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Abstract. In the past decade, many data mining researches have been conducted on the sports field. In particular, baseball has
become an important subject of data mining due to the wide availability of massive data from games. Many researchers have
conducted their studies to predict pitch types, i.e., fastball, cutter, sinker, slider, curveball, changeup, knuckleball, or part of
them. In this research, we also develop a system that makes predictions related to pitches in baseball. The major difference
between our research and the previous researches is that our system is to predict pitch types and pitch locations at the same
time. Pitch location is the place where the pitched ball arrives among the imaginary grids drawn in front of the catcher.
Another difference is the number of classes to predict. In the previous researches for predicting pitch types, the number of
classes to predict was 2~7. However, in our research, since we also predict pitch locations, the number of classes to predict
is 34. We build our prediction system using ensemble model of deep neural networks. We describe in detail the process of
building our prediction system while avoiding overfitting. In addition, the performances of our prediction system in various
game situations, such as loss/draw/win, count and baserunners situation, are presented.
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1. Introduction

In sports, vast amounts of data are generated and
collected by season, by game, by team, and by player.
The vast amounts of data recorded in this way have
been a heavy information overload for owners or
managers who have to decide on game strategies
and player scouts. It is true that in the past, these
decisions have only relied on empirical judgments of
some experts including owners, managers or coaches.
However, the task of finding meaningful patterns
from the vast amounts of data is almost impos-
sible only with the empirical judgment of human
experts. Therefore, various data mining techniques
are actively being used to make reasonable decisions
in the sports field. Needless to say, data mining cannot
be a substitute for human experts. By presenting the
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results of analysis on the vast amounts of data, it helps
the human experts to make more creative decisions.

Data mining is a process for exploring and ana-
lyzing large amounts of data to discover meaningful
patterns and rules (Linoff and Berry, 2011). It has
been applied in various fields such as business,
science, engineering, healthcare, medicine, biology,
genetics, pharmaceuticals and telecommunication.
However, data mining is relatively a new technique
in the sports field (Schumaker et al., 2010). Using
modern information technology, massive data can be
collected and analyzed in sports. The importance of
data mining is already known by ‘Moneyball’, which
was written by Michael Lewis (2003) and made into
amovie in 2011. In this book, Billy Beane, an Amer-
ican baseball team manager at Oakland Athletics,
shows how a team can be transformed into a strong
team by evaluating players in a statistically based
way under poor financial conditions. In these days,
sports teams are interested in the field of data mining
in order to evaluate their competitors and establish
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new strategies to enhance their competitiveness. The
‘Sports Analytics Conference’ has been held at MIT
in USA since 2006 (MIT Sloan, 2022).

In this research, we develop a system that makes
predictions related to pitches in professional baseball
games. Unlike the previous researches for predicting
pitch types only, we also predict pitch locations in
addition to pitch types. After building our prediction
system, we analyze how its performance changes in
various game situations, such as loss/draw/win, count
and baserunners situation. This paper is composed as
follows. In Section 2, we describe previous researches
on pitch type prediction in baseball. Section 3 deals
with the collection and preparation of the data used
in this research. Section 4 describes in detail how
we built our prediction system. Section 5 evaluates
the performance of our prediction system. Section 6
concludes this research.

2. Pitch type prediction in baseball

Ganeshapillai and Guttag (2012) employed sup-
port vector machines (SVM) to predict six types of
pitches, i.e., fastball, changeup, slider, curve, forkball
and cut fastball. They used Major League Baseball
(MLB) data of 359 pitchers who threw at least 300
pitches in both 2008 and 2009 seasons. The data
was collected from PITCH{f/x, a system developed
by Sportvision that tracks the speeds and trajectories
of pitched balls (Fast, 2010). The SVM models were
trained using the data from 2008 season and tested
on the data from 2009 season. However, those six
types of pitches were not predicted at the same time
by using one multiclass SVM. They built a total of
six different SVM models, one for each type. In other
words, they predicted fastball or not, changeup or not,
slider or not, and so on by using six binary prediction
models. The average accuracy of the six models was
65.8%, and the average accuracy of naive prediction
was 61.8%. Naive prediction means that we simply
predict that all predictions are the class that occupies
the largest proportion of the data. A baseline for the
usefulness of the model is whether it can do better
than naive prediction.

