Randomness, uncertainty, and the optimal college football championship tournament size

Grace Muller, Samuel Hood and Joel Sokol*
H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USA

Received 2 December 2021
Accepted 22 December 2022
Pre-press 4 March 2023
Published 23 March 2023

Abstract

Every year, there is a popular debate over how many teams should take part in the NCAA's FBS-level college football championship tournament, and especially whether it should be expanded from 4 teams to 8 or even 12. The inherent tradeoff is that the larger the tournament, the higher the probability that the true best team is included ("validity"), but the lower the probability that the true best team will avoid being upset and win the tournament ("effectiveness"). Using simulation based on empirically-derived estimates of the ability to measure true team quality and the amount of randomness inherent in each game, we show that the effect of expanding the tournament to 8 teams could be very small, an effectiveness decrease of only $2-3 \%$ while increasing validity by $1-4 \%$, while a 7 -team tournament provides slightly better tradeoffs. A 12 -team tournament would decrease effectiveness by $5-6 \%$.

Keywords: Simulation, sports prediction, American college football tournament, uncertainty assessment

1. Introduction

In 2012, the National Collegiate Athletic Association (NCAA) approved using a four-team postseason playoff tournament to determine a national champion in college football at the FBS level (the highest level of intercollegiate competition), starting in 2014. The decision effectively doubled the number of teams involved in the postseason tournament, and there was immediate discussion, which has continued through now, about whether an 8-team tournament (or larger) would be even better. In this paper, we address the question of the optimal size of this postseason tournament.

Each year since at least 1936, a national champion has been chosen among FBS (formerly Division I-A) college football teams. Initially, the champion was chosen by polls of experts. These expert polls

[^0]included the Associated Press (AP) poll of sportswriters (the first major national poll) from 1936 to 1997, and various polls of coaches from 1950 to 1997 (e.g., United Press International from 1950 to 1990, USA Today/CNN from 1991 to 1996, and USA Today/ESPN in 1997). The highest-ranked team in the polls was declared national champion; in the few years that the AP and coaches' polls disagreed, the national championship was shared between the two polls' winners (National Collegiate Athletic Association). In 1998, a new system, the Bowl Championship Series (BCS), was created. In the BCS, expert poll rankings and analytical rankings (called "computer rankings") were combined to determine a ranking of the top teams. From 1998 to 2005, the BCSdesignated national champion was unofficial (and for the 2003 season, the AP poll chose a different champion). From 2005 to 2013, the top two teams in the BCS played in a designated postseason game, with the winner being named the official national champion (National Collegiate Athletic Association). Beginning in 2014, a new system has been in place:

A panel of experts selects four teams to play a threegame, two-round single-elimination tournament, the winner of which is named national champion.

The progression from polls (effectively a one-team tournament) to the BCS championship game (a twoteam tournament) to a four-team tournament has been motivated partly by economics (the paid attendance and television revenue of playoff games is substantial), but even more so by a grassroots feeling that it is necessary to determine a champion "on the field" (i.e., by playing games) rather than by poll or computer, because neither voters nor algorithms are guaranteed to identify the absolute best team(s). Before the BCS system, the top teams in the polls rarely played each other at the end of the season, and it could be difficult to differentiate between the best teams. The novelty of the BCS system was that the two highest-ranked teams were guaranteed to play each other at the end of the season, and the argument in favor of having even more teams in the championship tournament is that even the top two can be difficult to differentiate from a larger set of very good teams so letting the teams play each other is the most fair way to sort out which one is really the best. (Even in the BCS system, there could be significant disagreement as to the selection of the two playoff teams, for example in 2004 when three major-conference teams (USC, Oklahoma, and Auburn) each won all of their regular-season games.)

On the other hand, the outcomes of sporting events contain enough randomness that the winner of a game is not necessarily the better team, and it is possible that a committee, although it might make mistakes, could have a higher probability of correctly identifying the best team than playoff games that are subject to football's inherent randomness. Today's tournament selection committee has two advantages over polls of the past: better information (many more games are televised to a national audience, video recording/playback capability allows them to see multiple games that are played at the same time, and more and deeper statistical information is available about teams and players) and better analytics (many of the top quantitative rating and evaluation systems were not developed in the polling era). As a result, the playoff selection committee is likely to have a smaller error in its evaluation of teams than polls had in the past. The progression of tournament size has actually been opposite what intuition might suggest is optimal: As human experts have been given the tools to make better judgments and decrease their likelihood of error, the tournament size has expanded, increasing the chance that a team correctly identified
as the best by the human experts will fail to win the tournament.

In this paper, we investigate the optimal size of the college football national championship tournament by taking into account the relative magnitudes of the randomness inherent in college football and the errors in team evaluation by humans and algorithms.

2. Literature review

Optimal tournament design has been studied before, but none of the existing literature is sufficient to answer our research question. One main stream of optimal tournament size research (e.g., Dizdar 2013; Fullerton and McAfee 1999) has focused on the issue of effort, especially in research tournaments. Given assumptions on the technology and knowledge available to each firm that might enter a research competition, and on their probabilities of winning, these papers use game-theoretic models to estimate how much effort each competitor would spend, and use that analysis to determine the optimal number of participants, how to select participants, etc. Others (e.g., Chen, Ham, and Lim 2011; Hochtl et al. 2010; Sheremeta and Wu 2012) try to empirically test such predictions. These papers all start with the basic assumption that firms have more than one way to spend effort, so they might choose to put forth less effort in competitions where they are less likely to win (and thus a firm that is likely to succeed might also not need to put in maximum effort). In our work, we sidestep this issue, presuming that every team in a national championship tournament has just one football goal (to win the tournament) and will put forth maximum effort.

A second stream of research in designing optimal tournaments is not the composition, but rather the structure. Glenn (1960), Marchand (2002), Scarf and Bilbao (2006), and Seals (1963), among others, compare different tournament setups such as round-robin, pure knockout, and hybrids. In our work, we assume that the NCAA will retain its single-elimination (knockout) round-based format. Glickman (2008), Hwang (1982), and Schwenk (2000) look at adaptive approaches where tournaments may be re-seeded between rounds; in our work, we assume that the NCAA will not re-seed, so fans can make travel plans in advance (as is the case currently for the existing 68-team NCAA basketball tournament).

Other research, assuming a non-reseeded knockout tournament, looks at the optimality of the standard
seeding of teams into tournament slots. Appleton (1995), Groh et al. (2012), Jennessy and Glickman (2016), Horen and Riezman (1985), Ryvkin (2005), and Vu (2010) investigate how to seed teams so that various objectives are optimized. For example, Horen and Riezman (1985) show that under some assumptions about team strength and head-to-head win probability, for a 3 -round, 8 -team tournament the standard seeding method does not maximize the probability that the best team will win. Jennessy and Glickman (2016) show the same empirically for 16-team tournaments, using a Bayesian approach that considers uncertainty in team strength. However, we assume that the NCAA will retain standard seeding, to retain fairness properties that Vu (2010) calls envy-freeness (that in every round, each team's best-possible opponent must be weaker than the bestpossible opponent of all lower-seeded teams) and delayed confrontation (that the top 2^{k} teams may not play each other until only 2^{k} or fewer teams remain in the tournament). We also assume that the NCAA will start every game with the standard $0-0$ score, rather than giving one team some initial points based on an estimate of how much better they are than their opponent, as in the approach of Paine (2014).

The objective function when referring to an "optimal" tournament can be defined in different ways. Most research assumes a goal of maximizing the probability that the tournament winner will be the best team (Appleton 1995; David 1988; Glenn 1960; Glickman 2008; Jennessy and Glickman 2016; Hwang 1982; Marchand 2002; Schwenk 2000; Seals 1963; Vu 2010); others maximize the probability that the winner will be a certain team (Vu 2010), maximize the quality of the winner's result in research tournaments (Dizdar 2013; Fullerton and McAfee 1999), minimize the fraction of unimportant games (Scarf and Bilbao 2006; Scarf and Shi 2008), maximize the average rank of the winner (Scarf and Bilbao 2006), maximize the average revenue of the tournament (Vu 2010), maximize the probability of the top two teams meeting in the final (Jennessy and Glickman 2016), maximize the consistency between expected number of wins and team strength (Jennessy and Glickman 2016), etc. Sokol (2010) also considered the number of significant upsets in a tournament as a driver of fan interest. In this paper, we consider two objectives. The primary objective is the probability of correctly identifying the best team, i.e., the probability that the best team wins the tournament; we refer to this as the effectiveness of the tournament. We also discuss secondarily the probability that the best team is
selected to play in the tournament; we refer to this as the tournament's validity.

Finally, and critically for our work, in the previous literature the information about each team, including its strength relative to competing teams, is almost always assumed to be known deterministically. Of all the work cited above, only Glickman (2008) and Jennessy and Glickman (2016) consider uncertainty in the strength of each team; their Bayesian models address how to seed (Jennessy and Glickman 2016) or re-seed (Glickman 2008) a tournament, not how many teams should be included.

So, none of the existing literature exactly addresses the question of how many teams should be in a tournament like the college football championship given both uncertainty in team strength estimation and randomness of game results.

The remainder of the paper is organized as follows: In Section 3, we describe our underlying models of the uncertainty and randomness in the system. In Section 4, we discuss how we populate our model with empirical data and simulate tournament results. Section 5 discusses parameterizing by the relative magnitudes of randomness and uncertainty, and we use the method of Curry and Sokol (2016) to estimate those current relative magnitudes and their effects on tournament outcomes. Finally, in Section 6 we show the simulation results, and in Section 7 we discuss the implications of our work for the optimal size of the national college football championship tournament and conclude with some final remarks.

3. Models

In this section, we describe the core model. Here and in the remainder of the paper, we refer to a random variable by an uppercase letter and a specific realization of it by the corresponding lowercase letter (e.g., a would be a single draw from the random variable A).

We let $g=\left(t_{1}, t_{2}\right)$ denote a college football game between teams t_{1} and t_{2}, where the pair of teams is ordered lexicographically. Let $s_{t_{1}}^{\text {True }}$ and $s_{t_{2}}^{\text {True }}$ represent the true strengths of teams t_{1} and t_{2}; we assume that those team strengths do not vary during a season. When teams t_{1} and t_{2} play each other in game g, the expected margin of victory (the line) $l_{g}^{\text {True }}$ for team t_{1} over team t_{2} is the difference of the team strengths:

$$
\begin{equation*}
l_{g}^{\text {True }}=s_{t_{1}}^{\text {True }}-s_{t_{2}}^{\text {True }} \tag{1}
\end{equation*}
$$

In other words, in the absence of randomness, team t_{1} would beat team t_{2} by $l_{g}^{\text {True }}$ points. Note that if t_{2} is a better (stronger) team than t_{1} at the time of game g, then $l_{g}^{\text {True }}$ will be negative. (Equation (1) assumes the teams play on a neutral field, i.e., neither team has the advantage of playing at its home stadium. If one team is playing at home, an additional term for home-field advantage would be added.)

Of course, true team strengths $s_{t}^{\text {True }}$ are not exactly known, and different observers (e.g., experts, poll respondents, computer rating systems, etc.) will have different estimates of $s_{t}^{\text {True }}$. Based on the results, game statistics, and observed play in previous games, each observer i has an estimate $s_{t, g}^{i}$ of the strength of team t at the time of game g. The difference between $s_{t, g}^{i}$ and $s_{t}^{\text {True }}$ is the observation error of observer i for team t, a random variable which we denote as $e_{t, g}^{i}$. Therefore,

$$
\begin{equation*}
s_{t, g}^{i}=s_{t}^{\text {True }}+e_{t, g}^{i} \tag{2}
\end{equation*}
$$

We assume that for each observer i, the values of $e_{,, \text {, }}^{i}$ are independent and identically distributed across teams and games.

When teams t_{1} and t_{2} play each other in a game g on a neutral field, as is the case in the postseason tournament, the margin of victory predicted by observer i will be

$$
\begin{align*}
l_{g}^{i} & =s_{t_{1}, g}^{i}-s_{t_{2}, g}^{i}=\left(s_{t_{1}}^{\text {True }}+e_{t_{1}, g}^{i}\right) \\
& -\left(s_{t_{2}}^{\text {True }}+e_{t_{2}, g}^{i}\right)=l_{g}^{\text {True }}+\left(e_{t_{1}, g}^{i}-e_{t_{2}, g}^{i}\right) \tag{3}
\end{align*}
$$

The outcome of a game is assumed to be based on a random process; even a perfect observer (for whom $s_{t, g}^{i}=s_{t}^{\text {True }}$ for all t and g) will be unable to exactly predict the margin of victory (i.e., the number of points by which team t_{1} wins game g). We denote by R the random variable for the error in the prediction, so that for game $g=\left(t_{1}, t_{2}\right)$ the actual margin of victory m_{g} of team t_{1} over team t_{2} is different from $l_{g}^{\text {True }}$ by r_{g} :

$$
\begin{equation*}
m_{g}=l_{g}^{\text {True }}+r_{g}=\left(s_{t_{1}}^{\text {True }}-s_{t_{2}}^{\text {True }}\right)+r_{g} . \tag{4}
\end{equation*}
$$

R includes all of the random factors that might affect the outcome of a football game, such as day-to-day performance variation, weather, the direction a loose ball bounces on the ground, etc. We assume that the values of r are independent and identically distributed across games, and that the distribution of $e_{t, g}^{i}$ is independent of the value $s_{t}^{\text {True }}$.

In reality, there is no data to tell us true team strengths $s^{\text {True }}$. Rearranging terms in Equation (3) and solving for $l_{g}^{\text {True }}$, or solving Equation (2) for $s_{t}^{\text {True }}$ and substituting into Equation (4), yield that for each observer i, the observed margin of victory is

$$
\begin{equation*}
m_{g}=l_{g}^{\text {True }}+r_{g}=\left(s_{t_{1}, g}^{i}-s_{t_{2}, g}^{i}\right)+\left(e_{t_{2}, g}^{i}-e_{t_{1}, g}^{i}+r_{g}\right) \tag{5}
\end{equation*}
$$

Thus, for game g, observer i 's prediction error x_{g}^{i} is

$$
\begin{equation*}
x_{g}^{i}=m_{g}-\left(s_{t_{1}, g}^{i}-s_{t_{2}, g}^{i}\right)=e_{t_{2}, g}^{i}-e_{t_{1}, g}^{i}+r_{g} \tag{6}
\end{equation*}
$$

There are a variety of observers who publish their estimates of team strengths s. In this paper, we first demonstrate the model using the Sagarin ratings from Sagarin as the observer, for two reasons: availability and quality. End-of-season ratings ${ }^{1}$ for each college football team are available in the format we need (where the difference between two teams' ratings is the estimate of the margin of victory in a game between those teams) for all years from 1998-2019 (we omit 2020 because of the different schedules and playing conditions in the COVID year), and the empirical standard error in the Sagarin ratings' margin-of-victory predictions (i.e., the observations of x^{Sag}) is less than a point higher than that of the Las Vegas betting line, a common standard for game prediction quality.

As we note in Section 4, both the Sagarin ratings' predictions $L^{\text {Sag }}$ and the Las Vegas line $L^{\text {Vegas }}$ have normally-distributed errors $X^{\text {Sag }}$ and $X^{\text {Vegas }}$ with means that are not significantly different from zero. Others have also noted and/or used this normal distribution in football (e.g., Gill 2000; Berry 2003; Fanson 2020). Since X is empirically shown to be normally distributed with mean zero, we make the mild assumption that its components E (error in teamstrength estimates) and R (in-game randomness) are also both normally distributed and all independent of each other, with variances σ_{E}^{2} and σ_{R}^{2}, respectively, and mean zero for R. (Because ratings are relative to each other, the mean μ_{E} of E is not important.) Therefore, for each i (Sagarin and Vegas), for any game the three independent components of the observed prediction error x^{i} are

[^1]\[

$$
\begin{align*}
& e_{t_{1}, g}^{i} \sim N\left(\mu_{E^{i}}, \sigma_{E^{i}}^{2}\right), e_{t_{2}, g}^{i} \sim N\left(\mu_{E^{i}}, \sigma_{E^{i}}^{2}\right), \tag{7}\\
& \quad \text { and } r_{g} \sim N\left(0, \sigma_{R}^{2}\right)
\end{align*}
$$
\]

so

$$
\begin{equation*}
X^{i} \sim N\left(0,2 \sigma_{E^{i}}^{2}+\sigma_{R}^{2}\right) \tag{8}
\end{equation*}
$$

The fraction of the variance in X^{i} that is attributable to error in team strength estimates ($2 \sigma_{E^{i}}^{2}$) and to ingame randomness (σ_{R}^{2}) is not known. In Section 5, we discuss how we parameterize our results on the fraction of variation attributable to in-game randomness, but first, in the next section, we discuss how we use our model to create the simulated tournaments that we use for our analysis.

