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Modeling T20I cricket bowling
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Abstract. Bowling effectiveness is a key factor in winning cricket matches. The team captain should decide when to use the
right bowler at the right moment so that the team can optimize the outcome of the game. In this study, we investigate the
effectiveness of different types of bowlers at different stages of the game, based on the conceded percentage of runs from
the innings total, for each over. Bowlers are generally categorized into three types: fast bowlers, medium-fast bowlers, and
spinners. In this article, the authors divided the twenty over spell of a T20I match into four stages; namely, Stage 1: overs 1-6
(PowerPlay), Stage 2: overs 7-10, Stage 3: overs 11-15, and Stage 4: overs 16-20. To understand the broad spectrum of the
behavior of game variables, a Quantile Regression methodology is used for statistical analysis. Following that, a Bayesian
approach to Quantile Regression is undertaken, and it confirms the initial results.
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1. Introduction and motivation

Cricket is one of the most popular games in the
world, especially in the commonwealth countries. It
is similar to baseball in the sense that two teams of
11 players each compete. Each team takes its turn
to bat and tries to score runs while also protecting
the wickets. A coin toss outcome determines the first
team batting, which takes place just prior to the first
innings. The fielding team tries to dispatch each bats-
man, while simultaneously limiting the number of
runs conceded. There are two main formats of limited
overs cricket: One Day International (ODI) and T20I
(Twenty20 International). Although new, the latter
format is rapidly becoming popular among cricket
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fans due to its shorter match time (Manage and Scar-
iano (2013)).

The first men’s T20I took place on February 17th,
2005 between teams from Australia and New Zealand
(Ray (2019)). The International Cricket Council
(ICC) introduced this new cricket format with the pri-
mary purpose to allure and captivate more fans to the
sport. Our objective here is to investigate the bowling
effectiveness of different types bowlers at different
stages of the match.

For those new to the sport, a few terms and rules
of cricket are first highlighted. Bowling is the action
of propelling the ball toward the wicket which is
defended by a batsman, also called a striker. A player
who delivers a ball to a striker is called a bowler. A sin-
gle act of bowling the ball toward a batsman is called
a delivery. Bowlers bowl in sets of six deliveries,
called overs. A bowler cannot bowl two or more overs
consecutively. Fast-pace bowling and spin bowling
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Table 1

Classification of Fast and Medium Bowlers

Type km/h mph

Fast ≥ 141 ≥ 88
Fast-Medium 130-141 81-88
Medium-Fast 120-129 75-80
Medium 100-119 62-74

are the two main types. A bowler must bounce the
ball on the ground at most once before it reaches the
batsman. A bowler can bowl a maximum of only one-
fifth, or four (4), of the total of twenty (20) overs
in the T20I format. Thus, a team needs at least five
(5) bowlers to encompass twenty overs. The first six
overs of an innings is described as the mandatory
PowerPlay. There are certain field restrictions that
the fielding team must follow during the PowerPlay.
For example, only two fielders are allowed outside
the 30-yard circle; and, beginning with the seventh
over, no more than five fielders are allowed outside
this circle. Additionally, a maximum of five fielders
can be on the leg-side of the batsman at any given
point in the innings.

As mentioned, there are primarily two types of
bowling techniques in cricket: fast bowling (pace
bowling/swing bowling) and spin bowling. Fast
bowlers can be subcategorized into different types
according to their preferred bowling speed (Table
1), and spin bowlers (spinners) can likewise be sub-
categorized relative to the bowling styles adopted
(Table 2). For simplicity throughout this study, all the
spin bowling styles are identified as spinners, while
fast or fast-medium bowlers are identified as fast
bowlers. Finally, medium-fast and medium bowlers
are identified as medium-fast bowlers.

A dismissal occurs when a batsman is called out,
which is also known as taking, or losing, a wicket.
Once a batsman is out, that batsman must discon-
tinue batting and leave the field. Since strikers bat in
pairs, when a batsman is called out, another batsman
from the batting team comes to the field to complete
the pair. "All out" is called when a bowling team
dismisses the entire batting team by taking ten (10)
wickets, assuming players from the batting team have
not retired due to injury.