Hamilton et al. (2014) used SVM and k-nearest
neighbors (k-NN) to predict only two types of pitches,
i.e., fastball or nonfastball. They built their models
using the data of 236 pitchers who threw at least 750
pitches in both 2008 and 2009 MLB seasons. Detailed
results of eight pitchers were presented. For these
eight pitchers, the average number of records col-

lected per pitcher was 2,875. On average, SVM and
k-NN showed similar accuracies, 79.8% and 80.9%,
respectively. The average accuracy of naive predic-
tion was 66.0%. In addition, they demonstrated how
their model’s accuracy changed in different count sit-
uations. The accuracy was higher in batter-favored
counts such as 3-0 (3 balls and O strikes) and 2-0, and
was lower in pitcher-favored counts such as 1-2 and
0-2.

Bock (2015) used the data from three MLB sea-
sons, 2011~2013. By excluding pitchers having
thrown less than 1,000 pitches during the three sea-
sons, he used the data of 402 pitchers to build his
model. He first extracted the four pitch types each
pitcher threw most frequently. For example, Justin
Verlander’s most frequent pitches, in order of fre-
quency, were fastball, changeup, curve and slider.
Then he developed four separate binary classifiers
using SVM with one-versus-rest strategy. The final
decision on pitch type prediction was made accord-
ing to the most positive magnitude of the decision
function output from each classifier. He tested his
model on 14 pitchers in the 2013 World Series game
between the Boston Red Sox and the St. Louis Car-
dinals. The accuracy ranged from 50.2% to 69.8%.
The average accuracy was 60.9%.

Sidle and Tran (2018) employed multiclass linear
discriminant analysis (LDA), multiclass SVM and
random forest to predict seven types of pitches, i.e.,
fastball, cutter, sinker, slider, curveball, changeup and
knuckleball. They collected about 1,340,000 records
of 287 pitchers who threw at least 500 pitches in both
2014 and 2015 MLB seasons. The average number of
records collected per pitcher was 4,682. They used the
data obtained from the games in the regular season
of September and October 2016 as test data set. The
average accuracy on the test data set was 59.1%, and
the accuracy of naive prediction was 52.1%.

In order to win a baseball game, the batter must
hit the ball and go on base. The reason we want to
predict the pitch in baseball is to give information to
the batter so that he can hit the ball. In order for the
batter to hit the ball, he needs to know where the ball
is coming in, i.e., pitch location. Pitch location is the
place where the pitched ball arrives among the imagi-
nary grids drawn in front of the catcher. Prediction of
pitch location has not been addressed in the previous
researches. Therefore, pitch type predictions in the
previous researches did not provide enough informa-
tion that could be used practically in baseball games.
The innovation of our research is to simultaneously
predict pitch types and pitch locations.
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3. Data collection and preparation

A pitcher must throw the pitch that is the most
appropriate for the current game situation. The game
situations are whether his team is losing, drawing or
winning, at which bases the runners are, what the
current count is, and who the batter is, etc. However,
the pitcher, the catcher and the manager may have
different opinions on which pitch is the most appro-
priate. Therefore, the pitcher does not decide which
pitch to throw alone, but by exchanging signs with the
catcher, or at the direction of the manager. In other
words, pitch decision is a group effort rather than an
individual pitcher’s effort.

The prediction system in our research is not
intended to predict the capabilities of individual
pitchers, but rather to predict the most appropriate
pitches determined by group efforts in various game
situations. If we can predict the pitch type and pitch
location using the data related to the current game
situation, we can increase the probability that the bat-
ter hits the ball. This is the fundamental idea that
motivated us to do this research.

Pitching data is not simply an accumulation of
pitches thrown by individual pitchers, but rather an
accumulation of pitches determined by group efforts.
However, we have no way of knowing what kind
of pitches were determined by group efforts until
the pitcher actually throws the balls. Though pitch
decision is a group effort, actual execution of throw-
ing the ball is the sole responsibility of the pitcher.
Therefore, the pitcher must successfully perform the
determined pitches. In other words, once the pitch
type and pitch location were determined, the pitcher
must throw the ball of that type to that location. To
do this, the pitcher should have the ability to throw
the ball as he intended.

This kind of ability can be described in terms of
‘control’ and ‘command’ (Jenkins, 2011). ‘Control’
is the ability of a pitcher to locate his pitches. ‘Com-
mand’ is the ability of a pitcher to make the ball move
the way it is intended to move. The pitcher has ‘con-
trol’ when the pitches he throws are staying in or
out of the strike zone as he wants. In other words,
‘control’ refers to the ability of the pitcher to land
the ball at the desired location. The pitcher’s ‘com-
mand’ means that his pitches are doing what he wants
them to do. If his intention is to throw a curve ball,
then the ball will curve, if his intention is to throw a
slider ball, then the ball will slide. The target pitcher
of our prediction system must have good ‘control’
and ‘command’ abilities. Therefore, we selected the

pitcher ‘Y’ who was evaluated as having a high level
of ‘control’ and ‘command’ abilities in the Korea
Baseball Organization (KBO) league. We collected
the data by analyzing the videos of 50 games where
‘Y’ played in 2015 and 2016 seasons, from the home-
page of KBO. The pitch locations were collected from
the strike zone displayed in the lower right corner of
the game video screen.