4. Simulating tournaments

Our tournament simulation has four basic steps:

1. Draw observed team strengths $s^{\text {Obs }}$ for each team from an empirical distribution of historical ratings. The observed team strengths correspond to the opinions of the tournament selection committee, so the teams chosen for the tournament and their seeding in the tournament are based on the observed team strengths.
2. Generate true team strengths $s^{\text {True }}$ for each team based on the observed team strength and a randomly-generated observation error from the distribution of E. The $s^{\text {True }}$ are the teams' actual strengths, so game outcomes in the simulated tournaments are based on these.
3. Seed the tournament based on observed team strengths $s^{\text {Obs }}$.
4. Simulate the winner and loser of each tournament game based on true team strengths $s^{\text {True }}$ and in-game randomness R.

Types of simulated tournaments

There are four types of tournament setups that we simulate. In some, like the current football playoff system, the top (observed) teams are the tournament participants regardless of whether or not they are champions of their conferences. We refer to this type of tournament as a fully-open tournament. Another approach, like the current NCAA basketball tournament system, is to guarantee participation to
conference champions regardless of their ranking. We refer to this type of tournament as a partially-open tournament. For football, most proposals have been to guarantee a spot in the tournament only to winners of the "Power Five" conferences: the Atlantic Coast Conference (ACC), Big 12 Conference (Big 12), Big Ten Conference (Big Ten), Pac-12 Conference (Pac12), and Southeastern Conference (SEC).

Some proposed tournament setups have included guaranteeing that the highest-ranked non-Power-Five team would be included in the tournament. This guarantee could be included in both fully-open and partially-open tournaments, yielding the full set of four tournament types that we test (see Table 1). The non-Power-Five teams are from the American Athletic Conference (AAC), Conference USA (C-USA), Mid-American Conference (MAC), Mountain West Conference (MWC), and Sun Belt Conference (Sun Belt), which collectively are called the "Group of Five" conferences, plus any teams that are independent (not playing in a conference, but part of the FBS; in our simulations we do not include Notre Dame in this category because they are viewed like a PowerFive team, and in fact they play in a Power-Five conference for non-football sports).
Because we are going to compare different types of tournaments as well as tournament sizes, we split the process into two parts. In each run of the simulation, we first generate a set of teams with observed and real strengths, using Steps 1 and 2 . Then, we simulate each type and size of tournament using Steps 3 and 4. We next describe in more detail each of the steps.

Drawing observed team strengths

We use Sagarin rating data for the past eleven years, 2009-2019, as the set of empirically observed team ratings (we use only ratings for teams in the NCAA's FBS). There were 120 FBS teams in 2009-2011, 124 in 2012, 125 in 2013, 128 in 2014-2016, and 130 in 2017-2019. The ratings varied from a high of 105.35 (Clemson in 2016) to a low of 30.72 (Massachusetts in 2019). The overall distribution of ratings passes the Anderson-Darling and Kolmogorov-Smirnoff tests for normality, but we observed that the tails are not quite a good fit in the normal probability plot. Because the behavior of the upper tail (i.e., the best teams) is a primary focus of this paper, we therefore chose to not model the observed ratings with a normal distribution; instead, we used the eleven years (1383 data points) of Sagarin data as an empirical distribution.

Table 1
Tournament types tested

Tournament type	Tournament size k	Description
Fully-open	$1 \leq k \leq 128$	k highest-ranked teams regardless of conference affiliation and conference champion status
Fully-open with non-Power-Five guarantee	$k=1$	Highest-ranked non-Power-Five team Partially-open
	$1 \leq k \leq 128$	Highest-ranked non-Power-Five team, and $k-1$ highest-ranked other teams
$6 \leq k \leq 128$	k highest-ranked Power-Five conference champions All five Power-Five conference champions, and $k-5$ highest-ranked other teams	
Partially-open with non-Power-Five guarantee	$1 \leq k \leq 5$	k highest-ranked teams from among the highest-ranked non-Power-Five team and the Power-Five conference champions
	$k \leq 6$	All five Power-Five conference champions, and highest-ranked non-Power-Five team

Tables 10, 11, and 12 in Appendix 1 show the full set of Sagarin ratings from 2009 to 2019.

For partially-open tournaments, it is important to know which teams are the Power-Five conference champions and which is the top-rated non-PowerFive team. Therefore, we keep that data separate, and draw from those empirical distributions separately. Tables 13 and 14 show the Power Five conference champions and top-rated non-Power-Five teams from 2009-2019.

For each of the simulated data sets (one for each run of the simulation), we draw $s_{t}^{\text {Obs }}$ for each of 128 observed team strengths at the time of tournament selection: For each Power-Five conference we draw one rating from the set of its champions' data, we draw one rating from the set of topranked non-Power-Five team ratings, and we draw the remaining 122 from the full set of remaining Sagarin ratings (excluding the Power-Five conference champions and the top-ranked non-Power-Five teams). The observed rating distributions for each Power-Five conference's champion are sufficiently different that we draw once from each conference's empirical distribution, rather than five times from the combined data set.

Generating true team strengths

To simulate games in a tournament, we need each team's true strength $s_{t}^{\text {True }}$. The values of $s_{t}^{\text {True }}$ are unknown (otherwise, there would be no need for a tournament to determine the best team); what is known is only $s_{t}^{\text {Obs }}$, each team's observed strength. Therefore, we need to generate for the simulation
a set of true strengths $s_{t}^{\text {True }}$ based on the observed strengths s_{t}^{Obs}.

Given the set of observed team strengths, we use a conditional probability approach to randomly generate true team strengths. The normality of the overall distribution of Sagarin ratings allows us to model the distribution of team observed strength S^{Obs} as the sum of independent draws from two iid normal distributions: the true strength $S^{\text {True }}$ (a normal distribution with mean $\mu_{\text {Sag }}$ and variance $\sigma_{\text {True }}^{2}$) and the estimation error E^{Obs} (a normal distribution with mean 0 and variance σ_{E}^{2} (abs . Because we are using the Sagarin data, $S^{\mathrm{Obs}}=S^{\mathrm{Sag}}, E^{\mathrm{Obs}}=E^{\mathrm{Sag}}$, and $\sigma_{E^{\mathrm{Obs}}}^{2}=\sigma_{E^{\text {Sag }}}^{2}$.
In Appendix 3, we show that $S^{\mathrm{True}} \mid S^{\mathrm{Obs}}$ is normally distributed, according to

$$
\begin{equation*}
N\left(s_{t}^{\mathrm{Obs}}-\left(s_{t}^{\mathrm{Obs}}-\mu_{\text {Sag }} \frac{\sigma_{E^{\text {Sag }}}^{2}}{\sigma_{\text {Sag }}^{2}},\left(\sigma_{\text {Sag }}^{2}-\sigma_{E^{\text {Sag }}}^{2}\right) \frac{\sigma_{E^{\text {Sag }}}^{2}}{\sigma_{\text {Sag }}^{2}}\right) .\right. \tag{9}
\end{equation*}
$$

In Equation (9), $\mu_{\text {Sag }}$ and $\sigma_{\text {Sag }}^{2}$ are observed data, and s_{t}^{Obs} is drawn from Sagarin data as described above. In Section 5, we describe how we deal with the unknown $\sigma_{E^{\text {sag }}}^{2}$ by parameterizing, bounding, and using a natural-experiment approach for estimation.

For a single value of $\sigma_{E^{\text {sag }}}^{2}$, we could generate $s_{t}^{\text {True }}$ from s_{t}^{Obs} by drawing from the distribution $N\left(s_{t}^{\mathrm{Obs}}-\right.$ $\left(s_{t}^{\text {Obs }}-\mu_{\text {Sag }} \frac{\sigma_{E^{\text {Sag }}}^{2}}{\sigma_{\text {Sag }}^{2}},\left(\sigma_{\text {Sag }}^{2}-\sigma_{E^{\text {Sag }}}^{2}\right) \frac{\sigma_{E}^{2} \text { Sag }}{\sigma_{\text {Sag }}^{2}}\right)$. However, to compare across multiple values of $\sigma_{E^{\text {sag }}}^{2}$, we instead generate a z-score z_{t} for each team, and use the same z-score for each value of $\sigma_{E^{\text {sag }}}^{2}$.

Fig. 1. Structure of a 3-round size-8 tournament.

Seeding the tournament

Because there are approximately 128 teams playing FBS-level football each year, and 128 is a convenient power of 2 for a single-elimination tournament, we use 128-team tournaments in our simulations. In a full 128-team tournament, the teams are seeded into a 7 round single-elimination structure, in order of observed rating. In the first round, the i th-highest-rated team plays against the $\left(2^{7}-\right.$ $i+1$)th-highest-rated team, for every $i=1, \ldots, 2^{7}$. In subsequent rounds, previous-round winners are matched so that, if higher-rated teams always win, the sum of the ranks of teams playing against each other in round r would always equal $2^{7-r+1}+1$; otherwise, a lower-rated team that beats a higherrated team would take the higher-rated team's place
in the next round. Figure 1 shows the structure of a 3-round size-8 tournament as an example. This is a common structure for single-elimination tournaments (for example, it is used in the NCAA basketball championship tournament).

In a size-128 tournament with fewer than 128 teams, a team automatically advances to the next round if it has no opponent in the current round. For example, in Figure 1, if there were only three teams, Teams 1, 2, and 3 would have no opponents in the first round, so they would automatically advance to the second round. In the second round, Team 1 would again have no opponent (since it would normally play the winner of the game between Teams 4 and 5), so it would automatically advance to the third round, where it would play against the winner of the second-round game between Teams 2 and 3. Auto-
matic advancement in the absence of an opponent is called a bye.

The teams that play in the tournament are selected as in Table 1 , according to their observed team strengths. For example, in an 8 -team partially-open tournament where Power-Five conference champions and the highest-rated Non-Power-Five team are all guaranteed places in the tournament, the eight teams in the tournament would be the five Power-Five conference champions, the highest-rated Non-PowerFive team, and the highest-rated two other teams. In partially-open tournaments, we assume that teams are seeded based on their ratings without regard to conference championship or Power-Five status, similar to the NCAA basketball tournament. For example, if a conference champion team is the 8th-highest-rated team out of those participating in the tournament, then that team will be seeded 8th despite being one of the first five teams that was automatically selected for the tournament.

Simulating the tournament

For each simulated tournament, we calculate the probability of each team winning based on the teams' true (simulated) team strengths and the variance σ_{R}^{2} of in-game randomness. The calculation is straightforward. Let $p_{r t}$ be the probability that Team t wins round r of the tournament (defining $p_{0 t}=1$ for every team in the tournament), and $q_{t u}$ be the probability that Team t would beat Team u if they play head-tohead, so
$q_{t u}=\operatorname{Pr}\left(N\left(s_{t}^{\text {True }}-s_{u}^{\text {True }}, \sigma_{R}^{2}\right)>0\right)=\Phi\left(\frac{s_{t}^{\text {True }}-s_{u}^{\text {True }}}{\sigma_{R}}\right)$.

Let $O_{r t}$ be the set of all possible opponents for team t in round r. Then, for each round r and each team t,

$$
\begin{equation*}
p_{r t}=p_{r-1, t} \sum_{u \in O_{r t}} p_{r-1, u} q_{t u} . \tag{11}
\end{equation*}
$$

Let t^{*} be the team with the highest true strength among all teams. As defined earlier, each simulated tournament is valid if t^{*} is one of the teams selected to play in the tournament, and the probability that the tournament is effective is equal to $p_{7, t^{*}}$.

5. Parameterizing on randomness

The simulation procedure described above depends on two different parameters: the variance σ_{R}^{2} of the randomness in college football games, and the variance $\sigma_{E^{\text {obs }}}^{2}$ in the error in team strength estimations (the difference between the observed ratings and the true ones). Neither of those variances is known, but we can obtain results by parameterizing over σ_{R} and $\sigma_{E^{\text {obs }}}$ (which is really $\sigma_{E^{\text {sag }}}$ because we use the Sagarin ratings as our observed team strengths). We test values of $\sigma_{R} \in\{0,1,2, \ldots, 16\}$ and $\sigma_{E^{\text {Obs }}} \in\{0,1,2, \ldots, 13\}$. Appendix 2 shows the validity and effectiveness of each tournament from 1 to 128 teams, of each of the four types in Table 1, for each of the $17 \times 14=238$ pairs of parameter values.

Bounding and reducing the set of parameter values

The ability to parameterize can be valuable for extending this work to other tournaments; however, for the college football national championship tournament using Sagarin ratings as the observed team strengths, we can significantly reduce the relevant set of parameter values.

First, we deduce an upper bound on σ_{E} obs using the fact that each observed team strength is equal to the team's real strength plus an error term. Because we assume the errors are iid, Equation (2) implies that $\sigma_{\text {Obs }}^{2}=\sigma_{\text {True }}^{2}+\sigma_{E^{\text {Obs }}}^{2}$, so $\sigma_{\text {Obs }}^{2} \geq \sigma_{E^{\text {Obs }}}^{2}$. Since the variance in Sagarin ratings is approximately 169 , this gives the upper bound

$$
\begin{equation*}
\sigma_{E^{\operatorname{sag}}} \leq 13 \tag{12}
\end{equation*}
$$

A second upper bound on σ_{E} obs can be derived from Equation (8), the distribution of X^{Obs}, the error in the observed ratings' predictions of each game's margin of victory. Empirically, $X^{\text {Sag }}$ is normally distributed with variance approximately 262 (ThePredictionTracker.com). Equation (8) implies that $\sigma_{X \text { Sag }}^{2}=2 \sigma_{E^{\text {sag }}}^{2}+\sigma_{R}^{2}$, which gives (for the Sagarin ratings) a tighter upper bound:

$$
\begin{equation*}
\sigma_{E^{\mathrm{Sag}}} \leq \sqrt{\frac{262}{2}} \approx 11.4 \tag{13}
\end{equation*}
$$

Equation (8) also provides a value for σ_{R} given a value of $\sigma_{E^{\text {Sag }}}$:

$$
\begin{equation*}
\sigma_{R}=\sqrt{262-2 \sigma_{E^{\mathrm{sag}}}^{2}} \tag{14}
\end{equation*}
$$

Finally, we can also derive an approximate lower bound on reasonable values of σ_{E} obs. The Sagarin ratings use only game-score information as input ${ }^{2}$. The margin of victory in each game played by team i gives an observation of team i 's true strength relative to its opponent, but that observation is wrong by some amount equal to the effect of the in-game randomness, i.e., a normal random variable with mean zero and variance σ_{R}^{2}.

The distribution of the average difference between observed margin m_{g} and true strength difference $l_{g}^{\text {True }}$ in k games played by team i will have variance $\frac{\sigma_{R}^{2}}{k}$, so the error in the observer's estimate of team i 's strength will have at least that much variance. (It might have more, if the observer imperfectly converts game-score information to team-strength estimates, but as a lower bound the error in the observer's team strength estimate will have variance at least $\frac{\sigma_{R}^{2}}{k}$.) Since $\sigma_{E^{\text {sag }}}^{2} \geq \frac{\sigma_{R}^{2}}{k}$ and $\sigma_{R}^{2}+2 \sigma_{E^{\text {sag }}}^{2}=\sigma_{X^{\text {sag }}}^{2}$, we can derive a bound of $\sigma_{E^{\text {Sag }}}^{2} \geq \frac{\sigma_{K}^{2} \text { Sag }}{k+2}$. By the time teams are chosen for the national championship tournament, most teams will have played 11 games (some may have played one or two fewer games, or one or two more games), which yields an approximate bound of

$$
\begin{equation*}
\sigma_{E^{\mathrm{Sag}}} \geq \sqrt{\frac{262}{13}} \approx 4.5 . \tag{15}
\end{equation*}
$$

Taken together, the bounds yield $4.5 \leq \sigma_{E^{\text {Sag }}} \leq$ 11.4.