For modeling purposes, an innings in this study is
divided into four stages. Stage 1 is comprised of the
first six (6) overs. With fielding restrictions applied,
batsmen try to take advantage of them to score as
many runs as achievable, and as quickly as possible.
On the other hand, bowlers try to take advantage of
the PowerPlay by pressuring batsman to play risky

Table 2

Bowling Styles

Bowling Type Bowling Style Description

Fast raf Right-arm fast
laf Left-arm fast
rafm Right-arm fast medium
lafm Left-arm fast medium

Medium ram Right-arm medium
lam Left-arm medium
ramf Right-arm medium fast
lamf Left-arm medium fast

Spin lb/leg Legbreak
lbg/lg Legbreak googly
raob/rao Right-arm offbreak
ralb Right-arm legbreak
laob Left-arm offbreak
slao/laos Slow left-arm

orthodox/Left-arm
orthodox spin

slac Slow left-arm chinaman
lag Left-arm googly

shots. Overs seven (7) to ten (10) are identified as
Stage 2, and this is usually the stage where spin-
ners are introduced. During this stage, the batsmen
pursue a strategy of accumulating runs to reach the
planned total score, while concurrently protecting
wickets vigorously. If the batting team has just a few
dismissals in Stage 1, then Stage 2 is critical for the
batting team to potentially adjust their innings strat-
egy. Stage 3 consists of overs eleven (11) to fifteen
(15). If Stage 2 has been satisfactorily accomplished,
batsmen next try to accelerate the run-scoring rate
while not relinquishing further wickets. Stage 4 com-
prises the final five (5) overs, and here batsmen try
to score as many runs as possible with the goal of a
higher total; or reaching a target set by the competing
team in the event it is the first bowling team. Due to
the shorter length of the twenty-over format, it is very
common that the match usually protracts to Stage 4.
In this instance, the batsmen are trying to score runs
to surpass the score achieved by the first batting team
or to score the highest possible total to set a competi-
tive target for the opposing team. Regardless, the last
few overs of the innings, Stage 4, cause excitement
and anticipation intensifies significantly.

Several studies that address bowling performance,
or runs conceded, can be found in the literature,
including (Kimber (1993), Lemmer (2002), Van
Staden (2009), and Akhtar, Scarf, and Rasool (2015)).
These efforts have focused largely on the behavior of
the mean, or average, of the runs conceded per over.
Of course, the mean can reveal important aspects
of a distribution in many cases. However, it is only
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one aspect of the distribution of a random variable
that may be either quite compressed or exceedingly
volatile across distinct subsets of its support, in such a
manner that the average itself cannot reveal the more
profound aspects of its distribution. Here, we use the
percentage of runs conceded in each over to quan-
tify bowling strength. Numerous factors such as pitch
condition, wind speed, match importance, team per-
formance on a given day, batting team’s ability to
score runs all induce much variation in match out-
come (Lohawala and Rahman (2018) and Fernando,
Manage, and Scariano (2013)). Targeting the percent-
age of runs conceded (or scored) per over, rather than
just the total number of runs conceded (or scored)
per over should alleviate the effects of the condi-
tions just mentioned and permit a clearer focus on
true bowling effects. The bowling strategy of the sec-
ond bowling team can greatly be affected by the target
score set by the first batting team. Because of this, we
only consider data from the first bowling team in our
analysis.