One record of the collected data consists of 10
input attributes and 10 target attributes as shown in
Table 1. For the progress input attribute, we collected
the scores of two teams playing the baseball game.
When building our models, we tried the score itself,
score difference, and loss/draw/win. Among these,
we decided to use the latter because the built mod-
els showed higher accuracies when using it. Ball and
strike in target attribute were prefixed with ‘T’ to dis-
tinguish them from ball and strike in input attribute.

All target attributes in Table 1 are binary variables.
The six attributes in ‘Horizontal Location” and “Verti-
cal Location’ categories, i.e., from ‘Left’ to ‘Down’,
are represented as follows: We can draw nine gray
imaginary grids in front of a catcher as shown in
Fig. 1. We call it ‘Strike Zone.” The white area outside
of it is ‘Ball Zone.” As seen in Fig. 1, this square is
divided into ‘Left’, ‘Center’, ‘Right’ horizontally and
‘Up’, ‘Middle’, ‘Down’ vertically. Since we collected
this data from the strike zone displayed in the game
video screen, the left and right are positions seen from

Table 1
Input and Target Attributes
Category Attribute Values
Input Inning InnNum 1,2,3,4,5,6,7,8,9
Progress LDW 1=Loss; 2 =Draw;
3=Win
Runner Basel 0,1
Base2 0,1
Base3 0,1
Count Ball 0,1,2,3
Strike 0,1,2
Out 0,1,2
Batter Order 1,2,3,4,5,6,7,8,9
LR 1 =Left-handed;
2 =Right-handed

Target Ball/Strike T_Ball

L
—

T_Strike 0,1

Pitch Type Fastball 0,1
Nonfastball 0,1

Horizontal Left 0,1
Location Center 0,1
Right 0,1

Vertical Up 0,1
Location Middle 0,1
Down 0,1
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Fig. 1. Pitch Locations.

the pitcher’s point of view. The six attributes in ‘Hor-
izontal Location’ and ‘Vertical Location’ categories
along with the two attributes in ‘Ball/Strike’ category
determine the pitch locations.

There are 17 pitch locations in Fig. 1 and a pitch
type can be fastball or nonfastball. Therefore, the
number of classes to predict is 34. A fourth ball that
makes the batter walk to first base can be part of a
strategy, but in our research we considered it as a
pitcher’s mistake and excluded it from the collected
data. In the case of foul balls, only the first foul ball
was included in the data. After this preprocessing, the
number of records in the model data set was 4,871.

Among 4,871 records, the five pitches with the
largest frequencies are shown in Table 2 and illus-
trated in Fig. 2.

Verducci (2017) divided MLB pitchers into two
categories, i.e., pitchers who love low strikes and
pitchers who hate low strikes, and surveyed the bat-
ting average against (BAA) of 10 pitchers in each
category. BAA is a statistic that measures a pitcher’s
ability to prevent hits during official at bats, the lower
the better. The BAA of the former category was
0.133~0.25, with an average of 0.213, and the BAA
of the latter category was 0.374~0.404, with an aver-
age of 0.387. This result indicates that low pitches are
difficult for batter to hit. Low pitches require a higher
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Fig. 2. Locations of the Five Pitches with the Largest Frequencies.

level of ‘control’ and ‘command’ abilities than high
pitches, and this is a common opinion among baseball
experts. As seen in Fig. 2, the five pitches with the
largest frequencies are located in low zone. It indi-
cates that the pitcher ‘Y’ we selected has a high level
of ‘control’ and ‘command’ abilities.

4. Model building process
4.1. Detection and elimination of overfitting

When building a model, it is important to detect
and eliminate overfitting. If the model complexity
is excessive, then overfitting occurs, i.e., the model
memorizes training data set instead of recognizing
more general patterns (Hawkins, 2004). Overfitting
must be eliminated in order to build the right model.
Therefore, if overfitting is detected during model
building, it should be eliminated by reducing the
model complexity. The data set used for overfitting
detection is validation data set. The occurrence of
overfitting is illustrated in Fig. 3.