Estimating the actual value of $\sigma_{E^{\text {Sag }}}$

We know from Equation (8) that our model's variance in prediction error is equal to $2 \sigma_{E^{\text {sag }}}^{2}+\sigma_{R}^{2}$; however, the amount of variance attributable to error in team strength estimates ($2 \sigma_{E^{\text {sag }}}^{2}$) and to in-game randomness (σ_{R}^{2}) is not known. We follow the naturalexperiment methodology of Curry and Sokol (2016) to estimate the relative magnitudes of randomness and uncertainty that comprise the total variance in X^{i} (the error in observer i 's predicted margin of

[^2]victory). As in Curry and Sokol (2016), we exploit the rare cases in which two teams played a sameyear rematch (i.e., they played each other twice in the same college football season); this allows us to estimate $\sigma_{E^{\text {sag }}}$ and σ_{R}^{2} without the need to try to estimate $s_{t}^{\text {True }}$, which would introduce another source of error. We found 63 such matchups from 1997 through 2019, and obtained data on the location, Las Vegas line (predicted margin of victory), and actual margin of victory from OddsShark.com. We used the Las Vegas line because Sagarin data was not fully available, but the two are similar: From 2009 to 2019 the estimation error of the Las Vegas line (ThePredictionTracker.com) was normally distributed with variance σ_{X}^{2} vegas $=243$ and mean not significantly different from zero. Because the Las Vegas and Sagarin estimates are both subject to the exact same in-game randomness, we could attribute the difference of $\sigma_{X}^{2}{ }^{\text {sag }}-\sigma_{X^{\text {vegas }}}^{2}=262-243=19$ in their error variances entirely to error in team strength estimation ${ }^{3}$.

The rematch data is shown in Appendix 4, in Table 15 . We first adjust each line and each outcome by 3 points in favor of the road team to account for the value of playing at home, which models generally value at approximately three points (see, for example, (Sagarin)). We then use the models of Curry and Sokol (2016) to estimate the fraction of variance in the line estimation error that is due to randomness. Their models' maximum likelihood estimates are that approximately 167 or 194 of the variance in the line estimation error is due to σ_{R}^{2}, the in-game randomness ${ }^{4}$. As a result, the estimates of $\sigma_{E^{\text {sag }}}$ are $\sqrt{\frac{262-194}{2}} \approx 6$ and $\sqrt{\frac{262-167}{2}} \approx 7$.
Even having an estimate for the randomness component of total variance and an estimate for the Sagarin ratings' estimation error, we still do not know the variance contributed by the error in the tournament selection committee's evaluation of teams. Of course, zero is a (unattainable) lower bound, but we test other values of σ_{E} as well. Specifically, we test values of σ_{E} equal to 0 (a perfect committee), 7 (approximately equal to the higher estimate of the Sagarin ratings' error), and every integer in between.

[^3]
6. Results

Tables 2, 3, 4, and 5 show the results of our simulations. The results show the expected tradeoffs: The larger the tournament, the higher the validity, while effectiveness varies depending on how much of the observed prediction error is due to randomness and how much is due to incorrect team strength estimates.

Even in the case where the standard error of the committee's team strength estimates is as high as 7 points, the validity results for fully-open tournaments show that the true best team is about 35% likely to be ranked highest; of course, as the standard error decreases, the validity increases to the expected maximum of 100% when the committee makes no errors.

As a result, except where the only team to automatically qualify for the tournament is the top non-Power-Five team (which is unlikely to be the true best), a 1-team tournament clearly has the highest effectiveness as long as the committee's standard error of team strength estimate is 4 points or lower. When that standard error is 5, the 1-team tournament generally has the highest effectiveness by $1-2 \%$, and for standard errors of 6 or 7 larger tournaments are better. For all tournament types and sizes, the effectiveness of the most-effective tournament decreases as the standard error of the committee's estimates increases.

Another consequence of the committee's estimation error being relatively low is that the simulation results show effectiveness tiers not by number of rounds of a tournament (e.g., tournaments of size 5-8 require three rounds to determine a champion; 9-16 teams require 4 rounds, etc.), but by the number of games that the top-ranked team needs to play. For example, the effectiveness of a 3-round tournament with 8 teams is more similar to the effectiveness of a 4 -round tournament with 9 teams than to a 3 round tournament with 7 teams. The reason is that in a 7 -team tournament, the top-ranked team (which is reasonably likely to be the true best team) gets a bye in the first round; without an 8th team, the top-ranked team automatically advances to the second round. So, the top-ranked team has only two chances for in-game randomness to cause it to be upset, whereas in an 8or 9-team tournament, the top-ranked team has three such chances.

Our results show, therefore, tiers of similar effectiveness: Tournaments of size 2 or 3 have similar effectiveness, as do tournaments of size 4 through 7 , tournaments of size 8 through 15 , and tournaments
of size 16 and greater. (Tournaments of size 32 to 63 , size 64 to 127 , and size 128 each require the topranked team to play an additional game; however, the probability of the top-ranked team defeating the 32nd, 64th, or 128th-ranked team is sufficiently high even with in-game randomness that there is not much impact on effectiveness.)
All of these observations hold whether the in-game randomness has a variance of 167 or 194 , just with slightly different magnitudes.

7. Discussion

The current playoff system is a fully-open 4-team tournament. Most of the main criticisms and defenses of this tournament system can be phrased in the language of effectiveness and validity. Validity-based arguments, that the best team might be left out of the tournament without expansion and/or guarantees of inclusion, include that the current tournament might leave out the true best team in some years, every Power-Five conference winner should have a chance to play for the championship, and top non-Power-Five teams deserve a chance. Effectiveness arguments, that in an expanded tournament the best team might be less likely to win, include that the field might be diluted in an expanded tournament. Aside from validity and effectiveness, there are also fan-based and economic-based arguments: Fans want to see the championship decided by teams playing each other, and a larger tournament with more playoff games might also have the economic benefit of increased revenue and increase the number of fans who can attend a playoff game. In this section, we address the first two sets of questions by observing our simulated tournaments' validity and effectiveness, and then discuss the implications on the fan-based and economic arguments.

In Section 6, we show simulation results for committees that range from perfect ($\sigma_{E}=0$) to approximately equal to the Sagarin ratings ($\sigma_{E}=7$), but we believe it is unlikely that either extreme is correct. In this section, we consider the middle range of committee quality, $\sigma_{E} \in\{3,4,5\}$.

Tables 6 and 7 show the validity and effectiveness of the current 4-team fully-open tournament, as well as the validity and effectiveness of all four types of 8 -team tournaments we tested. Increasing the tournament from 4 to 8 while retaining its fully-open character decreases effectiveness by 4 6%, while increasing validity by $2-9 \%$. However,

Table 2
Validity of tournaments when $\sigma_{E} \in\{0,1,2,3,4,5,6,7\}$ and $\sigma_{R}^{2}=167$

Size	Fully-open							
	0	1	2	3	4	5	6	7
1	100.0	89.0	79.6	68.4	60.2	50.9	43.8	35.2
2	100.0	99.1	95.6	88.3	81.5	72.0	63.1	53.3
3	100.0	99.9	98.6	94.6	89.2	81.1	72.5	62.3
4	100.0	100.0	99.6	97.2	93.8	87.5	79.2	69.8
5	100.0	100.0	99.8	98.5	96.1	91.3	84.1	75.6
6	100.0	100.0	99.9	99.1	96.7	92.4	86.2	78.8
7	100.0	100.0	100.0	99.4	98.1	94.5	89.3	82.8
8	100.0	100.0	100.0	99.8	98.9	96.3	91.8	85.8
9	100.0	100.0	100.0	99.8	99.3	97.0	93.0	88.0
10	100.0	100.0	100.0	99.9	99.5	97.8	94.1	89.9
11	100.0	100.0	100.0	100.0	99.7	98.2	95.3	91.3
12	100.0	100.0	100.0	100.0	99.8	99.0	96.4	92.6
13	100.0	100.0	100.0	100.0	99.8	99.1	96.9	93.6
14	100.0	100.0	100.0	100.0	99.8	99.1	97.2	94.3
15	100.0	100.0	100.0	100.0	99.8	99.4	97.9	95.2
16	100.0	100.0	100.0	100.0	99.9	99.6	98.5	96.1
$17-128$	$100.0-100.0$	$100.0-100.0$	$100.0-100.0$	$100.0-100.0$	$100.0-100.0$	$99.7-100.0$	$98.6-100.0$	$96.4-100.0$

	Fully-open with non-Power 5 guarantee							
	0	1	2	3	4	5	6	7
1	0.0	0.0	0.0	0.2	0.4	0.5	0.6	1.1
2	100.0	89.0	79.6	68.6	60.6	51.4	44.4	36.3
3	100.0	99.1	95.6	88.5	81.9	72.5	63.7	54.4
4	100.0	99.9	98.7	94.7	89.5	81.7	73.2	63.4
5	100.0	100.0	99.6	97.2	94.0	87.9	79.7	70.9
6	100.0	100.0	99.8	98.5	96.2	91.5	84.4	76.4
7	100.0	100.0	99.9	99.2	97.0	93.0	86.9	80.0
8	100.0	100.0	100.0	99.4	98.3	94.9	89.8	83.4
9	100.0	100.0	100.0	99.8	99.1	96.6	92.3	86.5
10	100.0	100.0	100.0	99.8	99.4	97.2	93.4	88.8
11	100.0	100.0	100.0	99.9	99.5	98.0	94.7	90.9
12	100.0	100.0	100.0	100.0	99.7	98.5	95.7	91.7
13	100.0	100.0	100.0	100.0	99.8	99.1	96.8	93.1
14	100.0	100.0	100.0	100.0	99.8	99.1	97.1	94.2
15	100.0	100.0	100.0	100.0	99.8	99.1	97.3	94.6
16	100.0	100.0	100.0	100.0	99.9	99.6	98.4	95.9
$17-128$	$100.0-100.0$	$100.0-100.0$	$100.0-100.0$	$100.0-100.0$	$99.9-100.0$	$99.6-100.0$	$98.5-100.0$	$96.3-100.0$

Partially-open								
	0	1	2	3	4	5	6	7
1	84.2	76.9	70.5	61.2	54.6	46.4	39.7	31.8
2	84.2	83.6	81.5	75.8	70.8	63.3	55.9	47.5
3	84.2	84.0	82.1	78.3	74.0	67.4	60.8	53.2
4	84.2	84.0	82.1	78.7	74.9	69.1	63.4	56.3
5	84.2	84.0	82.2	79.2	75.4	69.9	64.8	57.8
6	100.0	99.4	98.1	95.4	91.8	86.2	80.2	72.4
7	100.0	100.0	99.8	98.4	95.5	91.2	85.3	77.7
8	100.0	100.0	99.9	98.8	96.7	93.5	88.6	82.0
9	100.0	100.0	100.0	99.7	98.1	95.3	91.5	86.0
10	100.0	100.0	100.0	99.8	98.9	96.6	93.1	88.0
11	100.0	100.0	100.0	99.8	99.3	97.5	94.4	90.3
12	100.0	100.0	100.0	99.9	99.6	98.2	95.6	91.9
13	100.0	100.0	100.0	100.0	99.8	98.9	96.8	93.4
14	100.0	100.0	100.0	100.0	99.8	99.0	97.3	94.3
15	100.0	100.0	100.0	100.0	99.8	99.3	98.1	95.4
16	100.0	100.0	100.0	100.0	99.9	99.4	98.3	95.8
$17-128$	$100.0-100.0$	$100.0-100.0$	$100.0-100.0$	$100.0-100.0$	$99.9-100.0$	$99.6-100.0$	$98.6-100.0$	$96.4-100.0$

(Continued)

Table 2
(Continued)

	Partially-open with non-Power 5 guarantee							
	0	1	2	3	4	5	6	7
1	84.2	76.9	70.5	61.2	54.6	46.4	39.7	31.8
2	84.2	83.6	81.5	76.0	71.0	63.2	55.8	47.3
3	84.2	84.0	82.1	78.5	74.3	67.5	60.9	53.3
4	84.2	84.0	82.1	78.8	75.2	69.3	63.4	56.5
5	84.2	84.0	82.2	79.4	75.8	70.3	65.2	58.5
6	84.2	84.0	82.2	79.4	75.8	70.4	65.4	58.9
7	100.0	99.4	98.2	95.7	92.3	86.8	80.9	73.5
8	100.0	100.0	99.8	98.4	95.7	91.5	85.7	78.5
9	100.0	100.0	99.9	98.8	96.9	93.8	89.0	82.9
10	100.0	100.0	100.0	99.7	98.2	95.6	92.0	86.7
11	100.0	100.0	100.0	99.8	99.2	97.0	93.7	89.1
12	100.0	100.0	100.0	99.8	99.4	97.7	94.9	91.0
13	100.0	100.0	100.0	99.9	99.6	98.3	96.0	92.4
14	100.0	100.0	100.0	100.0	99.8	99.0	97.1	93.8
15	100.0	100.0	100.0	100.0	99.8	99.1	97.6	94.9
16	100.0	100.0	100.0	100.0	99.9	99.4	98.3	95.8
17-128	100.0-100.0	100.0-100.0	100.0-100.0	100.0-100.0	99.9-100.0	99.5-100.0	98.4-100.0	96.1-100.0

Table 3
Effectiveness of tournaments when $\sigma_{E} \in\{0,1,2,3,4,5,6,7\}$ and $\sigma_{R}^{2}=167$

Size	Fully-open							
	0	1	2	3	4	5	6	7
1	100.0	89.0	79.6	68.4	60.2	50.9	43.8	35.2
2	60.5	60.7	59.9	57.2	54.6	49.9	45.1	39.2
3	63.4	61.3	59.5	56.7	54.2	50.2	46.1	40.4
4	47.0	47.2	47.5	47.6	47.5	46.0	43.3	39.3
5	47.8	47.8	47.8	47.6	47.2	45.9	43.5	40.0
6	48.3	48.4	48.2	47.7	47.1	45.5	43.2	40.0
7	50.3	49.3	48.3	47.3	46.5	45.0	43.1	40.2
8	41.9	42.0	42.1	42.2	42.3	42.0	40.8	38.8
9	42.3	42.2	42.1	42.0	42.0	41.5	40.3	38.6
10	42.2	42.2	42.2	42.1	41.9	41.4	40.2	38.6
11	42.2	42.2	42.2	42.2	42.0	41.5	40.2	38.7
12	42.6	42.7	42.6	42.4	42.2	41.6	40.2	38.6
13	43.6	43.5	43.3	42.9	42.4	41.6	40.2	38.5
14	43.9	43.9	43.6	43.1	42.5	41.5	40.1	38.4
15	44.8	44.3	43.7	42.8	42.0	41.0	39.7	38.0
16	40.9	40.8	40.6	40.3	39.8	39.1	38.3	37.0
17-128	40.7-42.6	40.7-42.4	40.5-41.9	40.0-41.3	39.3-40.5	38.2-39.4	36.8-38.1	35.1-36.8

	0	1	2	3	4	5	6	7
1	0.0	0.0	0.0	0.2	0.4	0.5	0.6	1.1
2	88.8	79.3	71.0	61.2	54.1	45.9	39.4	32.1
3	64.5	63.5	61.8	58.3	55.1	49.9	44.8	38.8
4	56.5	55.4	54.5	52.6	50.8	47.5	43.7	38.7
5	49.2	49.0	49.0	48.6	48.1	46.2	43.3	39.4
6	48.0	48.2	48.3	47.9	47.4	45.9	43.4	40.0
7	49.6	49.0	48.5	47.7	46.8	45.2	42.9	39.8
8	45.2	44.9	44.5	44.1	43.8	42.9	41.2	38.8
9	43.0	42.9	42.7	42.6	42.5	41.9	40.6	38.6
10	42.1	42.2	42.2	42.2	42.1	41.5	40.2	38.6
11	42.1	42.2	42.2	42.2	42.0	41.5	40.2	38.8
12	42.5	42.6	42.6	42.4	42.2	41.6	40.3	38.6
13	43.5	43.4	43.2	42.9	42.4	41.7	40.3	38.6
14	43.9	43.9	43.6	43.1	42.5	41.6	40.2	38.5
15	44.7	44.3	43.7	42.9	42.1	41.1	39.7	38.0
16	41.4	41.3	41.0	40.6	40.1	39.4	38.5	37.1
17-128	40.7-42.6	40.7-42.4	40.5-41.9	40.0-41.3	39.3-40.5	38.2-39.4	36.8-38.1	35.1-36.8