Quantile regression is a statistical technique whose
purpose is modeling the quantiles of a response vari-
able. This methodology is a popular regression tool
used by statisticians, and it is commonly applied in
fields such as economics and epidemiology. The tra-
ditional Ordinary Least Squares (OLS) method is
used to model the conditional mean of a response
variable, but in some cases it has insurmountable
shortcomings. For example, in some applications
a one unit change in a predictor variable can, at
differing quantiles of a response variable, be accom-
panied by differing parameter estimates, and OLS
fails to model this scenario appropriately. Quantile
regression works well when a response variable is
continuous with no zeros or not too many repeated
values (Benoit and Van den Poel (2017) and Lancaster
and Jae Jun (2010)). In this study, quantile regression

Fig. 1. Asymmetric Loss Function.

is used to model the response variable (percentage
runs conceded per over) against different stages of
the game and different bowling styles for T20I cricket
matches. The main objective here is to analyze lower
(or higher) runs conceding overs, which would, in
turn, lead to lower (or higher) total final scores in a
cricket match.

2. Methodology

2.1. Quantile regression

Quantile Regression (QR) was introduced as a
robust alternative to OLS regression (Koenker and
Bassett Jr. (1978)). However, the foundational aspects
of quantile regression were introduced by Ruder
Boscovich in the 18th century and more fully
developed by Pierre-Simon Laplace and Francis
Edgeworth during the 19th century (Leider (2012)).
Although Quantile Regression methods require sub-
stantial computational effort, rapid technological
developments in computational mathematics over the
last three decades have now made this field of appli-
cation feasible in real time.

Quantile Regression has several appealing advan-
tages over the OLS method. In this technique,
error terms do not necessarily adhere to the usual
assumptions that they be independent and identically
distributed (iid) normal variates. So, QR is generally
more robust to the presence of outliers.

In a regression context, a median is usually defined
as a solution to the problem of minimizing a sum
of (symmetric) absolute residuals. A simple "tilting"
results in a sum of (asymmetric) absolute residuals,
which can be minimized to produce quantiles other
than the median. This suggests solving

min
ζ∈IR

∑
Lτ(yi − ζ), (1)

for ζ, where τ is a quantile to be estimated and Łτ(.)
is the asymmetric loss function illustrated in Figure
1 (Koenker 2005).

More specifically, Quantile Regression uses the
asymmetric loss function:

Lτ(u) = |u| ∗ (τ ∗ I(u ≥ 0) + (1 − τ) ∗ I(u < 0))
(2)

To see that this loss function yields the desired
sample quantiles, it is only necessary to compute the
directional derivative, from the left and right, and with
respect to ζ, of the objective function in Equation 1.
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In general, if F (x) is the cumulative distribution func-
tion and f (x) is the probability density function of a
random variable X, then

E[Lτ(X − x̂)] =
∫ +∞

−∞
Lτ(x − x̂)dF (x)

= (τ − 1)
∫ x̂

−∞
(x − x̂)dF (x)

+ τ

∫ +∞

x̂

(x − x̂)dF (x).

(3)

This expectation is minimized when F (x̂) = τ, and
additional details can be found in the Appendix.

In many practical applications, a cumulative den-
sity function is unknown to the investigator and must
be estimated on the basis of data. Typically, the empir-
ical cumulative distribution function is used for this
purpose, as will be the case here as well.

To estimate the quantile function, consider

∫ +∞

−∞
Lτ(x − x̂)dFn(x) ≈ 1

n

n∑
i=1

Lτ(xi − x̂)

For a sample of size n, minimizing
∑n

i=1 Lτ(xi − x̂)
is equivalent to solving for βτ in the quantile regres-
sion model Qτ(yi | xi) = X

′
iβτ

β̂τ = argminβ∈Rd

∑
all i

Lτ(yi − X
′
iβτ)

Here, d denotes the number of parameters in the
model and βτ represents an unknown parameter vec-
tor associated with the τth quantile.