Let A(m:train) and A(m:valid) be the accuracy of
model m on training data set and validation data
set, respectively. Model M overfits training data
set if there exists another model M* that shows

Table 2
Five Pitches with the Largest Frequencies
Target Attributes Frequency
T_Ball T_Strike Fastball Nonfastball Left Center Right Up Middle Down
1 0 0 1 1 0 0 0 0 1 401 (8.2%)
0 1 1 0 1 0 0 0 0 1 374 (7.7%)
0 1 0 1 1 0 0 0 0 1 302 (6.2%)
0 1 1 0 0 0 1 0 0 1 263 (5.4%)
0 1 0 1 0 0 1 0 0 1 235 (4.8%)
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Fig. 3. Overfitting Occurred in Model M.

lower accuracy on training data set, i.e., A(M*:
train) < A(M:train), but shows higher or equal acc-
uracy on validation data set, i.e., AM*:valid)
> A(M:valid). As seen in Fig. 3, overfitting occurred
in model M. Therefore, we should stop increasing the
model complexity and select model M* as the final
model.

4.2. Deep neural network

Neural networks, also called artificial neural net-
works (ANNSs), are based on the research of nerve
cells and human brains. They consist of connec-
tions between nodes, also called processing elements,
which mimic neurons, the basic units of the human
brain. Each node receives multiple inputs and pro-
duces a single output. Generally, the output value
of the preceding node is used as the input value of
the subsequent node. ANN is a parallel distributed
processing system, so it has a great advantage that
several nodes operate and learn simultaneously. How-
ever, there is a limitation that overfitting can easily
occur if the number of connections increases, and
interpretation of results is difficult (Linoff and Berry,
2011).

Deep neural networks (DNNs) are basically neu-
ral networks with more than 2 hidden layers. DNN
is one of the deep learning techniques together with
convolutional neural network and recurrent neural
network. ANN with 1 or 2 hidden layers is trained
relatively well using a gradient-based learning algo-
rithm such as backpropagation algorithm. However, if
the number of hidden layers exceeds 2, it is not prop-
erly trained with the backpropagation algorithm. This
is the vanishing gradient problem (Hochreiter, 1991).
DNN has been developed by overcoming this vanish-

ing gradient problem (Vanishing gradient problem,
2017). When building DNNs in this research, we
used ReLLU (Nair and Hinton, 2010) and logistic func-
tion for the activation functions of hidden layer and
output layer, respectively. Initial weights for connec-
tions were set using Xavier initialization (Glorot and
Bengio, 2010).

4.3. Ensemble models of deep neural networks

An ensemble model is a model that builds multi-
ple individual models and then combines the results
from them to obtain one final result (Linoff and
Berry, 2011). The individual models that make up
the ensemble model are called base models. Previ-
ous research in which an ensemble model was used
in sports analytics can be found in win-loss pre-
diction. Saricaoglu et al. (2020) built an ensemble
model to predict home-team-win, away-team-win or
draw of football matches in Turkish Super League.
They used seven modeling techniques, such as
LDA, quadratic discriminant analysis, k-NN, logistic
regression, decision tree, bagging, SVM, and built
10 base models by varying the parameter values
of some modeling techniques. The most predicted
result by these 10 base models became the final
result of the ensemble model. For example, if there
were 4 home-team-wins, 3 away-team-wins, and 3
draws, then home-team-win became the final result.
They collected a total of 936 records from five sea-
sons and divided it into 749 (80%) and 187 (20%)
for training and test data set. The accuracy of their
ensemble model on the test data set was 62.0%.
The accuracy of naive prediction was 46.6%, the
proportion of the most frequent case, i.e., home-team-
win.

In this section, we describe how we built ensemble
models of DNNS, i.e., E-DNN models. We built three
E-DNN models as we improved their performances,
and we called them E1-DNN model, E2-ENN model
and E3-DNN model. We built our models using
repeated random sub-sampling validation method,
also known as Monte Carlo cross-validation method.
Therefore, we prepared 10 different data sets, i.e.,
10 splits, by stratified sampling of 60%, 20% and
20% for training, validation and test data set, respec-
tively, from our model data set for 10 times. Among
the 10 splits, we used the first split to determine
the structure of model. We thoroughly checked to
detect and eliminate overfitting while building our
models.
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Table 3
Four DNNs in E1-DNN Model
Name BS DNN FNF DNN LCR DNN UMD DNN
Input 10 Attributes in Table 1
Output T_Ball T_Strike Fastball Nonfastball Left Center Right Up Middle Down

4.3.1. EI-DNN model

As seen in Table 1, our target consists of 10
attributes in four categories. For EI-DNN model, we
built four DNNs, i.e., BS DNN, FNF DNN, LCR
DNN and UMD DNN, for each of the four categories,
as shown in Table 3.