(Continued)

Table 3
(Continued)

	Partially-open							
	0	1	2	3	4	5	6	7
1	84.2	76.9	70.5	61.2	54.6	46.4	39.7	31.8
2	53.4	53.5	53.0	50.4	48.4	44.5	40.3	35.2
3	56.4	55.1	53.4	50.4	4.0	44.1	40.3	35.6
4	46.6	46.4	45.6	44.1	42.6	40.2	37.5	33.9
5	47.8	47.4	46.4	44.6	42.9	40.3	37.6	34.0
6	51.0	50.7	50.1	49.0	47.9	45.6	42.9	39.3
7	50.3	49.7	49.1	48.2	47.2	45.4	42.9	39.4
8	44.9	44.8	44.6	44.2	43.6	42.5	40.9	38.4
9	43.7	43.6	43.3	43.1	42.7	41.8	40.6	38.7
10	42.5	42.6	42.5	42.4	42.2	41.5	40.3	38.5
11	42.2	42.2	42.2	42.2	42.1	41.5	40.3	38.7
12	42.5	42.6	42.6	42.4	42.2	41.5	40.3	38.7
13	43.5	43.4	43.2	42.9	42.4	41.6	40.4	38.8
14	43.9	43.9	43.6	43.1	42.5	41.5	40.2	38.6
15	44.7	44.3	43.7	4.9	42.1	41.1	39.9	38.3
16	41.3	41.3	41.0	40.6	4.1	39.4	38.5	37.1
$17-128$	$40.7-42.6$	$40.7-42.4$	$40.5-41.9$	$40.0-41.3$	$39.3-40.6$	$38.2-39.4$	$36.8-38.1$	$35.1-36.8$

Partially-open with non-Power 5 guarantee								
	0	1	2	3	4	5	6	7
1	84.2	76.9	70.5	61.2	54.6	46.4	39.7	31.8
2	53.4	53.4	52.9	50.5	48.5	44.5	40.3	35.1
3	56.3	55.0	53.3	50.3	48.0	44.1	40.3	35.6
4	46.1	46.0	45.2	43.8	42.5	40.0	37.2	33.8
5	47.2	46.8	45.8	44.2	42.6	40.0	37.3	34.0
6	47.2	47.0	46.1	44.5	42.8	40.1	37.4	34.0
7	52.1	51.3	50.3	49.0	47.7	45.2	42.5	38.9
8	46.5	46.3	46.2	45.6	45.0	43.5	41.3	38.2
9	44.9	44.7	44.4	43.9	43.2	42.1	40.5	38.1
10	43.1	43.2	43.0	42.9	42.5	41.6	40.4	38.5
11	42.3	42.4	42.4	42.4	42.3	41.6	40.4	38.6
12	42.5	42.5	42.5	42.4	42.3	41.6	40.3	38.7
13	43.4	43.3	43.2	42.9	42.4	41.6	40.3	38.6
14	43.8	43.8	43.6	43.1	42.5	41.7	40.4	38.7
15	44.6	44.2	43.6	42.9	42.2	41.2	39.9	38.3
16	41.7	41.6	41.3	40.9	40.3	39.6	38.6	37.2
$17-128$	$40.7-42.6$	$40.7-42.4$	$40.5-41.9$	$40.0-41.3$	$39.3-40.6$	$38.2-39.4$	$36.8-38.1$	$35.1-36.8$

Table 4
Validity of tournaments when $\sigma_{E} \in\{0,1,2,3,4,5,6,7\}$ and $\sigma_{R}^{2}=194$

Size	Fully-open							
	0	1	2	3	4	5	6	7
1	100.0	89.0	79.6	68.4	60.2	50.9	43.8	35.2
2	100.0	99.1	95.6	88.3	81.5	72.0	63.1	53.3
3	100.0	99.9	98.6	94.6	89.2	81.1	72.5	62.3
4	100.0	100.0	99.6	97.2	93.8	87.5	79.2	69.8
5	100.0	100.0	99.8	98.5	96.1	91.3	84.1	75.6
6	100.0	100.0	99.9	99.1	96.7	92.4	86.2	78.8
7	100.0	100.0	100.0	99.4	98.1	94.5	89.3	82.8
8	100.0	100.0	100.0	99.8	98.9	96.3	91.8	85.8
9	100.0	10.0	100.0	99.8	99.3	97.0	93.0	88.0
10	100.0	100.0	100.0	99.9	99.5	97.8	94.1	89.9
11	100.0	100.0	100.0	100.0	99.7	98.2	95.3	91.3
12	100.0	100.0	100.0	100.0	99.8	99.0	96.4	92.6
13	100.0	100.0	100.0	100.0	99.8	99.1	96.9	93.6
14	100.0	100.0	100.0	100.0	99.8	99.1	97.2	94.3
15	100.0	100.0	100.0	100.0	99.8	99.4	97.9	9.2
16	100.0	100.0	100.0	100.0	99.9	99.6	98.5	96.1
$17-128$	$100.0-100.0$	$100.0-100.0$	$100.0-100.0$	$100.0-100.0$	$100.0-100.0$	$99.7-100.0$	$98.6-100.0$	$96.4-100.0$

Table 4 (Continued)

	Fully-open with non-Power 5 guarantee							
	0	1	2	3	4	5	6	7
1	0.0	0.0	0.0	0.2	0.4	0.5	0.6	1.1
2	100.0	89.0	79.6	68.6	60.6	51.4	44.4	36.3
3	100.0	99.1	95.6	88.5	81.9	72.5	63.7	54.4
4	100.0	99.9	98.7	94.7	89.5	81.7	73.2	63.4
5	100.0	100.0	99.6	97.2	94.0	87.9	79.7	70.9
6	100.0	100.0	99.8	98.5	96.2	91.5	84.4	76.4
7	100.0	100.0	99.9	99.2	97.0	93.0	86.9	80.0
8	100.0	100.0	100.0	99.4	98.3	94.9	89.8	83.4
9	100.0	100.0	100.0	99.8	99.1	96.6	92.3	86.5
10	100.0	100.0	100.0	99.8	99.4	97.2	93.4	88.8
11	100.0	100.0	100.0	99.9	99.5	98.0	94.7	90.9
12	100.0	100.0	100.0	100.0	99.7	98.5	95.7	91.7
13	100.0	100.0	100.0	100.0	99.8	99.1	96.8	93.1
14	100.0	100.0	100.0	100.0	99.8	99.1	97.1	94.2
15	100.0	100.0	100.0	100.0	99.8	99.1	97.3	94.6
16	100.0	100.0	100.0	100.0	99.9	99.6	98.4	95.9
17-128	100.0-100.0	100.0-100.0	100.0-100.0	100.0-100.0	99.9-100.0	99.6-100.0	98.5-100.0	96.3-100.0

	Partially-open							
	0	1	2	3	4	5	6	7
1	84.2	76.9	70.5	61.2	54.6	46.4	39.7	31.8
2	84.2	83.6	81.5	75.8	70.8	63.3	55.9	47.5
3	84.2	84.0	82.1	78.3	74.0	67.4	60.8	53.2
4	84.2	84.0	82.1	78.7	74.9	69.1	63.4	56.3
5	84.2	84.0	82.2	79.2	75.4	69.9	64.8	57.8
6	100.0	99.4	98.1	95.4	91.8	86.2	80.2	72.4
7	100.0	100.0	99.8	98.4	95.5	91.2	85.3	77.7
8	100.0	100.0	99.9	98.8	96.7	93.5	88.6	82.0
9	100.0	100.0	100.0	99.7	98.1	95.3	91.5	86.0
10	100.0	100.0	100.0	99.8	98.9	96.6	93.1	88.0
11	100.0	100.0	100.0	99.8	99.3	97.5	94.4	90.3
12	100.0	100.0	100.0	99.9	99.6	98.2	95.6	91.9
13	100.0	100.0	100.0	100.0	99.8	98.9	96.8	93.4
14	100.0	100.0	100.0	100.0	99.8	99.0	97.3	94.3
15	100.0	100.0	100.0	100.0	99.8	99.3	98.1	95.4
16	100.0	100.0	100.0	100.0	99.9	99.4	98.3	95.8
17-128	100.0-100.0	100.0-100.0	100.0-100.0	100.0-100.0	99.9-100.0	99.6-100.0	98.6-100.0	96.4-100.0

	Partially-open with non-Power 5 guarantee							
	0	1	2	3	4	5	6	7
1	84.2	76.9	70.5	61.2	54.6	46.4	39.7	31.8
2	84.2	83.6	81.5	76.0	71.0	63.2	55.8	47.3
3	84.2	84.0	82.1	78.5	74.3	67.5	60.9	53.3
4	84.2	84.0	82.1	78.8	75.2	69.3	63.4	56.5
5	84.2	84.0	82.2	79.4	75.8	70.3	65.2	58.5
6	84.2	84.0	82.2	79.4	75.8	70.4	65.4	58.9
7	100.0	99.4	98.2	95.7	92.3	86.8	80.9	73.5
8	100.0	100.0	99.8	98.4	95.7	91.5	85.7	78.5
9	100.0	100.0	99.9	98.8	96.9	93.8	89.0	82.9
10	100.0	100.0	100.0	99.7	98.2	95.6	92.0	86.7
11	100.0	100.0	100.0	99.8	99.2	97.0	93.7	89.1
12	100.0	100.0	100.0	99.8	99.4	97.7	94.9	91.0
13	100.0	100.0	100.0	99.9	99.6	98.3	96.0	92.4
14	100.0	100.0	100.0	100.0	99.8	99.0	97.1	93.8
15	100.0	100.0	100.0	100.0	99.8	99.1	97.6	94.9
16	100.0	100.0	100.0	100.0	99.9	99.4	98.3	95.8
17-128	100.0-100.0	100.0-100.0	100.0-100.0	100.0-100.0	99.9-100.0	99.5-100.0	98.4-100.0	96.1-100.0

Table 5
Effectiveness of tournaments when $\sigma_{E} \in\{0,1,2,3,4,5,6,7\}$ and $\sigma_{R}^{2}=194$

Size	Fully-open							
	0	1	2	3	4	5	6	7
1	100.0	89.0	79.6	68.4	60.2	50.9	43.8	35.2
2	59.8	59.9	59.1	56.3	53/7	49.0	44.3	38.5
3	62.6	60.5	58.6	55.8	53.2	49.2	45.2	39.5
4	45.5	45.6	46.0	46.1	46.0	44.5	41.9	38.1
5	46.3	46.3	46.3	46.1	45.7	44.4	42.1	38.7
6	46.8	46.9	46.7	46.2	45.6	44.0	41.8	38.7
7	48.8	47.7	46.8	45.7	44.9	43.4	41.6	38.7
8	39.8	39.9	40.0	40.2	40.4	40.0	38.9	37.1
9	40.1	40.1	40.1	40.1	40.1	39.6	38.5	36.9
10	40.1	40.1	40.1	40.1	40.0	39.6	38.4	36.9
11	40.1	40.2	40.2	40.2	40.1	39.6	38.5	37.0
12	40.6	40.6	40.6	40.5	40.2	39.7	38.5	36.9
13	41.6	41.5	41.3	41.0	40.5	39.7	38.4	36.8
14	41.9	41.9	41.7	41.1	40.5	39.6	38.3	36.6
15	42.9	42.3	41.7	40.8	40.0	39.1	37.8	36.2
16	38.4	38.4	38.2	37.9	37.5	37.0	36.2	35.0
17-128	38.2ât"40.4	38.2-40.2	38.0-39.7	37.6-39.2	36.9-38.4	35.9-37.3	34.5-36.1	32.9-34.8

	Fully-open with non-Power 5 guarantee							
	0	1	2	3	4	5	6	7
1	0.0	0.0	0.0	0.2	0.4	0.5	0.6	1.1
2	87.3	77.9	69.7	60.2	53.3	45.2	38.8	31.6
3	64.1	63.0	61.1	57.5	54.2	49.0	4.0	38.0
4	54.8	53.8	52.9	51.1	49.4	46.1	42.4	37.5
5	47.8	47.6	47.6	47.2	46.6	44.8	4.9	38.2
6	46.6	46.8	46.8	46.5	46.0	4.5	4.0	38.7
7	48.2	47.5	46.9	46.1	45.2	4.6	4.4	38.3
8	43.1	42.7	42.4	42.1	41.9	4.0	39.5	37.1
9	40.9	40.8	40.7	40.6	40.6	40.1	38.8	36.9
10	40.0	40.1	40.2	40.2	40.1	39.6	38.4	36.9
11	40.0	40.1	40.2	40.2	40.1	39.6	38.4	37.0
12	40.5	40.5	40.6	40.5	40.3	39.8	38.5	36.9
13	41.5	41.4	41.3	40.9	40.5	39.8	38.5	36.8
14	41.9	41.9	41.6	41.1	40.6	39.7	38.4	36.8
15	42.8	42.3	41.7	40.9	40.1	39.1	37.8	36.2
16	38.9	38.9	38.6	38.3	37.8	37.3	36.4	35.1
$17-128$	$38.2-40.4$	$38.2-40.2$	$38.0-39.7$	$37.6-39.2$	$36.9-38.4$	$35.9-37.3$	$34.5-36.1$	$32.9-34.8$

Partially-open								
	0	1	2	3	4	5	6	7
1	84.2	76.9	70.5	61.2	54.6	46.4	39.7	31.8
2	52.7	52.7	52.2	49.6	47.6	43.8	39.7	34.6
3	55.6	54.2	52.5	49.5	47.1	43.3	39.5	34.8
4	45.1	44.9	44.1	42.7	41.3	38.9	36.3	32.8
5	46.2	45.9	44.9	43.2	41.6	39.0	36.5	32.9
6	49.5	49.2	48.6	47.6	46.4	44.2	41.6	38.0
7	48.9	48.2	47.6	46.6	45.6	43.8	41.4	38.0
8	42.8	42.7	42.5	42.2	41.6	40.7	39.2	36.8
9	41.6	41.5	41.3	41.1	40.7	40.0	38.8	37.0
10	40.4	40.5	40.5	40.5	40.3	39.7	38.5	36.8
11	40.1	40.2	40.2	40.2	40.1	39.6	38.5	37.0
12	40.5	40.6	40.6	40.5	40.3	39.6	38.5	37.0
13	41.5	41.4	41.3	41.0	40.5	39.8	38.6	37.0
14	41.9	41.9	41.6	41.2	40.6	39.7	38.4	36.8
15	42.8	42.3	41.7	40.9	40.1	39.2	38.1	36.4
16	38.9	38.8	38.6	38.3	37.8	37.2	36.4	35.1
$17-128$	$38.2-40.4$	$38.2-40.2$	$38.0-39.7$	$37.6-39.2$	$36.9-38.4$	$35.9-37.4$	$34.5-36.1$	$32.9-34.8$

Table 5
(Continued)

