes u: the sum of the difference in travel
distances per group, over the groups.

min
∑
v∈V

∑
r∈R

Kv,r (12)

s.t.
∑
v∈V

xv,r = k ∀r ∈ R,

(13)
∑
r∈R

xv,r = cv ∀v ∈ V,

(14)

xv,r + xw,r ≤ 1 ∀r ∈ R, ∀(v, w) ∈ W,

(15)

sv,w,r ≥ dv,w(xv,r + xw,r−1 − 1) ∀v, w ∈ V, ∀r ∈ R \ 1,

(16)

sv,w,r ≤ min(dv,wxv,r, dv,wxw,r−1) ∀v, w ∈ V, ∀r ∈ R \ 1,

(17)

mv,r ≥ sv,w,r ∀v, w ∈ V, ∀r ∈ R \ 1,

(18)

Kv,r ≥ mv,r − sv,w,r − D(1 − xw,r−1) ∀v, w ∈ V, ∀r ∈ R \ 1,

(19)

xv,r ∈ {0, 1}, Kv,r ≥ 0 ∀v ∈ V, r ∈ R.

(20)

First, observe that (12) captures the objective func-
tion, minimizing u = ∑

v,r Kv,r. Next, constraints
(13) ensure that in every round, k venues are host;
constraints (14) ensure that every venue hosts as often
as required; constraints (15) ensure that two venues

that should not host simultaneously, will not host
simultaneously. Auxiliary variables sv,w,r are at least
as large as dv,w, the distance traveled between venues
w, v in rounds r − 1 and r if these venues host in
the respective rounds, by constraints (16), but never
larger than dv,w by constraints (17). The variables
mv,r equal the maximum distances traveled to venue
v in round r (can equal zero 0 if v does not host in
round r), as defined by (18), and Kv,r resembles the
difference in traveled distances towards v in round
r compared to the maximum travel distance, where
the terms −D · (1 − xw,r−1) in (19) nullify any influ-
ence caused by distances between a venue that does
not host in round r − 1.

5.2. Results

As instances of VNL satisfy the conditions of
Theorem 4.1, we can proceed applying the integer
programming formulation (12)–(20) for the Venue-
Assignment to the known instances of the Volleyball
Nations League, and compare our solution to that of
the schedules used in practice. Formulation (12)-(20)
is implemented in Python 3 using Gurobi 9.0. All
computations have been done on a laptop with an Intel
Core i7-7700HQ CPU 2.8-GHz processor and 32 GB
RAM. The distances between venues are obtained via
https://www.distancecalculator.net/, and are divided
by 100 and rounded down. The four instances that

we analyse are the Women’s and Men’s tournaments
of 2018 and 2019. All values resulting from solv-
ing (12)-(20) are mentioned to be optimal by the
solver and are found within approximately 2 hours
of computation time.

https://www.distancecalculator.net/
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Table 6

Unfairness of real life Sreal and optimal Sopt , and their total travel distance

Instance u(Sopt) u(Sreal) d(Sopt) d(Sreal) Computation time (s)

M2018 233 1366 4272 4806 5105s
W2018 381 1541 4956 4169 1036s
M2019 347 1239 5237 4657 7230s
W2019 491 1288 4214 3708 4650s

Table 7

Optimal venue assignment for Men’s VNL 2018, with European venues in bold

Round 1 Round 2 Round 3 Round 4 Round 5

Melbourne (AUS) Goiânia (BRA) Katowicze (POL) Aix-en-Prov. (FRA) Hoffman Est. (USA)
Tehran (IRA) Jiangmen (CHN) Kraljevo (SRB) Lodz (POL) Ningbo (CHN)
Ufa (RUS) Osaka (JPN) Rouen (FRA) Ludwigsb. (GER) Ottawa (CAN)
Varna (BUL) Seoul (KOR) Sofia (BUL) Modena (ITA) San Juan (ARG)

Fig. 1. Optimal venues per round, VNL Men 2018.

Table 8

Real-life venue assignment for Men’s VNL 2018, with European venues in bold

Round 1 Round 2 Round 3 Round 4 Round 5
Rouen (FRA) Goiânia (BRA) Ottawa (CAN) Seoul (KOR) Melbourne (AUS)
Ningbo (CHN) Sofia (BUL) Osaka (JPN) Ludwigsb. (GER) Jiagmen (CHN)
Katowicze (POL) Lodz (POL) Ufa (RUS) Hoffman Est. (USA) Tehran (IRA)
Kraljevo (SRB) San Juan (ARG) Aix-en-Prov. (FRA) Varna (BUL) Modena (ITA)

In Table 6 we give the unfairness corresponding to
the optimal venue assignment, u(Sopt), and we give
the unfairness that corresponds to the venue assign-
ments used in practice, u(Sreal). Also we give the total
travel distance for the two corresponding solutions,
d(Sopt) and d(Sreal), where the distance is given in
units of 100 km. The final column gives the compu-
tation time in seconds.