Each base model, i.e., individual DNN, was built
by varying the number of hidden layers and check-

After that, it showed the sign of overfitting. Therefore,
the structure of BS DNN was determined as having
7 hidden layers. In the same manner, we determined
the structures of the other three individual DNNSs.
As seen in Tables 4~7, the numbers of hidden lay-
ers in BS DNN, FNF DNN, LCR DNN and UMD
DNN were determined as 7,6, 10 and 11, respectively.
Figure 4 shows the structure of E1-DNN model.

ing the occurrence of overfitting. Table 4~7 show the
accuracies of individual DNNs on training and vali-
dation data set as we increased the number of hidden

layers. Because the connection weights can be set OND ) [0ee see Output Layer
differently depending on the initial values and there- ' N :

fore the accuracy can vary, we created three models i

for each structure and thus we obtained three accu- in LCR e - Hidden Layers
racies for each structure. Therefore, the accuracies DNN e o

DNN
presented in Table 4~7 are the average values of these

three accuracies.

As seen in Table 4, the accuracy on validation data
set reached the highest value 80.2% when the number
of hidden layers was 7, which is written in bold type.

Input Layer

Fig. 4. Structure of E1-DNN Model.

Table 4
Structure Determination of BS DNN
Number of Number of Nodes Accuracy %
Hidden Layers
Input Hidden Output Training Validation
3 10 20-30-12 2 88.7 79.1
4 10 20-30-20-10 2 89.9 78.9
5 10 20-30-20-15-8 2 90.5 79.5
6 10 15-20-30-20-15-8 2 90.5 79.2
7 10 15-20-30-30-20-15-8 2 90.8 80.2
8 10 15-20-25-30-30-20-15-8 2 91.0 79.0
9 10 15-20-25-30-35-30-25-15-8 2 90.6 78.7
Table 5
Structure Determination of FNF DNN
Number of Number of Nodes Accuracy %
Hidden Layers
Input Hidden Output Training Validation
3 10 20-30-12 2 86.4 73.2
4 10 20-30-20-10 2 88.6 75.2
5 10 20-30-20-15-8 2 89.4 76.3
6 10 15-20-30-20-15-8 2 89.6 71.2
7 10 15-20-30-30-20-15-8 2 90.1 76.4
8 10 15-20-25-30-30-20-15-8 2 90.3 76.0
9 10 15-20-25-30-35-30-25-15-8 2 90.4 76.2
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In most ensemble models, the final result is
obtained by voting, i.e., the class predicted by most
base models wins, for classification problem, and by
averaging the results of base models for regression
problem. However, the final result of our ensemble
model is obtained in a different way. As seen in Fig. 4,
when a record is input, the four individual DNNs
share the same input values, but produce four sepa-
rate sets of output values. The final result of E1-DNN
is obtained by concatenating these four separate sets.
If this final result matches the target values of that
record, then E1-DNN succeeded in prediction.

The learning process of E1-DNN model stopped
when the accuracy of E1-DNN model on validation
data set did not increase during the preset number of
iterations. Table 8 shows the accuracies of individual
DNNs and E1-DNN model on training and validation
data sets. The accuracies presented in Table 8 are the
average values of the 10 accuracies obtained from 10
splits.

As seen in Table 8, the accuracy of E1-DNN model
is too low compared to the accuracies of individual
DNNs. High accuracies of individual DNNs do not
guarantee a high accuracy of E-DNN model. The final

Table 6

result of E-DNN for a record is correct only when all
4 individual DNNs’ predictions for that record are
correct.

4.3.2. E2-DNN model

In Table 8, we can see that the accuracies of LCR
DNN and UMD DNN are low compared to those of
BS DNN and FNF DNN. The number of output nodes
of LCR DNN and UMD DNN is 3, whereas that of
BS DNN and FNF DNN is 2. Since the low accuracy
might be due to the larger number of output nodes, we
reduced the number of output nodes of LCR DNN and
UMD DNN to 2 using the encoding method shown
in Fig. 5.

With this modification, we built E2-DNN model
where LCR DNN was changed to HL DNN and UMD
DNN was changed to VL DNN. Figure 6 shows the
structure of E2-DNN model.

Table 9 shows the accuracies of individual DNNs
and E2-DNN model on training and validation data
sets. The accuracies presented in Table 9 are the aver-
age values of the 10 accuracies obtained from 10
splits.