	Partially-open with non-Power 5 guarantee							
	0	1	2	3	4	5	6	7
1	84.2	76.9	70.5	61.2	54.6	46.4	39.7	31.8
2	52.6	52.7	52.1	49.7	47.7	43.7	39.6	34.4
3	55.5	54.1	52.4	49.5	47.2	43.3	39.5	34.8
4	44.6	44.4	43.7	42.3	41.1	38.7	36.1	32.7
5	45.6	45.3	44.4	42.8	41.3	38.7	36.2	32.9
6	45.7	45.6	44.7	43.1	4.6	38.9	36.2	32.9
7	50.6	49.8	48.9	47.5	46.2	43.7	41.1	37.6
8	44.4	44.3	44.2	43.7	43.0	41.7	39.6	36.6
9	42.8	42.6	42.4	41.9	41.3	40.3	38.7	36.5
10	41.0	41.1	41.0	40.9	40.5	39.8	38.6	36.8
11	40.2	40.3	40.4	40.5	40.4	39.8	38.6	36.9
12	40.4	40.5	40.5	40.5	40.4	39.7	38.6	37.0
13	41.4	41.4	41.2	40.9	40.5	39.7	38.5	36.9
14	41.8	41.8	41.6	41.2	40.6	39.8	38.6	36.9
15	42.7	42.2	41.7	40.9	40.2	39.2	38.1	36.5
16	39.2	39.2	39.0	38.6	38.1	37.5	36.6	35.2
$17-128$	$38.2-40.4$	$38.2-40.2$	$38.0-39.7$	$37.6-39.2$	$36.9-38.4$	$35.9-37.4$	$34.5-36.1$	$32.9-34.8$

Table 6
Simulation results for $\sigma_{E} \in\{3,4,5\}$ in 7 - and 8-team tournaments when $\sigma_{R}^{2}=167$

Tournament type	Standard error of committee team strength estimate					
	$\sigma_{E}=3$		$\sigma_{E}=4$		$\sigma_{E}=5$	
	Validity	Effectiveness	Validity	Effectiveness	Validity	Effectiveness
4-Team fully-open (current system)	97.2	47.6	93.8	47.5	87.5	46.0
8-Team fully-open	99.8	42.2	98.9	42.3	96.3	42.0
8-Team partially-open	99.4	44.1	98.3	43.8	94.9	42.9
8-Team fully-open w/ non-Power 5	98.8	44.2	96.7	43.6	93.5	42.5
8-Team partially-open w/ non-Power 5	98.4	45.6	95.7	45.0	91.5	43.5
7-Team fully-open	99.4	47.3	98.1	46.5	94.5	45.0
7-Team partially-open	98.4	48.2	95.5	47.2	91.2	45.4
7-Team fully-open w/ non-Power 5	99.2	47.7	97.0	46.8	93.0	45.2
7-Team partially-open w/ non-Power 5	95.7	49.0	92.3	47.7	86.5	45.2

Table 7
Simulation results for $\sigma_{E} \in\{3,4,5\}$ in 7- and 8-team tournaments when $\sigma_{R}^{2}=194$

Tournament type	Standard error of committee team strength estimate					
	$\sigma_{E}=3$		$\sigma_{E}=4$		$\sigma_{E}=5$	
	Validity	Effectiveness	Validity	Effectiveness	Validity	Effectiveness
4-Team fully-open (current system)	97.2	46.1	93.8	46.0	87.5	44.5
8-Team fully-open	99.8	40.2	98.9	40.4	96.3	40.0
8 -Team partially-open	98.8	42.2	96.7	41.6	93.5	40.7
8 -Team fully-open w/ non-Power 5	99.4	42.1	98.3	41.9	94.9	41.0
8 -Team partially-open w/ non-Power 5	98.5	43.7	95.7	43.0	91.5	41.7
7-Team fully-open	99.4	45.7	98.1	44.9	94.5	43.4
7-Team partially-open	98.4	46.6	95.5	45.6	91.2	43.8
7-Team fully-open w/ non-Power 5	99.2	46.1	97.0	45.2	93.0	43.6
7-Team partially-open w/ non-Power 5	95.7	47.5	92.3	46.2	86.8	43.7

the need for tradeoff decreases when all conference champions and the top non-Power-Five team are guaranteed spots in an 8-team tournament; in that case, effectiveness decreases by just 2-3\% while validity increases by $1-4 \%$. In essence, the simulation results suggest that substituting an 8 -team tournament with guarantees for conference champions and the
top non-Power-Five team does not create significant changes in validity or effectiveness. The effectiveness is not significantly decreased by the increase in number of teams, and while the validity does not increase significantly, giving opportunities to all conference champions and the top non-Power-Five team does not hurt effectiveness.

Table 8
Simulation results for $\sigma_{E} \in\{3,4,5\}$ in 12-team tournaments when $\sigma_{R}^{2}=167$

Tournament type	Standard error of committee team strength estimate					
	$\sigma_{E}=3$		$\sigma_{E}=4$		$\sigma_{E}=5$	
	Validity	Effectiveness	Validity	Effectiveness	Validity	Effectiveness
4-Team fully-open (current system)	97.2	47.6	93.8	47.5	87.5	46.0
12-Team fully-open	99.8	42.4	98.9	42.2	96.3	41.6
12-Team partially-open	99.4	42.4	98.3	42.2	94.9	41.5
12-Team fully-open w/ non-Power 5	98.8	42.4	96.7	42.2	93.5	41.6
12-Team partially-open w/ non-Power 5	98.4	42.4	95.7	42.3	91.5	41.6

Table 9
Simulation results for $\sigma_{E} \in\{3,4,5\}$ in 12-team tournaments when $\sigma_{R}^{2}=194$

Tournament type	Standard error of committee team strength estimate										
	$\sigma_{E}=3$		$\sigma_{E}=4$								$\sigma_{E}=5$
	Validity	Effectiveness	Validity	Effectiveness	Validity	Effectiveness					
4-Team fully-open (current system)	97.2	46.1	93.8	46.0	87.5	44.5					
12-Team fully-open	100.0	40.5	99.8	40.2	99.0	39.7					
12-Team partially-open	99.9	40.5	99.6	40.3	98.2	39.6					
12-Team fully-open w/ non-Power 5	100.0	40.5	99.7	40.3	98.5	39.8					
12-Team partially-open w/ non-Power 5	99.8	40.5	99.4	40.4	97.7	39.7					

Tables 6 and 7 also show that 7-team tournaments have the potential for good effectiveness/validity tradeoffs. A 7-team fully-open tournament provides validity increases of $2-7 \%$ while decreasing effectiveness by just 0.3-1.1\% compared with the current 4-team fully-open tournament, and if σ_{E} is 3, a 7-team tournament with guarantees for conference champions provides small increases for both validity and effectiveness.

On the other hand, newer proposals for a 12team tournament (e.g., CollegeFootballPlayoff.com (2021)) would have a greater impact on validity and effectiveness. Tables 8 and 9 show the validity and effectiveness of the current 4-team fully-open tournament as well as the validity and effectiveness of all four types of 12-team tournaments we tested. The simulation results show that expanding the tournament to 12 teams would decrease effectiveness by $5-6 \%$ no matter what, and increase validity by $2-12 \%$. Unlike expansion to 7 or 8 teams where there might be little difference, changing from a 4-team tournament to a 12-team tournament includes a definite effectiveness/validity tradeoff in addition to the economic and fan effects.

Overall, when considering only 4 -team and 8team tournaments, our simulations suggest that the annual debate over tournament size may be much ado about nothing. Replacing the current 4-team fullyopen tournament with an 8-team tournament with guarantees for conference champions and the top non-Power-Five team is likely to lead only to small
changes in both validity and effectiveness. As a result, decision-makers can give full consideration to fan and economic issues. It is also possible to obtain increased validity with only a very small effectiveness change by switching to a 7-team partially-open tournament, albeit with one fewer playoff game (and the resulting fan and economic effects) than an 8-team tournament would require. On the other hand, if 12-team tournaments are under consideration, there is a distinct validity/effectiveness tradeoff involved: the tournament would be $2-12 \%$ more likely to include the true best team, but that true best team would be $5-6 \%$ less likely to be correctly identified by winning the championship.

Acknowledgements

The authors would like to thank two anonymous referees and an editor for their suggestions for strengthening this paper.

References

Appleton, D.R., 1995, May the best man win? The Statistician 44, 529-538.

Berry, S.M., 2003, A Statistician Reads the Sports Pages: College Football Rankings: The BCS and the CLT, Chance 16, 46-49.

Chen, H., Ham, S.H., \& Lim, N., 2011, Designing multiperson tournaments with asymmetric contestants: an experimental study, Management Science 57, 864-883.

CollegeFootballPlayoff.com. 2021. 12-Team Playoff Proposed by College Football Playoff Working Group. Https://collegefootballplayoff.com/news/2021/6/10/12-team-playoff-proposal.aspx.
Curry, S., \& Sokol, J., 2016, Quantifying March's Madness. Working paper.
David, H.A. 1988, The method of paired comparisons, 2nd ed. Chapman / Hall.
Dizdar, D., 2013, On the optimality of small research tournaments. Working Paper, University of Bonn, Institute of Economic Theory, http://dx.doi.org/10.2139/ssrn. 2357096.
Fanson, P., 2020, Vegas Always Knows? A Mathematical Deep Dive. Https://www.theonlycolors. com/2020/9/29/21492301/vegas-always-knows-a-mathematical-deep-dive, downloaded June 1, 2022.
Fullerton, R.L., \& McAfee, R.P., 1999, Auctioning entry into tournaments, Journal of Political Economy 107, 573-605.
Gill, P.S., 2000, Late-Game Reversals in Professional Basketball, Football, and Hockey, The American Statistician 54, 94-99.
Glenn, W.A., 1960, A comparison of the effectiveness of tournaments, Biometrika 47, 253-262.
Glickman, M.E. 2008, Bayesian locally optimal design of knockout tournaments, Journal of Statistical Planning and Inference 138, 2177-2127.
Groh, C., Moldovanu, B., Sela, A., \& Sunde, U., 2012, Optimal seedings in elimination tournaments, Economic Theory 49, 59-80.
Hochtl, W., Kerschbamer, R., Stracke, R., \& Sunde, U., 2010, Optimal design of multi-stage elimination tournaments with heterogeneous agents: theory and experimental evidence. Working Paper.
Horen, J., \& Riezman, R., 1985, Comparing draws for single elimination tournaments, Operations Reearch 33, 249-262.
Hwang, F.K., 1982, New concepts in seeding knockout tournaments, American Mathematical Monthly 89, 235-239.
Jennessy, J., \& Glickman, M., 2016, Bayesian optimal design of fixed knockout tournament brackets, Journal of Quantitative Analysis in Sports 12, 1-15.
Marchand, E., 2002, On the comparison between standard and random knockout tournaments, The Statistician 51, 169-178.

National Collegiate Athletic Association. Football Bowl Subdivision records. Http://fs.ncaa.org/Docs/stats/football_ records/2014/FBS.pdf, last downloaded January 15, 2014.
OddsShark.com. NCAAF football odds \& handicapping database. Http://www.oddsshark.com/ncaaf/database, data downloaded August 29, 2021.
Paine, N., 2014, "How to fix the NFL playoffs." Http://www.slate.com/articles/sports/sports_nut/2014/01/ nfl_playoffs_2014_an_insane_idea_to_ensure_that_the_best_ teams have_the.html, downloaded January 8, 2014.
Ryvkin, D., 2005, The predictive power of noisy elimination tournaments. Technical report, Center for Economic Research and Graduate Education - Economic Institute, Prague.
Sagarin, J., Jeff Sagarin computer ratings archive. Http://usatoday30.usatoday.com/sports/sagarin-archive.htm, each year's data downloaded August 29, 2021.
Scarf, P., \& Bilbao, M., 2006, The optimal design of sporting contests. Working Paper 320/06, Salford Business School, University of Salford, Manchester, UK.
Scarf, P.A., \& Shi, X., 2008, The importance of a match in a tournament, Computers and Operations Research 35, 2406-2418.
Schwenk, A.J., 2000, What is the correct way to seed a knockout tournament? The American Mathematical Monthly 107, 140-150.
Seals, D.T., 1963, On the probability of winning with different tournament procedures, Journal of the American Statistical Association 58, 1064-1081.
Sheremeta, R.M., \& Wu, S.Y., 2012, Testing canonical tournament theory: on the impact of risk, social preferences, and utility structure. Working Paper, Purdue University.
Sokol, J., March 26, 2010. In a 96-team field, upsets could be a thing of the past. Http://thequad.blogs.nytimes.com/ 2010/03/26/in-a-96-team-field-upsets-could-be-a-thing-of-the-past/, New York Times.
ThePredictionTracker.com. Computer rating system prediction results for college football (NCAA IA). Http://www. ThePredictionTracker.com/ncaaresults.php, each year's data downloaded August 29, 2021.
Vu, T.D. 2010, Knockout tournament design: a computational approach. PhD diss., Department of Computer Science, Stanford University.

Appendix 1: Sagarin rating data

Table 10
Sagarin ratings, 2009-2012

2009		2010		2011		2012	
Alabama	100.25	Auburn	98.06	Alabama	104.17	Alabama	99.40
Florida	95.75	Stanford	98.05	LSU	100.30	Oregon	93.91
Texas	92.39	Oregon	96.98	Oklahoma State	97.01	Texas A\&M	93.31
TCU	90.16	TCU	94.69	Oklahoma	92.48	Georgia	92.15
Boise State	89.35	Alabama	94.30	Oregon	91.82	Notre Dame	91.08
Ohio State	88.35	Boise State	93.03	Arkansas	91.06	South Carolina	90.10
Virginia Tech	87.69	Ohio State	92.75	Stanford	90.48	Florida	89.84
Cincinnati	86.84	LSU	91.16	Wisconsin	88.67	Kansas State	88.98
Iowa	85.82	Arkansas	88.77	Boise State	88.53	Stanford	87.85
Penn State	85.43	Oklahoma	88.72	South Carolina	88.23	LSU	87.63
Oregon	85.27	Oklahoma State	87.57	Michigan	86.54	Florida State	87.50
Georgia Tech	84.60	Wisconsin	86.99	Southern California	86.48	Oklahoma	85.70
LSU	84.22	Virginia Tech	86.10	Baylor	86.01	Ohio State	85.37
Nebraska	84.06	Florida State	85.19	Texas A\&M	85.87	Clemson	85.21
BYU	83.60	Mississippi State	84.81	Houston	85.26	Oregon State	83.78
Pittsburgh	83.50	Nevada	84.44	Missouri	85.25	Texas	83.63
Oklahoma	83.15	Missouri	83.04	Texas	85.21	Oklahoma State	83.56
Arkansas	82.49	NC State	82.85	Michigan State	85.13	Baylor	82.64
Mississippi	82.38	Notre Dame	82.47	Kansas State	84.56	Utah State	82.41
Southern California	81.95	Texas A\&M	82.37	TCU	84.13	Michigan	82.25
Miami-Florida	81.72	Iowa	82.35	Georgia	84.01	Northwestern	81.72
Clemson	81.54	Southern California	81.93	West Virginia	81.78	Nebraska	81.06
Wisconsin	81.21	Arizona State	81.54	Florida State	81.16	Wisconsin	81.02
Utah	80.59	Florida	81.34	Southern Miss	81.07	Mississippi	80.91
Texas Tech	80.25	South Carolina	81.11	Nebraska	81.06	Vanderbilt	80.77
Georgia	80.08	Utah	80.56	Notre Dame	79.91	BYU	80.26
Auburn	79.43	Nebraska	80.23	Virginia Tech	79.14	Louisville	79.98
Connecticut	79.42	Washington	80.09	Penn State	78.82	Arizona State	79.87
Stanford	78.89	Oregon State	79.99	Florida	78.78	San Jose State	79.87
Florida State	78.56	Arizona	79.29	Cincinnati	78.63	Penn State	78.83
West Virginia	78.55	Michigan State	79.28	Mississippi State	78.43	UCLA	78.51
North Carolina	78.47	Pittsburgh	78.76	Clemson	77.78	TCU	78.39
Oregon State	78.35	California	78.29	Auburn	77.40	Southern California	78.32
Air Force	78.21	San Diego State	78.29	BYU	77.18	Michigan State	78.15
Tennessee	77.96	Tulsa	78.03	Tulsa	77.02	Cincinnati	77.81
Arizona	77.64	West Virginia	78.03	Rutgers	76.98	Texas Tech	77.71
Navy	77.51	Air Force	77.94	California	76.20	Syracuse	77.61
South Florida	77.28	Maryland	77.85	Utah	75.92	Northern Illinois	77.33
Oklahoma State	77.28	Illinois	77.78	Toledo	75.21	Missouri	77.14
Rutgers	76.98	Miami-Florida	76.91	Arizona State	74.94	Boise State	76.99
Central Michigan	76.48	North Carolina	76.77	Vanderbilt	74.94	Mississippi State	76.80
South Carolina	76.43	Central Florida	75.85	Iowa State	74.64	North Carolina	76.70
Boston College	76.14	Texas Tech	74.50	Washington	74.52	Arizona	76.18
Mississippi State	76.04	South Florida	74.43	Iowa	74.51	Central Florida(UCF)	76.17
California	75.77	BYU	74.35	Temple	74.50	Georgia Tech	75.92
Kentucky	75.35	Northern Illinois	74.02	Northern Illinois	74.46	Tulsa	75.81
Notre Dame	75.31	Hawaii	73.74	Louisiana Tech	74.34	West Virginia	75.44
UCLA	75.03	Syracuse	73.68	Ohio State	74.19	Miami-Florida	75.27
East Carolina	74.52	Boston College	73.10	Tennessee	74.09	Arkansas State	75.25
Washington	74.34	Penn State	73.05	SMU	73.88	Louisiana Tech	75.15
Houston	73.54	Louisville	73.02	Miami-Florida	73.61	Washington	75.05
Missouri	73.42	Clemson	72.82	Texas Tech	73.17	Rutgers	74.62
Michigan State	73.28	Georgia	72.77	North Carolina	72.86	Virginia Tech	74.37
Wake Forest	72.55	Navy	72.71	Illinois	72.80	Iowa State	74.15
Texas A\&M	71.72	Connecticut	72.68	Georgia Tech	72.31	Tennessee	73.50
Fresno State	71.39	Kansas State	72.15	NC State	71.70	SMU	72.94
Northwestern	70.95	Michigan	71.91	Northwestern	71.35	Fresno State	72.41
Kansas	70.88	Baylor	71.49	South Florida	71.02	Pittsburgh	72.40
Middle Tennessee	70.87	UCLA	71.41	Nevada	70.89	Kent State	72.25
Minnesota	70.61	Tennessee	70.71	Louisville	70.75	Utah	71.27
$\underline{\text { SMU }}$	70.35	Texas	70.52	Arizona	70.52	Louisiana-Lafayette	71.07