As is imminent from Table 6, the fairness of the
schedules used in the Volleyball Nations League can
be much improved in comparison to the schedules
that have been used. Moreover, these improvements
in fairness do not come at the expense of the total
travel distance; indeed, total travel distance is simi-
lar for our schedules when compared to the real life
schedules.
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We now discuss our schedules in more detail. In
Table 7, the optimal schedule for the 2018 Men’s
tournament is shown, and the corresponding venue
assignment is also visualized in Fig. 1 – the output
for the other instances is given in Appendix A. For
comparison, the schedule used in practice is shown
in Table 8. In Tables 9–11 optimal venue assign-
ments are shown for Men and Womens tournaments
in 2018, 2019.

In Fig. 1 we see that the optimal schedule creates
two specific European rounds, where all groups are
played within Europe, and two rounds without any
group in Europe. In contrast with that, the schedule
that was used in practice had both European and non-
European venues in every round – thus leading to a
high amount of unfairness.

We point out that, as the unfairness in travel times
(as well as total traveled distance) is completely deter-
mined by the venue assignment (see Theorem 2.1),
any nation assignment is equally good with respect
to these objectives. Thus, apart from satisfying the
underlying SGP and assigning teams to their des-
ignated home venues, there is complete freedom to
optimize the nations assignment to whatever other
objectives the organizers see fit; this can be done
without compromising on the original objectives.

To arrive at a solution from Table 7 one would still
need to assign the labels to the teams in accordance
with the home venue property. In this tournament,
there are 4 countries who host twice - (2, 2, 2, 2) -
and the resulting optimal distribution is a permuta-
tion of the rounds of (ABC, AB, C, D, D) given in
Table 5.

6. Conclusion

We have introduced the Travelling Social Golfer
Problem (TSGP), generalizing the well-known Social
Golfer Problem, to model the scheduling of the Vol-
leyball Nations League. The TSGP allows us to model
the unfairness of a schedule that focusses on minimiz-
ing the differences in travel time between opposing
teams. We show that this problem can be decomposed
into two subproblems, Venue Assignment and Nation
Assignment, and we argue that solving the Venue
Assignment determines the amount of unfairness. We
describe the home-venue property that is present in
real-life solutions, and we show that, for the specific
dimensions of the VNL, such solutions always exist.
Finally, we model the problem as an integer program,
and solve the real-life instances of 2018 and 2019.

The results show that large improvements in fairness
are possible, without increasing total travel time.
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Appendix A. Optimal solutions to VNL-instances

Table 9

A venue assignment for Women’s VNL 2018 with minimum unfairness u(S) = 381

Round 1 Round 2 Round 3 Round 4 Round 5
Bangkok (THA) Eboli (ITA) Jiangmen (CHN) Apeldoorn (NED) Ankara (TUR)
Barneri (ITA) Rotterdam (NED) Naklon (THA) Bydgozcz (POL) Yekaterinburg (RUS)
Hong Kong Stuttgart (GER) Suweo (KOR) Kraljevo (SRB) Lincoln (USA)
Santa Fe (ARG) Walbrzyck (POL) Toyota (JPN) Ningbo (CHN) Macau (CHN)

Table 10

A venue assignment for Men’s VNL 2019 with minimum unfairness u(S) = 347

Round 1 Round 2 Round 3 Round 4 Round 5
Katowicze (POL) Ardabi (IRN) Cuiaba (BRA) Cannes (FRA) Brasilia (BRA)
Novi Sad (SRB) Brisbane (AUS) Jiangmen (CHN) Gondomas (POR) Hofman Est. (USA)
Plovdiv (BUL) Ufa (RUS) Mendoza (ARG) Leipzig (GER) Ningbo (CHN)
Urmia (IRN) Varna (BUL) Tokyo (JPN) Milan (ITA) Ottawa (CAN)

Table 11

A venue assignment for Women’s VNL 2019 with minimum unfairness u(S) = 491

Round 1 Round 2 Round 3 Round 4 Round 5
Ankara (TUR) Boryeong (KOR) Bangkok (THA) Apeldoorn (NED) Ankara (TUR)
Macau (CHN) Yekaterinburg (RUS) Brasilia (BRA) Conegliano (ITA) Belgrade (SRB)
Opole (POL) Ningbo (CHN) Jiangmen (CHN) Kortrijk (BEL) Hong Kong
Ruse (BUL) Tokyo (JPN) Lincoln (USA) Stuttgart (GER) Perugia (ITA)