Structure Determination of LCR DNN

Number of Number of Nodes Accuracy %
Hidden Layers
Input Hidden Output Training Validation
3 10 20-30-15 3 80.8 69.0
4 10 20-30-20-10 3 85.2 70.6
5 10 20-30-20-15-9 3 85.5 70.4
6 10 15-20-30-20-15-9 3 86.2 70.5
7 10 15-20-30-30-20-15-9 3 87.3 71.5
8 10 15-20-25-30-30-20-15-9 3 87.5 71.6
9 10 15-20-25-30-35-30-25-15-9 3 87.4 71.8
10 10 15-20-25-30-35-35-30-25-15-9 3 87.6 72.7
11 10 15-20-25-30-35-40-35-30-25-15-9 3 87.8 71.6
Table 7
Structure Determination of UMD DNN
Number of Number of Nodes Accuracy %
Hidden Layers
Input Hidden Output Training Validation
3 10 20-30-15 3 71.3 62.3
4 10 20-20-20-10 3 81.3 66.8
5 10 20-30-20-15-9 3 85.2 69.9
6 10 15-20-30-20-15-9 3 86.1 69.8
7 10 15-20-30-30-20-15-9 3 86.5 69.6
8 10 15-20-25-30-30-20-15-9 3 87.0 70.2
9 10 15-20-25-30-35-30-25-15-9 3 86.9 70.9
10 10 15-20-25-30-35-35-30-25-15-9 3 86.9 71.4
11 10 15-20-25-30-35-40-35-30-25-15-9 3 87.3 72.1
12 10 15-20-25-30-35-40-40-35-30-25-15-9 3 87.5 71.5
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Table 8
Accuracies of E1-DNN Model

BS DNN FNF DNN LCR DNN UMD DNN E1-DNN Model
Train Valid Train Valid Train Valid Train Valid Train Valid
Accuracy 90.7 77.1 89.7 74.6 87.1 70.3 87.1 68.4 74.5 47.8
Left | Center | Right H1 H2 Up | Middle | Down Vi V2
1 0 0 - 1 1 0 0 - 1
1 0 0 1 0 0 1
0 0 1 1 1 0 0 1 1 1
Horizontal Location Vertical Location
Fig. 5. Encoding of Locations.
O e Ll L Output Layer T_Ball | T_Strike | | Fastball | Nonfastball T Strike | Fastball
1 0 1. 0 0 1
\ - 1 0 0 1 mp 0 0
/ / HL | L ) :-‘ Hidden La 0 1 1 0 1 1
/ { h yers
= R LA 0 1 0 1 1 0
DNN oo /
BS DNN FNF DNN BSFNF DNN
p Fig. 7. Merger of BS DNN and FNF DNN.
N T T N — Input Layer

Fig. 6. Structure of E2-DNN Model.

As seen in Table 9, the accuracies of HL DNN and
VL DNN increased compared to those of LCR DNN
and UMD DNN shown in Table 8. Not only that,
the accuracies of BS DNN, FNF DNN and E2-DNN
model also increased. We can see that the accuracies
of BS DNN and FNF DNN in Table 9 are different
from those of BS DNN and FNF DNN in Table 8. This
is not unusual. That is because, as we mentioned ear-
lier, the learning process of E2-DNN model stopped
when the accuracy of E2-DNN model on validation
data set did not increase during the preset number of
iterations.

4.3.3. E3-DNN model

Here we made one more modification to increase
the accuracy of our ensemble model. Both BS DNN
and FNF DNN had 2 output nodes each of which
has a binary value. Therefore, two DNNs were not
needed. One DNN, which we called BSFNF DNN,

Table 9

with 2 binary output nodes was sufficient as shown
in Fig. 7.

Since the number of individual DNN's and the num-
ber of their output nodes changed, we determined the
structures of individual DNNs again. The structure
determination process is the same as we described
in Section 4.3.1. Table 10~12 show the accuracies
of individual DNNs on training and validation data
set as we increased the number of hidden layers. As
mentioned earlier, we created three models for each
structure and thus we obtained three accuracies for
each structure. Therefore, the accuracies presented
in Table 10~12 are the average values of these three
accuracies.

As seen in Tables 10~12, the numbers of hid-
den layers in BSFNF DNN, HL DNN and VL DNN
were determined as 9, 7 and 12, respectively. Figure 8
shows the structure of E3-DNN model.

Table 13 shows the accuracies of individual DNNs
and E3-DNN model on training and validation data
sets. The accuracies presented in Table 13 are the
average values of the 10 accuracies obtained from 10
splits.