(Continued)

Table 10
(Continued)

2009							

Table 11
Sagarin ratings, 2013-2015

2013		2014		2015	
Florida State	101.90	Ohio State	100.81	Alabama	100.92
Oregon	93.58	TCU	99.61	Clemson	94.82
Alabama	93.37	Alabama	97.42	Ohio State	92.92
Auburn	91.76	Oregon	95.71	Oklahoma	91.50
Stanford	91.57	Georgia	95.17	Stanford	90.71
Michigan State	90.76	Michigan State	93.49	Mississippi	90.03
Missouri	90.33	Baylor	90.62	TCU	87.72
UCLA	89.39	Mississippi	89.94	Baylor	87.38
Baylor	89.28	Mississippi State	89.32	Michigan	87.07
South Carolina	88.99	Arkansas	88.64	Tennessee	86.81
Washington	88.39	Auburn	88.56	Notre Dame	86.65
Oklahoma	88.08	Georgia Tech	87.25	Florida State	86.62
Oklahoma State	88.04	Clemson	86.98	LSU	85.81
Clemson	87.22	LSU	85.69	Southern California	84.59
LSU	87.22	Missouri	85.19	Arkansas	84.43
Ohio State	86.57	Florida State	84.48	North Carolina	84.26
Wisconsin	85.79	Kansas State	84.44	Michigan State	84.01
Arizona State	85.51	Stanford	84.34	Mississippi State	84.00
Louisville	85.05	UCLA	84.29	Wisconsin	83.06
Southern California	84.55	Wisconsin	83.89	Oregon	82.90
Texas A\&M	83.56	Southern California	83.86	Houston	82.73
Kansas State	83.39	Texas A\&M	83.11	Iowa	82.70
Arizona	83.32	Marshall	82.42	Georgia	82.65
Central Florida(UCF)	82.02	Utah	82.39	Utah	82.41
Georgia	81.96	Arizona State	81.74	Washington	82.35
Mississippi	80.49	Florida	81.62	Oklahoma State	81.67
Notre Dame	79.80	Tennessee	81.50	West Virginia	81.02
Oregon State	79.72	Oklahoma	81.48	Florida	80.74
Texas Tech	79.64	Nebraska	81.02	Auburn	80.02
Mississippi State	79.58	Louisville	80.56	UCLA	79.99
Iowa	78.68	Notre Dame	79.78	Navy	79.61
Texas	78.63	West Virginia	78.81	California	79.59
Utah	78.49	Louisiana Tech	77.69	Texas A\&M	79.34
BYU	77.87	South Carolina	77.61	Louisville	79.01
Vanderbilt	77.76	Boise State	77.33	Western Kentucky	78.24
Georgia Tech	77.14	Arizona	77.17	Toledo	77.70
Nebraska	76.82	Minnesota	76.35	Boise State	77.66
Bowling Green	76.54	Memphis	76.15	BYU	77.31
Washington State	76.21	Virginia Tech	75.24	Pittsburgh	76.94
Utah State	76.15	Miami-Florida	74.94	Arizona State	76.80
Duke	75.97	Duke	74.94	Nebraska	76.55
Virginia Tech	75.91	Boston College	74.34	Washington State	76.36
Michigan	75.75	Washington	74.07	Northwestern	76.35
North Carolina	75.68	Penn State	73.73	San Diego State	76.15
Boise State	74.53	Iowa	73.24	Virginia Tech	75.76
TCU	74.11	NC State	73.16	Texas Tech	75.37
Miami-Florida	73.86	Kentucky	73.14	Memphis	75.04
Houston	73.84	Maryland	72.75	Miami-Florida	74.94
Navy	73.53	Virginia	72.69	NC State	74.72
Penn State	73.47	Utah State	72.65	Penn State	74.69
Florida	73.43	Texas	72.42	Temple	74.34
Fresno State	73.01	Oklahoma State	72.41	Bowling Green	73.96
Pittsburgh	72.94	BYU	71.61	Georgia Tech	73.57
East Carolina	72.54	Cincinnati	71.56	Arizona	73.37
Indiana	72.06	Central Florida(UCF)	71.22	Texas	73.20
Minnesota	72.06	California	71.16	South Florida	73.15
Northern Illinois	71.86	Michigan	70.86	Duke	72.91
Tennessee	71.86	Pittsburgh	70.84	Kansas State	72.39
Marshall	71.46	Rutgers	70.72	Appalachian State	71.63
Syracuse	70.91	Georgia Southern	69.55	Georgia Southern	70.96
North Texas	70.81	East Carolina	69.46	Missouri	70.75
Boston College	70.60	Colorado State	69.39	Western Michigan	70.63
Northwestern	70.08	Northwestern	69.34	Minnesota	70.59

(Continued)

Table 11
(Continued)

2013		2014		2015	
Cincinnati	69.66	Rice	68.35	South Carolina	69.58
Toledo	67.69	Navy	68.20	Marshall	69.54
Rice	67.67	Northern Illinois	68.15	Iowa State	69.49
Ball State	67.35	Toledo	68.05	Louisiana Tech	69.32
Colorado State	67.14	Houston	67.88	Indiana	69.30
Iowa State	67.06	Air Force	67.74	Southern Miss	68.96
Maryland	66.79	North Carolina	67.57	Illinois	68.88
West Virginia	66.75	Louisiana-Lafayette	66.74	Virginia	68.61
Colorado	66.42	Texas Tech	66.49	Air Force	68.55
Illinois	66.33	Western Kentucky	66.27	Utah State	68.46
Arkansas	66.21	Washington State	65.86	Cincinnati	68.45
San Diego State	65.89	Oregon State	65.71	Arkansas State	66.85
Texas-San Antonio	65.58	Illinois	65.61	Syracuse	66.54
Louisiana-Lafayette	65.44	UAB	65.40	Kentucky	66.44
San Jose State	65.34	Arkansas State	65.13	Vanderbilt	66.23
Buffalo	64.97	Temple	65.02	East Carolina	66.05
Western Kentucky	64.78	Western Michigan	64.87	Northern Illinois	65.76
Wake Forest	64.72	Indiana	64.24	Maryland	65.76
Florida Atlantic	64.59	Nevada	64.18	Boston College	65.72
South Alabama	64.20	San Diego State	64.10	Central Michigan	64.88
Tulane	64.14	Syracuse	62.93	Middle Tennessee	64.72
Arkansas State	62.79	Colorado	62.38	Colorado	64.10
Nevada	62.59	Purdue	62.30	Connecticut	63.11
UNLV	62.26	Central Michigan	62.09	Wake Forest	63.05
Rutgers	61.85	Appalachian State	61.93	Colorado State	62.82
SMU	61.57	UTEP	61.43	San Jose State	62.61
Middle Tennessee	61.04	Iowa State	61.42	Ohio	62.49
Kentucky	60.92	Middle Tennessee	60.89	Tulsa	61.81
Virginia	60.57	Fresno State	59.02	Rutgers	61.69
Memphis	60.46	Texas State	58.90	Akron	61.46
NC State	59.79	Kansas	58.32	Nevada	61.39
Troy	59.36	Old Dominion	58.10	Purdue	59.93
Temple	58.73	Ball State	57.72	Oregon State	59.48
California	58.54	Bowling Green	57.25	New Mexico	59.46
Kansas	58.41	Vanderbilt	57.21	Troy	58.42
Connecticut	58.28	Fla. International	56.99	Georgia State	56.92
Ohio	58.18	Hawai'i	56.62	Buffalo	56.38
Kent State	58.08	Wake Forest	56.46	UNLV	54.94
Hawai'i	56.73	Wyoming	56.26	Fresno State	53.65
Louisiana-Monroe	56.71	Louisiana-Monroe	56.06	Florida Atlantic	52.78
Tulsa	55.86	South Alabama	56.00	SMU	52.75
Wyoming	55.84	New Mexico	55.11	Fla. International	52.15
Akron	55.42	Akron	54.88	Ball State	51.78
Central Michigan	55.27	Ohio	54.88	South Alabama	51.61
Texas State	53.72	Texas-San Antonio	54.32	Louisiana-Lafayette	51.47
South Florida	53.66	Florida Atlantic	53.82	Massachusetts	51.29
New Mexico	53.40	Southern Miss	53.61	Rice	50.98
Army	51.95	Buffalo	53.57	Army	50.96
Purdue	51.65	Tulane	53.29	Idaho	49.88
Air Force	49.87	North Texas	52.96	Tulane	49.75
Louisiana Tech	48.21	South Florida	52.74	UTSA	49.24
UAB	47.93	San Jose State	52.01	Wyoming	49.19
Georgia State	44.65	Massachusetts	51.72	Kansas	48.79
UTEP	44.42	Army	51.56	Texas State	48.24
Idaho	42.44	Miami-Ohio	50.33	Kent State	47.82
New Mexico State	42.38	Tulsa	48.45	Miami-Ohio	47.67
Western Michigan	42.38	Kent State	47.65	UTEP	47.61
Massachusetts	41.45	UNLV	46.87	Old Dominion	47.51
Southern Miss	40.57	Idaho	46.78	Hawai'i	47.42
Eastern Michigan	38.81	Troy	46.19	Central Florida(UCF)	46.15
Fla. International	35.80	New Mexico State	45.20	New Mexico State	45.97
Miami-Ohio	35.24	Connecticut	44.71	Louisiana-Monroe	45.87
		Georgia State	41.07	North Texas	42.59
		SMU	39.16	Eastern Michigan	42.08
		Eastern Michigan	38.81	Charlotte	39.00

Table 12
Sagarin ratings, 2016-2019

2016		2017		2018		2019	
Clemson	105.35	Alabama	101.18	Clemson	103.16	LSU	104.88
Alabama	105.33	Ohio State	97.15	Alabama	101.44	Ohio State	104.83
Michigan	94.05	Georgia	96.70	Ohio State	92.33	Clemson	101.53
Washington	93.28	Penn State	95.65	Georgia	91.50	Alabama	98.50
Ohio State	93.27	Clemson	95.32	Oklahoma	90.99	Georgia	94.44
Oklahoma	93.21	Oklahoma	94.31	Michigan	88.80	Oregon	93.65
LSU	91.99	Wisconsin	94.30	Notre Dame	87.43	Oklahoma	93.37
Florida State	91.56	Auburn	91.45	Mississippi State	87.32	Penn State	92.27
Wisconsin	90.59	Washington	89.29	Washington	87.05	Wisconsin	92.22
Southern California	89.92	Notre Dame	88.90	Iowa	86.60	Florida	90.67
Oklahoma State	89.71	Oklahoma State	87.58	Penn State	86.27	Notre Dame	90.56
Miami-Florida	88.28	TCU	87.39	Texas A\&M	85.68	Michigan	89.58
Penn State	87.77	Central Florida (UCF)	87.11	Florida	85.21	Auburn	88.57
Florida	87.04	Stanford	85.79	LSU	85.16	Iowa	87.50
Virginia Tech	85.25	Southern California	85.42	Auburn	84.97	Texas	86.53
Kansas State	84.75	Miami-Florida	84.47	West Virginia	83.76	Baylor	86.22
Auburn	83.40	Mississippi State	84.35	Texas A\&M	83.45	Washington	86.13
Stanford	83.24	Iowa	83.80	Missouri	83.43	Minnesota	84.30
Western Kentucky	83.07	LSU	83.66	Washington State	83.22	Texas A\&M	84.20
Tennessee	82.68	Northwestern	83.54	Fresno State	82.36	Utah	83.82
Western Michigan	82.22	Virginia Tech	83.50	Central Florida(UCF)	82.18	Memphis	83.37
Louisville	81.96	NC State	82.92	Utah	82.05	Oklahoma State	81.39
Georgia Tech	81.11	Michigan State	82.92	Stanford	81.37	Central Florida(UCF)	81.29
NC State	80.99	Louisville	81.59	Wisconsin	81.12	Navy	81.27
Minnesota	80.06	Iowa State	81.48	Kentucky	80.44	Appalachian State	81.06
Colorado	80.03	Michigan	81.47	Utah State	79.47	Southern California	80.73
San Diego State	79.98	Texas	81.43	Syracuse	79.45	Kansas State	80.60
West Virginia	79.74	Florida State	80.07	Boise State	79.21	Iowa State	80.25
Tulsa	79.72	Wake Forest	79.95	NC State	79.13	Air Force	80.04
Texas A\&M	79.53	Kansas State	79.48	Oklahoma State	79.01	Cincinnati	79.84
North Carolina	79.45	Memphis	78.78	Northwestern	78.37	Boise State	78.55
South Florida	79.42	Boise State	78.36	Michigan State	78.14	Kentucky	78.32
Washington State	79.08	South Carolina	78.31	Miami-Florida	78.11	Virginia	78.25
Northwestern	78.72	Utah	78.06	Oregon	78.00	Tennessee	77.74
BYU	78.27	Boston College	77.88	Appalachian State	77.09	Michigan State	77.01
Utah	77.91	Purdue	77.77	Iowa State	76.72	Arizona State	76.97
Georgia	77.48	Washington State	77.57	Boston College	76.46	TCU	76.42
Pittsburgh	77.44	Duke	77.54	Cincinnati	76.41	Indiana	75.94
Appalachian State	76.74	Oregon	77.15	TCU	76.38	North Carolina	75.94
Iowa	76.45	South Florida	76.68	South Carolina	76.31	California	75.82
Baylor	76.34	Georgia Tech	76.27	Minnesota	76.14	Florida Atlantic	75.80
Temple	75.46	Texas A\&M	75.45	Virginia	75.98	Lousiana	74.78
Nebraska	74.18	Arizona State	74.75	Army West Point	75.83	Virginia Tech	74.47
Arkansas	74.06	Pittsburgh	74.67	Arizona State	75.63	SMU	74.25
Mississippi State	74.05	Florida Atlantic	74.40	Texas Tech	75.62	Washington State	74.18
Wake Forest	73.93	Texas Tech	74.09	Purdue	75.43	Mississippi State	73.26
TCU	73.35	West Virginia	73.97	Georgia Tech	75.12	Louisville	73.22
Memphis	73.16	Indiana	73.76	Duke	74.67	Nebraska	72.87
Notre Dame	72.95	Missouri	73.74	Pittsburgh	74.36	San Diego State	72.55
Toledo	72.51	Arizona	73.56	Southern California	74.11	Texas Tech	72.23
Air Force	72.50	Fresno State	73.49	Kansas State	73.59	West Virginia	72.21
Arkansas State	72.22	California	73.05	Memphis	73.20	Missouri	72.19
Houston	71.85	Navy	72.79	Nebraska	73.01	South Carolina	72.17
Mississippi	71.59	UCLA	72.57	Ohio	72.77	Florida State	71.96
California	71.35	Mississippi	71.92	Maryland	72.67	Oregon State	71.44
Louisiana Tech	70.78	Appalachian State	71.85	Vanderbilt	72.62	Mississippi	71.38
Texas	70.63	San Diego State	71.78	California	72.37	Tulane	71.14
Navy	70.31	Army West Point	71.58	Wake Forest	72.32	Wake Forest	70.05
Boston College	70.28	Houston	71.11	Temple	72.12	UCLA	69.92
Troy	69.76	Minnesota	70.68	Baylor	71.26	Pittsburgh	69.76
Boise State	69.62	Ohio	70.09	BYU	71.20	Colorado	69.75
Kentucky	69.62	Kentucky	70.04	Virginia Tech	71.19	Wyoming	69.55
Vanderbilt	69.57	Troy	69.89	Arizona	70.74	Syracuse	69.48
Texas Tech	69.14	Florida	69.82	Indiana	70.74	Boston College	69.34
Indiana	68.84	Toledo	69.59	Florida State	70.47	BYU	69.13