Accuracies of E2-DNN Model

BS DNN FNF DNN HL DNN VL DNN E2-DNN Model
Train Valid Train Valid Train Valid Train Valid Train Valid
Accuracy 93.3 80.5 92.3 71.9 72.0 89.9 70.9 82.9 56.9
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Table 10
Structure Determination of BSFNF DNN

Number of Number of Nodes Accuracy %
Hidden Layers
Input Hidden Output Training Validation
8 10 15-20-25-30-30-20-15-8 2 87.3 65.3
9 10 15-20-25-30-35-30-25-15-8 2 88.8 65.6
10 10 15-20-25-30-35-35-30-25-15-8 2 89.0 64.2
11 10 15-20-25-30-35-40-35-30-25-15-8 2 88.9 63.8
Table 11
Structure Determination of HL DNN
Number of Number of Nodes Accuracy %
Hidden Layers
Input Hidden Output Training Validation
6 10 15-20-30-20-15-8 2 88.4 70.6
7 10 15-20-30-30-20-15-8 2 88.2 74.1
8 10 15-20-25-30-30-20-15-8 2 88.6 70.8
9 10 15-20-25-30-35-30-25-15-8 2 88.8 71.8
Table 12
Structure Determination of VL DNN
Number of Number of Nodes Accuracy %
Hidden Layers
Input Hidden Output  Training  Validation
11 10 15-20-25-30-35-40-35-30-25-15-8 2 90.2 71.1
12 10 15-20-25-30-35-40-40-35-30-25-15-8 2 90.3 73.3
13 10 15-20-25-30-35-40-45-40-35-30-25-15-8 2 90.3 72.0
14 10 15-20-25-30-35-40-45-45-40-35-30-25-15-8 2 90.4 71.0
° o ° o Output Layer Among the three E-DNN models we built,

[ AN
|7
/ \
/ /o
BSFNF { ) i~ Hidden Layers
) HL \ DNN / i
DNN y/ :

DNN

000000000 - Input Layer

Fig. 8. Structure of E3-DNN Model.

As seen in Table 13, the accuracy of BSFNF
DNN in E3-DNN model is lower than those of BS
DNN and FNF DNN in E2-DNN model shown in
Table 9. However, the accuracy of E3-DNN model
is higher than that of E2-DNN model. The reason
is that the number of cases in which all 3 indi-
vidual DNNs’ predictions for a record were correct
increased.

E3-DNN model showed the highest accuracy on val-
idation data set. Therefore, we selected E3-DNN
model as our final model and named it ‘Ensemble
of DNNs for Pitch Prediction’ or EP? for short.

5. Evaluation of EP2

In this section, we evaluate the performance of EP?
in detail. Table 14 shows the accuracies of EP? on test
data sets.

As seen in Table 14, the accuracy of EP? on test data
set is 62.4%. As shown in Table 2, the proportion of
the pitch with the largest frequency is 8.2%, which is
the accuracy of naive prediction. Therefore, the accu-
racy increase of EP? over naive prediction is 54.2%
point. Our data contains 4,871 pitches thrown to 1,276
batters. It means that the pitcher threw 3.8 balls per
batter on average. Suppose the pitcher throws four
balls to a batter. Then, as shown in (1), the probabil-
ity that EP? can predict at least one pitch correctly
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Table 13
Accuracies of E3-DNN Model
BSFNF DNN HL DNN VL DNN E3-DNN Model
Train Valid Train Valid Train Valid Train Valid
Accuracy 88.5 65.9 89.3 71.5 90.1 70.5 85.7 61.1
Table 14 75%
Accuracies of EP? on Test Data Sets 70.4
Split # EP2 70% ®
1 64.4
2 63.1 65%
3 62.9 %‘
4 61.6 59.2
5 62.9 60% °
6 62.8 -
7 62.7 55% .
8 60.2
9 61.2 82 7.2 8.3 8.9
10 62.6 50%
Average 62.4 EP? Loss Draw Win

among these four balls, say Py, is 98.0%. This
probability will increase as the number of pitches
thrown increases.

Py =|1—-(- 0.624)4] x 100% = 98.0% (1)

Now we analyze the performance of EP? in various
game situations. As in the previous accuracy calcu-
lations, the accuracies presented in this section were
also calculated using Monte Carlo cross-validation
method, i.e., the average of 10 accuracies on test data
set.

Figure 9 shows the accuracy by loss/draw/win sit-
uation of the pitcher’s team. The numerical value
written at the bottom of each bar in the graph is
the accuracy of naive prediction. Accuracy is higher
when the pitcher’s team is losing. It can be inferred
that the pitcher pitches based on a predictable pattern
when his team is losing.