(Continued)

Table 12
(Continued)

2016		2017		2018		2019	
UCLA	68.27	Colorado	68.51	Mississippi	70.35	Hawai'i	68.78
Iowa State	68.18	Temple	68.38	Tennessee	70.22	Purdue	68.40
Colorado State	67.96	North Carolina	68.27	UCLA	69.76	Miami-Florida	68.35
Idaho	67.89	Syracuse	68.08	Colorado	69.55	Northwestern	68.10
Old Dominion	67.66	Wyoming	67.51	UAB	68.78	Houston	67.89
Oregon State	67.59	Arkansas	67.29	Houston	68.36	Stanford	67.76
New Mexico	67.43	Nebraska	67.21	Toledo	67.99	Western Kentucky	67.54
Oregon	67.40	Northern Illinois	67.04	Troy	67.24	Buffalo	67.50
Wyoming	66.97	Maryland	65.82	Air Force	67.21	Temple	66.39
Duke	66.61	Louisiana Tech	65.80	Marshall	66.29	Duke	66.37
Missouri	66.29	Virginia	65.71	Buffalo	66.20	Tulsa	66.02
South Carolina	66.18	Vanderbilt	65.66	Wyoming	66.00	Illinois	65.97
Syracuse	65.95	Colorado State	65.39	Georgia Southern	65.86	Louisiana Tech	65.81
Michigan State	95.93	Marshall	64.97	North Texas	65.55	Utah State	65.71
Central Florida(UCF)	64.70	SMU	63.73	Northern Illinois	65.48	Ohio	65.65
Army West Point	64.32	Western Michigan	63.51	Miami-Ohio	65.30	Arizona	64.94
Maryland	63.98	Arkansas State	63.40	Tulane	65.22	Marshall	64.53
Arizona State	63.86	Utah State	63.22	Arkansas State	65.08	Kansas	64.04
SMU	63.13	Tulane	63.07	Nevada	65.05	Western Michigan	64.03
Southern Miss	63.09	Tennessee	63.01	North Carolina	64.75	Arkansas State	63.52
Northern Illinois	62.34	Air Force	62.38	Middle Tennessee	64.61	Kent State	63.18
Ohio State	62.20	Buffalo	62.03	Eastern Michigan	64.53	Georgia Southern	63.09
UTSA	61.18	Eastern Michigan	61.82	Kansas	64.31	Miami-Ohio	62.80
Arizona	61.14	Baylor	61.66	San Diego State	63.61	Fresno State	62.01
Hawai'i	60.62	Rutgers	61.66	Florida Atlantic	62.65	Ball State	61.41
Miami-Ohio	60.51	Central Michigan	61.46	Arkansas	62.49	Maryland	61.39
Virginia	59.99	Middle Tennessee	61.09	Fla. International	62.42	South Florida	61.20
Georgia Southern	59.67	North Texas	61.04	South Florida	61.36	Southern Miss	61.17
Tulane	59.62	Southern Miss	60.05	Louisiana Tech	61.09	Troy	60.63
Illinois	59.21	Tulsa	59.43	SMU	60.72	Liberty	60.58
Utah State	58.85	Miami-Ohio	59.12	Western Michigan	60.26	Central Michigan	60.42
Eastern Michigan	58.17	UTSA	58.82	Navy	60.19	Colorado State	60.34
Louisiana-Lafayette	58.11	BYU	58.77	Southern Miss	60.17	UAB	60.08
Cincinnati	57.46	New Mexico State	58.03	Illinois	59.37	NC State	60.04
East Carolina	57.46	Nevada	58.02	Lousiana	58.59	Georgia Tech	59.73
Central Michigan	57.27	Fla. International	57.85	Louisville	58.48	Army West Point	59.72
Nevada	56.40	Akron	57.69	Tusla	57.91	Vanderbilt	59.12
Middle Tennessee	56.16	UNLV	57.40	Oregon State	56.96	Nevada	58.93
South Alabama	56.11	Massachusetts	57.30	Hawai'i	56.11	ULM	58.72
Kansas	55.22	Illinois	56.04	ULM	55.97	San Jose State	58.48
Purdue	54.97	UAB	55.55	Rutgers	55.46	Eastern Michigan	58.33
San Jose State	53.71	Cincinnati	55.42	Colorado State	55.25	Charlotte	57.64
Ball State	53.51	East Carolina	55.13	UNLV	54.49	Arkansas State	57.61
Bowling Green	53.34	Oregon State	54.37	New Mexico	54.35	Fla. International	57.49
Arkon	52.53	Western Kentucky	54.19	Western Kentucky	53.35	Georgia State	57.42
Georgia State	52.32	Louisiana -Monroe	54.04	Akron	53.21	Northern Illinois	56.63
Massachusetts	51.48	Idaho	53.74	Ball State	53.03	Toledo	56.55
Fla. International	51.38	Connecticut	53.61	Charlotte	52.59	Middle Tennessee	56.47
UNLV	51.15	Georgia State	53.23	Massachusetts	52.50	UNLV	56.44
North Texas	51.11	New Mexico	53.09	Liberty	52.48	Coastal Carolina	55.33
Louisiana-Monroe	50.26	Bowling Green	52.98	East Carolina	52.44	North Texas	54.18
Kent State	50.25	Georgia Southern	51.84	Coastal Carolina	52.40	Rutgers	53.59
Connecticut	50.11	Old Dominion	51.78	San Jose State	51.42	East Carolina	52.80
Rutgers	49.82	Louisiana-Lafayette	51.15	Georgia State	51.01	Rice	52.27
Charlotte	49.45	Hawai'i	50.56	Central Michigan	50.65	Texas State	49.33
New Mexico State	49.25	South Alabama	50.54	Old Dominion	50.52	UTSA	48.77
Marshall	49.05	Kansas	49.75	Bowling Green	50.10	New Mexico	48.75
UTEP	48.87	Coastal Carolina	48.72	Kent State	49.30	South Alabama	48.71
Rice	47.95	Rice	43.82	South Alabama	47.17	New Mexico State	45.85
Florida Atlantic	47.75	San Jose State	43.42	New Mexico State	46.53	Bowling Green	43.98
Fresno State	45.77	Texas State	42.83	UTSA	45.69	Old Dominion	43.74
Buffalo	44.84	Kent State	42.66	Texas State	45.53	Connecticut	42.99
Texas State	38.00	Ball State	40.15	Rice	43.41	UTEP	37.98
		Charlotte	39.80	Connecticut	43.01	Akron	33.56
		UTEP	38.38	UTEP	41.02	Massachusetts	30.72

Table 13
Power-Five conference champions and top non-Power-Five teams, 2009-2015

Conference	2009		2010		2011		2012		2013		2014		2015	
ACC	Georgia Tech	84.60	Virginia Tech	86.10	Clemson	77.78	Florida State	87.50	Florida State	101.90	Florida State	84.48	Clemson	94.82
Big 12	Texas	92.39	Oklahoma	88.72	Oklahoma State	97.01	Kansas State	88.98	Baylor	89.28	TCU	99.61	Oklahoma	91.50
Big Ten	Ohio State	88.35	Wisconsin	86.99	Wisconsin	88.67	Wisconsin ${ }^{a}$	81.02	Michigan State	90.76	Ohio State	100.81	Michigan State	84.01
Pac-12	Oregon	85.27	Oregon	96.98	Oregon	91.82	Stanford	87.85	Stanford	91.57	Oregon	95.71	Stanford	90.71
SEC	Alabama	100.25	Auburn	98.06	LSU	100.3	Alabama	99.40	Auburn	91.76	Alabama	97.42	Alabama	100.92
Non-Power-Five	Boise State	89.35	Boise State	93.03	Boise State	88.53	Utah State	82.41	Louisville	85.05	Marshall	82.42	Houston	82.72

${ }^{a}$ Ohio State (12-0, ranked \#3 by the AP poll with Sagarin rating of 85.37) was ineligible for postseason play, so Wisconsin (81.02) was the official Big Ten champion after winning the conference championship game.

Table 14
Power-Five conference champions and top non-Power-Five teams, 2016-2019

Conference	2016		2017		2018		2019	
ACC	Clemson	105.35	Clemson	95.32	Clemson	103.16	Clemson	101.53
Big 12	Oklahoma	93.21	Oklahoma	94.31	Oklahoma	90.99	Oklahoma	93.37
Big Ten	Penn State	87.77	Ohio State	97.15	Ohio State	92.33	Ohio State	104.83
Pac-12	Washington	93.28	Southern California	74.11	Washington	87.05	Oregon	93.65
SEC	Alabama	105.33	Georgia	96.70	Alabama	101.44	LSU	104.88
Non-Power-Five	Western Kentucky	83.07	Central Florida	87.11	Fresno State	82.36	Memphis	83.37

Appendix 2: Parameterized validity and effectiveness graphs

This appendix contains the validity and effectiveness of tournaments parameterized over the values of σ_{R} and $\sigma_{E^{\text {obs }}}$. Each figure contains a 17×14 grid of line graphs; the graph in the i th row from the top and the j th column from the left shows the results of tournaments with $\sigma_{R}=i$ and $\sigma_{E \text { obs }}=j$. The line in each graph, from left to right, shows the validity or effectiveness (from 0% to 100%) as tournaments increase in size from 1 team to 128 teams.

Fig. 2. Validity of fully-open tournaments, parameterized over σ_{R} and $\sigma_{E^{\text {Obs }}}$.

Fig. 3. Validity of partially-open tournaments with Power-Five conference guarantees only, parameterized over σ_{R} and $\sigma_{E^{\text {Obs }}}$.

 $=$

$1 \underbrace{1000}_{0}$ Mos
 $\underbrace{200}_{0}$

\qquad

$\stackrel{100}{50}$

\square

 $\sqrt[50]{20}_{100}^{100}$ $=$ $\sqrt[500]{\square}$ $=\frac{50}{0}$ ${ }_{50}^{50} \square^{100}$ $\int_{50}^{100} \square^{100}$ $\underbrace{200}_{0}$ $\sqrt[500]{\square}$ $5_{0}^{500} \square^{100}$ $\sqrt[50]{\square}$

Fig. 4. Validity of partially-open tournaments with non-Power-Five conference guarantee only, parameterized over σ_{R} and σ_{E} Obs .

 $\sqrt{50}$

\int_{0}^{100}

$\overbrace{0}^{100} \sqrt{50}$
$\underbrace{100}_{0}$

 $\int_{0}^{100} \sqrt{50-\sqrt{\square}}$

$=\frac{100}{\sqrt{50}-\sqrt{100}}$

$\underbrace{50}_{0}$

$$
\int_{0}^{500} \sqrt[5]{\sqrt[500]{\square}}
$$

$$
\int_{0}^{50} \int_{0}^{100}
$$

$\sqrt[50]{\sqrt[500]{\square}}$

$\sqrt[500]{100}$

Fig. 5. Validity of partially-open tournaments with both Power-Five and non-Power-Five conference guarantees, parameterized over σ_{R} and $\sigma_{E^{\text {Obs }}}$.

Fig. 6. Effectiveness of fully-open tournaments, parameterized over σ_{R} and σ_{E} Obs.

Fig. 7. Effectiveness of partially-open tournaments with Power-Five conference guarantees only, parameterized over σ_{R} and σ_{E} Obs.

Fig. 8. Effectiveness of partially-open tournaments with non-Power-Five conference guarantee only, parameterized over σ_{R} and σ_{E} Obs.

Fig. 9. Effectiveness of partially-open tournaments with both Power-Five and non-Power-Five conference guarantees, parameterized over σ_{R} and σ_{E} Obs.

Appendix 3: Conditional distribution of real team strength given observed team strength

Given an observed team strength s_{t}^{Obs} drawn from S^{Sag}, we want to draw from the conditional distribution of team t^{\prime} 's real strength, i.e., $\operatorname{Pr}\left(S^{\mathrm{True}}=s \mid S^{\mathrm{Sag}}=s_{t}^{\mathrm{Obs}}\right)$. Because we assume that the estimation error E is independent of the true team strength $S^{\text {True }}$,

$$
\begin{gather*}
\operatorname{Pr}\left(S^{\mathrm{True}}=s \mid S^{\mathrm{Sag}}=s_{t}^{\mathrm{Obs}}\right)=\frac{\operatorname{Pr}\left(S^{\mathrm{True}}=s, S^{\mathrm{Sag}}=s_{t}^{\mathrm{Obs}}\right)}{\operatorname{Pr}\left(S^{\mathrm{Sag}}=s_{t}^{\mathrm{Obs}}\right)}=\frac{\operatorname{Pr}\left(S^{\mathrm{True}}=s, E^{\mathrm{Sag}}=s_{t}^{\mathrm{Obs}}-s\right)}{\operatorname{Pr}\left(S^{\mathrm{Sag}}=s_{t}^{\mathrm{Obt}}\right)} \tag{16}\\
=\frac{\operatorname{Pr}\left(S^{\mathrm{True}}=s\right) \operatorname{Pr}\left(E^{\mathrm{Sag}}=s_{t}^{\mathrm{Obs}}-s\right)}{\operatorname{Pr}\left(S^{\mathrm{Sag}}=s_{t}^{\mathrm{Obs}}\right)} \tag{17}\\
=\frac{\left(\frac{1}{\sigma_{\text {True }} \sqrt{2 \pi}} e^{\left.-\frac{1}{2}\left(s-\mu_{\text {Sag }}\right)^{2} / \sigma_{\text {True }}^{2}\right)\left(\frac{1}{\sigma_{E}^{\text {Sag } \sqrt{2 \pi}}} e^{-\frac{1}{2}\left(s_{t}^{\mathrm{Obs}}-s\right)^{2} / \sigma_{E}^{2} \text { Sag }}\right)}\right.}{\frac{1}{\sigma_{\text {Sag }} \sqrt{2 \pi}} e^{-\frac{1}{2}\left(s_{t}^{\mathrm{Obs}}-\mu_{\text {Sag }}\right)^{2} / \sigma_{\text {Sag }}^{2}}} . \tag{18}
\end{gather*}
$$

Since $\sigma_{\text {True }}^{2}=\sigma_{\text {Sag }}^{2}-\sigma_{E^{\text {Sag }}}^{2}$,

$$
\begin{gather*}
\operatorname{Pr}\left(S^{\mathrm{True}}=s \mid S^{\mathrm{Sag}}=s_{t}^{\mathrm{Obs}}\right) \tag{19}\\
=\frac{1}{\sqrt{2 \pi}} \frac{\sigma_{\mathrm{Sag}}}{\sigma_{E^{\mathrm{Sag}}} \sqrt{\sigma_{\mathrm{Sag}}^{2}-\sigma_{E^{\mathrm{Sag}}}^{2}}} e^{-\frac{1}{2}\left[s-\left(s_{t}^{\mathrm{Obs}}-\left(s_{t}^{\mathrm{Obs}}-\mu_{\mathrm{Sag}}\right) \frac{\sigma^{2} \mathrm{Sag}}{\sigma_{\mathrm{Sag}}^{2}}\right)\right]^{2} /\left[\left(\sigma_{\mathrm{Sag}}^{2}-\sigma_{E^{\mathrm{Sag}}}^{2}\right) \frac{\sigma^{2}}{\sigma_{\mathrm{Sag}}^{2}}\right]} \tag{20}
\end{gather*}
$$

So, $S^{\text {True }} \mid S^{\text {Obs }}$ is normally distributed, according to

$$
\begin{equation*}
N\left(s_{t}^{\mathrm{Obs}}-\left(s_{t}^{\mathrm{Obs}}-\mu_{\mathrm{Sag}}\right) \frac{\sigma_{E^{\mathrm{Sag}}}^{2}}{\sigma_{\mathrm{Sag}}^{2}},\left(\sigma_{\mathrm{Sag}}^{2}-\sigma_{E^{\mathrm{Sag}}}^{2}\right) \frac{\sigma_{E^{\mathrm{Sag}}}^{2}}{\sigma_{\mathrm{Sag}}^{2}}\right) \tag{21}
\end{equation*}
$$

Appendix 4: Rematch data, 1997-2019

This appendix shows the 63 times from 1997 to 2019 that two teams played each other twice in a season. As in Curry and Sokol (2016), we use this information, to estimate the variance of randomness σ_{R}^{2} in a college football game.

Table 15
Rematch data, 1997-2019. Types of games include regular season ("Reg"), conference championship game ("Conf"), and postseason bowl game ("Bowl")

Season	Teams		Date	Type	Home team	Line	Result
1997	LSU	Notre Dame	11/15/1997	Reg	LSU	Notre Dame by 11	Notre Dame by 18
			12/28/1997	Bowl	neutral	LSU by 7	LSU by 18
1999	Alabama	Florida	10/02/1999	Reg	Florida	Florida by 16	Alabama by 1
			12/04/1999	Conf	neutral	Florida by 7.5	Alabama by 27
1999	Nebraska	Texas	10/23/1999	Reg	Texas	Nebraska by 16.5	Texas by 4
			12/04/1999	Conf	neutral	Nebraska by 9.5	Nebraska by 16
1999	Marshall	W Michigan	11/13/1999	Reg	W Michigan	Marshall by 12.5	Marshall by 14
			12/03/1999	Conf	Marshall	Marshall by 20.5	Marshall by 4
2000	Marshall	W Michigan	10/05/2000	Reg	Marshall	Marshall by 7	W Michigan by 20
			12/02/2000	Conf	Marshall	W Michigan by 6	Marshall by 5
2000	Auburn	Florida	10/14/2000	Reg	Florida	Florida by 9.5	Florida by 31
			12/02/2000	Conf	neutral	Florida by 9.5	Florida by 22
2000	Kansas St	Oklahoma	10/14/2000	Reg	Kansas St	Kansas St by 9.5	Oklahoma by 10
			12/02/2000	Conf	neutral	Oklahoma by 2	Oklahoma by 3
2001	LSU	Tennessee	09/29/2001	Reg	Tennessee	Tennessee by 8	Tennessee by 8
			12/08/2001	Conf	neutral	LSU by 7	LSU by 11
2001	Colorado	Texas	10/20/2001	Reg	Texas	Texas by 12	Texas by 34
			12/01/2001	Conf	neutral	Texas by 9	Colorado by 2
2002	Colorado	Oklahoma	11/02/2002	Reg	Oklahoma	Oklahoma by 13.5	Oklahoma by 16
			12/07/2002	Conf	neutral	Colorado by 7.5	Oklahoma by 22
2003	Georgia	LSU	09/20/2003	Reg	LSU	LSU by 1.5	LSU by 7
			12/06/2003	Conf	neutral	LSU by 3	LSU by 21
2003	Florida St	Miami (FL)	10/11/2003	Reg	Florida St	Florida St by 7	Miami (FL) by 8
			01/01/2004	Bowl	neutral	Florida St by 1.5	Miami (FL) by 2
2003	Bowling Green	Miami (OH)	11/04/2003	Reg	Miami (OH)	Miami (OH) by 7	Miami (OH) by 23
			12/04/2003	Conf	Bowling Green	Miami (OH) by 6.5	Miami (OH) by 22
2004	Auburn	Tennessee	10/02/2004	Reg	Tennessee	Tennessee by 1.5	Auburn by 24
			12/04/2004	Conf	neutral	Auburn by 14.5	Auburn by 10
2004	Miami (OH)	Toledo	11/02/2004	Reg	Miami (OH)	Miami (OH) by 6	Miami (OH) by 7
			12/02/2004	Conf	neutral	Toledo by 1	Toledo by 8
2005	Akron	N Illinois	09/24/2005	Reg	Akron	N Illinois by 8	Akron by 6
			12/01/2005	Conf	neutral	N Illinois by 13	Akron by 1
2005	Colorado	Texas	10/15/2005	Reg	Texas	Texas by 15.5	Texas by 25
			12/03/2005	Conf	neutral	Texas by 25	Texas by 67
2006	Houston	Southern Miss	10/14/2006	Reg	Southern Miss	Southern Miss by 1.5	Southern Miss by 4
			12/01/2006	Conf	Houston	Houston by 5	Houston by 14
2007	BYU	UCLA	09/08/2007	Reg	UCLA	UCLA by 8	UCLA by 10
			12/22/2007	Bowl	neutral	BYU by 6.5	BYU by 1
2007	Central Michigan	Purdue	09/15/2007	Reg	Purdue	Central Michigan by 21.5	Purdue by 23
			12/26/2007	Bowl	neutral	Central Michigan by 8	Purdue by 3
2007	Missouri	Oklahoma	10/13/2007	Reg	Oklahoma	Oklahoma by 13	Oklahoma by 10
			12/01/2007	Conf	neutral	Oklahoma by 3	Oklahoma by 21
2007	Tulsa	UCF	10/20/2007	Reg	UCF	UCF by 3	UCF by 21
			12/01/2007	Conf	UCF	UCF by 8	UCF by 19
2007	Boston College	Virginia Tech	10/25/2007	Reg	Virginia Tech	Virginia Tech by 3	Boston College by 4
			12/01/2007	Conf	neutral	Virginia Tech by 4.5	Virginia Tech by 14
2008	Air Force	Houston	09/13/2008	Reg	Houston	Houston by 2.5	Air Force by 3
			12/31/2008	Bowl	neutral	Houston by 5.5	Houston by 6
2008	Navy	Wake Forest	09/27/2008	Reg	Wake Forest	Wake Forest by 17	Navy by 7
			12/20/2008	Bowl	neutral	Wake Forest by 3	Wake Forest by 10
2008	Boston College	Virginia Tech	10/18/2008	Reg	Boston College	Boston College by 3	Boston College by 5
			12/06/2008	Conf	neutral	Boston College by 1	Virginia Tech by 18
2009	Clemson	Georgia Tech	09/10/2009	Reg	Georgia Tech	Georgia Tech by 5	Georgia Tech by 3
			12/05/2009	Conf	neutral	Even	Georgia Tech by 5
2010	Nebraska	Washington	09/18/2010	Reg	Washington	Nebraska by 3	Nebraska by 35
			12/30/2010	Bowl	neutral	Nebraska by 13.5	Washington by 12

Table 15
(Continued)

2010	Auburn	South Carolina	$\begin{aligned} & \hline 09 / 25 / 2010 \\ & 12 / 04 / 2010 \end{aligned}$	Reg Conf	Auburn neutral	Auburn by 3 Auburn by 3.5	Auburn by 8 Auburn by 39
2011	Clemson	Virginia Tech	10/01/2011	Reg	Virginia Tech	Virginia Tech by 7.5	Clemson by 20
			12/03/2011	Conf	neutral	Virginia Tech by 7	Clemson by 28
2011	Michigan St	Wisconsin	10/22/2011	Reg	Michigan St	Wisconsin by 7.5	Michigan St by 6
			12/03/2011	Conf	neutral	Wisconsin by 9.5	Wisconsin by 3
2011	Alabama	LSU	11/05/2011	Reg	Alabama	Alabama by 5.5	LSU by 3
			01/09/2012	Bowl	neutral	Alabama by 2.5	Alabama by 21
2012	Iowa St	Tulsa	09/01/2012	Reg	Iowa St	Tulsa by 1.5	Iowa St by 15
			12/31/2012	Bowl	neutral	Tulsa by 1.5	Tulsa by 14
2012	Nebraska	Wisconsin	09/29/2012	Reg	Nebraska	Nebraska by 12	Nebraska by 3
			12/01/2012	Conf	neutral	Nebraska by 3	Wisconsin by 39
2012	Tulsa	UCF	11/17/2012	Reg	Tulsa	Tulsa by 1	Tulsa by 2
			12/01/2012	Conf	Tulsa	Tulsa by 3	Tulsa by 6
2012	Stanford	UCLA	11/24/2012	Reg	UCLA	Stanford by 3	Stanford by 18
			11/30/2012	Conf	Stanford	Stanford by 9.5	Stanford by 3
2013	Arizona St	Stanford	09/21/2013	Reg	Stanford	Stanford by 7	Stanford by 14
			12/07/2013	Conf	Arizona St	Arizona St by 3	Stanford by 24
2014	Arizona	Oregon	10/02/2014	Reg	Oregon	Oregon by 21.5	Arizona by 7
			12/05/2014	Conf	neutral	Oregon by 14.5	Oregon by 38
2014	Fresno St	Boise St	10/17/2014	Reg	Boise St	Boise St by 18	Boise St by 10
			12/06/2014	Conf	Boise St	Boise St by 24	Boise St by 14
2015	USC	Stanford	09/19/2015	Reg	USC	USC by 10	Stanford by 10
			12/05/2015	Conf	neutral	Stanford by 4.5	Stanford by 19
2016	Western Kentucky	Louisiana Tech	10/06/2016	Reg	Louisiana Tech	Western Kentucky by 3	Louisiana Tech by 3
			12/03/2016	Conf	Western Kentucky	Western Kentucky by 12	Western Kentucky by 14
2016	Army	North Texas	10/22/2016	Reg	Army	Army by 17.5	North Texas by 17
			12/27/2016	Bowl	neutral	Army by 10.5	Army by 7
2016	Wyoming	San Diego State	11/19/2016	Reg	Wyoming	San Diego State by 9.5	Wyoming by 1
			12/03/2016	Conf	Wyoming	San Diego State by 7	San Diego State by 3
2017	USC	Stanford	09/09/2017	Reg	USC	USC by 4	USC by 18
			12/01/2017	Conf	neutral	USC by 3.5	USC by 3
2017	UCF	Memphis	09/30/2017	Reg	UCF	UCF by 5.5	UCF by 27
			12/02/2017	Conf	UCF	UCF by 7	UCF by 7
2017	Florida Atlantic	North Texas	10/21/2017	Reg	Florida Atlantic	Florida Atlantic by 3.5	Florida Atlantic by 38
			12/02/2017	Conf	Florida Atlantic	Florida Atlantic by 11	Florida Atlantic by 24
2017	Akron	Toledo	10/21/2017	Reg	Toledo	Toledo by 15.5	Toledo by 27
			12/02/2017	Conf	neutral	Toledo by 20.5	Toledo by 17
2017	Oklahoma	TCU	11/11/2017	Reg	Oklahoma	Oklahoma by 6	Oklahoma by 18
			12/02/2017	Conf	neutral	Oklahoma by 7.5	Oklahoma by 24
2017	Georgia	Auburn	11/11/2017	Reg	Auburn	Georgia by 2.5	Auburn by 23
			12/02/2017	Conf	neutral	Georgia by 2	Georgia by 21
2017	Boise St	Fresno St	11/25/2017	Reg	Fresno St	Boise St by 6.5	Fresno St by 11
			12/02/2017	Conf	Boise St	Boise St by 9.5	Boise St by 3
2018	Washington	Utah	09/15/2018	Reg	Washington	Washington by 4	Washington by 14
			11/30/2018	Conf	neutral	Washington by 4.5	Washington by 7
2018	Oklahoma	Texas	10/06/2018	Reg	neutral	Oklahoma by 7	Texas by 3
			12/01/2018	Conf	neutral	Oklahoma by 9.5	Oklahoma by 12
2018	Liberty	New Mexico State	10/06/2018	Reg	New Mexico State	Liberty by 9	New Mexico State by 7
			11/24/2018	Reg	Liberty	Liberty by 7	Liberty by 7
2018	UCF	Memphis	10/13/2018	Reg	Memphis	UCF by 5	UCF by 1
			12/01/2018	Conf	UCF	UCF by 1	UCF by 15
2018	Appalachian St	Louisiana	10/20/2018	Reg	Appalachian St	Appalachian St by 25	Appalachian St by 10
			12/01/2018	Conf	Appalachian St	Appalachian St by 17.5	Appalachian St by 11
2018	Boise St	Fresno St	11/09/2018	Reg	Boise St	Fresno St by 2.5	Boise St by 7
			12/01/2018	Conf	Boise St	Boise St by 1.5	Fresno St by 3
2018	Middle Tennessee	UAB	11/24/2018	Reg	Middle Tennessee	UAB by 3	Middle Tennessee by 24
			12/01/2018	Conf	Middle Tennessee	Middle Tennessee by 1.5	UAB by 2

(Continued)

Table 15
(Continued)

2019	Liberty	New Mexico State	$10 / 05 / 2019$	Reg	New Mexico State	Liberty by 7.5	Liberty by 7
			$11 / 30 / 2019$	Reg	Liberty	Liberty by 15	Liberty by 21
2019	Appalachian St	Louisiana	$10 / 09 / 2019$	Reg	Louisiana	Louisiana by 2.5	Appalachian St by 10
			$12 / 07 / 2019$	Conf	Appalachian St	Appalachian St by 6	Appalachian St by 7
2019	Boise St	Hawaii	$10 / 12 / 2019$	Reg	Boise St	Boise St by 12.5	Boise St by 22
			$12 / 07 / 2019$	Conf	Boise St	Boise St by 14	Boise St by 21
2019	Ohio St	Wisconsin	$10 / 26 / 2019$	Reg	Ohio St	Ohio St by 14.5	Ohio St by 31
			$12 / 07 / 2019$	Conf	neutral	Ohio St by 16.5	Ohio St by 13
2019	Oklahoma	Baylor	$11 / 16 / 2019$	Reg	Baylor	Oklahoma by 10.5	Oklahoma by 3
			$12 / 07 / 2019$	Conf	neutral	Oklahoma by 9	Oklahoma by 7
2019	Cincinnati	Memphis	$11 / 29 / 2019$	Reg	Memphis	Memphis by 14	Memphis by 10
			$12 / 07 / 2019$	Conf	Memphis	Memphis by 9	Memphis by 5

[^0]: *Corresponding author: Joel Sokol, H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USA. E-mail: jsokol@isye.gatech.edu.

[^1]: ${ }^{1}$ We note that Sagarin does not publicly archive week-by-week ratings, so we use the only available data, the rankings after the postseason.

[^2]: ${ }^{2}$ This is in contrast to not only human rankings like polls, but also algorithmic ratings that use secondary statistics such as yards gained, game progress, etc. A team might lose a game despite appearing to play better and having better secondary statistics; a relevant example might be when LSU beat Alabama in 2011 by a score of 9-6 despite having worse secondary statistics, in part due to Alabama missing four field goals. At the end of the season, LSU and Alabama were ranked as the top two teams in the BCS, and Alabama won the rematch, and the national championship, by a score of 21-0.

[^3]: ${ }^{3}$ The Las Vegas line also incorporates factors such as how teams' specific strengths and weaknesses match up with each other, so "error in team strength estimation" is really an oversimplification. We retain the usage of the term for simplicity, but for the Las Vegas line we mean it to include all factors related to estimating attributes of a team, and excluding in-game randomness.
 ${ }^{4}$ Model 1 of Curry and Sokol (2016) gives a value of 194, and Models 2 and 3 give nearly identical results, each estimating that in-game randomness accounts for 167 of the variance.