Figure 10 shows the accuracy by count situation.
As described in Section 2, count 3-0 represents 3
balls and O strikes. Accuracy is significantly higher in
batter-favored counts such as 3-0, 3-1 and 2-0, and is
lower in pitcher-favored counts such as 2-2, 1-2 and
0-2. It can be inferred that the pitcher pitches based
on a predictable pattern when the count is unfavor-
able to him. However, when the count is favorable to
him, he is not burdened. He can afford to waste one
or two pitches, so he can freely pitch balls that are
difficult to predict.

Figure 11 shows the accuracy by baserunners sit-
uation. Each of the three binary digits represents

Fig. 9. Accuracy by Loss/Draw/Win Situation.

whether there is a runner at each base. For example,
000 represents there are no runners at bases, 110 rep-
resents there are runners at first and second bases,
and 111 represents bases are full. Accuracy is signif-
icantly higher when there is a runner at third base,
i.e., 001, 101, 011 and 111. A runner is said to be in
scoring position when he is at second or third base
because he can score on a single. A runner at third is
more threatening because he can definitely score on
a single or he can even score by stealing home plate.
Similar to our previous analysis, it can be inferred
that the pitcher pitches based on a predictable pat-
tern when the baserunners situation is unfavorable
to him.

As we described, loss/draw/win, count and
baserunners situations show a significant effect on
accuracy. However, the other input attributes such as
inning, batter lineup and batter handedness showed
no effect on accuracy.

The result of the above three analyses shows that
the pitcher pitches based on a predictable pattern
when the game situation is unfavorable to him. As
described in Section 2, we can find the similar resultin
Hamilton et al. (2014). They demonstrated how their
model’s accuracy for predicting two pitch types var-
ied by count situation. Therefore, we think that it may
be possible to generalize the change in predictability
according to the game situation.
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Fig. 10. Accuracy by Count Situation.
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Fig. 11. Accuracy by Baserunners Situation.

6. Conclusion

In this research, we developed a system to predict
pitch types and pitch locations in baseball. Unlike the
previous researches for predicting pitch types only,
we also predicted pitch locations in addition to them.
Therefore, the number of classes to predict was 34,
which was larger than that in the previous researches.
We built three ensemble models of deep neural net-
works and selected the one with the best accuracy, and
named it EP?. The accuracy of naive prediction was
only 8.2%, but the accuracy of EP? reached 62.4%.

We made interesting findings by analyzing the per-
formance of EP? in various game situations. The
findings showed that the pitcher pitched based on
a predictable pattern when the game situation was
unfavorable to him. The accuracy of EP? was higher
when the pitcher’s team was losing or ball count was
unfavorable to him or a runner was at third base, i.e.,
in scoring position. Therefore, it can be inferred that

we can predict the pitch more accurately when the
pitcher is in a difficult situation.

We developed one prediction system for a single
pitcher using his data only. Despite the large num-
ber of classes to predict, we obtained a reasonably
high level of accuracy. Therefore, we believe that it
is better to build a pitch prediction system individu-
ally customized to each pitcher. However, since pitch
selection is a group effort, pitches to be thrown in
certain game situations can be very similar. In this
respect, we think that our prediction system can be
used for other pitchers as well. However, in this case,
we have to take the risk of some reduction in accuracy.
Although we described the system development pro-
cess for a single pitcher, it can be applied to other
pitchers as well to develop customized prediction
systems suitable for them.

Our research has a limitation that the data size is
small. While, in most previous researches, one pre-
diction system was developed using data of several
pitchers, our research was to develop a prediction sys-
tem customized to a single pitcher. Therefore, we
collected pitching data of only one pitcher, and the
number of records used in our research was 4,871.
It is small compared to that used in the previous
researches where pitching data of several pitchers
were collected. However, it is similar to the num-
ber of records collected per pitcher in the previous
researches. Since there is no automatic pitch record-
ing system like PITCHf/x in Korea, we collected the
data while watching the recorded videos of baseball
game. Therefore, vast amounts of data of several
pitchers could not be collected. If we collect sev-
eral pitchers’ data with an automatic pitch recording
system, we can develop a pitch prediction system
for each of them. Then we will be able to analyze
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the differences or similarities between the pitchers
in various game situations. Since pitches are carried
out consecutively, the location of the previous pitch
or the game situation caused by the previous pitch,
e.g., whether it was a hit or a home run, could affect
the current pitch decision. Therefore, input attributes
that can represent the pitch sequence and the resulting
game situation can be added to the data used for build-
ing pitch prediction systems. This is left for further
research.
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