The Ordinary Least Squares method requires
minimizing the error sum of squares, ei; that is,
min

∑
all i e

2
i . Median regression, or least absolute

deviation regression, requires minimizing the sum of
absolute deviations, min

∑
all i |ei|. In general, quan-

tile regression requires solving min

{∑
i τ|ei| +

∑
i(1 − τ)|ei|

}
which assigns asymmetric penalties

for both “under prediction” and “over prediction”.
For median regression, τ = 0.5 and

∑
i

0.5 ∗ |ei| +
∑

i

0.5 ∗ |ei| =
∑

i

|ei|

is to be minimized. Expanding this expression by sub-
stituting the regression model and labeling it as Q(βτ)
produces

Q(βτ) =
N∑

i: yi≥X
′
i
β

τ|yi − X
′
iβτ |

+
N∑

i: yi<X
′
i
β

(1 − τ)|yi − X
′
iβτ | ; 0 < τ < 1

Note that whenever yi ≥ X
′
iβτ , then the QR model

is subject to "under prediction" with a penalty of
τ. Similarly, if yi < X

′
iβτ , then the model is sub-

ject to "over prediction" with a penalty of (1 − τ). In
general, the asymmetry is captured by the differing
penalties.

The parameter estimates of the quantile regression
model Qτ(yi | xi) = x

′
iβτ are the estimated effects of

the corresponding predictors, and the interpretations
of those effects are quite similar to those encountered
in ordinary least squares regression models.

3. Descriptive data analysis

Data collected for this study comprised all T20I
matches played up to May 5th 2019. It con-
sists of matches played among the nine (9) ICC
teams: Australia, Bangladesh, England, India, New
Zealand, Pakistan, South Africa, Sri Lanka, and
West Indies. Specifically, there are a total of 8,040
observations (overs), but matches with no results
were omitted from this study. All data were col-
lected from the official ESPN Cricinfo website
(www.espncricinfo.com). However, due to technical
difficulties, data with match IDs 41, 93, and 296 were
inaccessible at the time of collection, so those obser-
vations were excluded.

For this study, innings were divided into four
stages: Stage 1 (overs 1-6, Powerplay), Stage 2 (overs
7-10), Stage 3 (overs 11-15), and Stage 4 (overs
16-20). For simplicity, bowlers were grouped into
three basic types: Fast, Medium and Spin. A detailed
description of the bowling styles, abbreviations, and
bowling types are summarized in Table 1 and Table
2. SAS 9.4 (www.sas.com) statistical software was
used for all analyses undertaken in the study.

Of the 402 matches considered in this study, the
first bowling teams lost 213 (52.99%) matches and
won 181 (45.02%) matches. Eight matches (1.99%)



S. M.B. Bowala et al. / A quantile regression approach with a Bayesian extension 201

Table 3

Percentage of Overs Bowled by
Different Types Bowlers

Bowling Style Percentage

Fast 42.57%
Medium 22.61%
Spin 34.81%

ended in a tie. The maximum number of runs con-
ceded by the first bowling team was 263 while the
minimum number of runs conceded by a team was
96 runs. On average, the first bowling team conceded
164.23 runs with a standard deviation of 29.81 runs.
The Economy Rate, which is the number of runs con-
ceded per over, is a key statistic used to measure the
performance of a bowler. Having a low Economy
Rate is regarded as being a key attribute for winning
a match. The first bowling team won 85.71% of the
matches it played when having an Economy Rate less
than 6.0. On the other hand, the first bowling team
won only 42.55% of the matches it played when the
Economy Rate exceeded 6.0. Clearly, bowlers must
concede as few runs as possible in order to increase
the likelihood of winning a match.

Exploring the distribution of bowling styles across
the various teams, how bowlers concede runs in gen-
eral, and how bowlers concede runs at different stages
of a match are quite interesting questions. Consider-

ation of these bowler characteristics helps in gaining
insight into how each team utilizes bowlers to maxi-
mize their chance of winning.

As seen in Table 3, for T20I cricket, in total,
42.57% of overs were bowled by fast bowlers,
34.81% of overs were bowled by spinners, and
22.61% of overs were bowled by the medium-fast
bowlers. However, these percentages vary greatly
among different teams. Figure 2 shows a clustered
bar chart of the percentage of overs bowled by differ-
ent types of bowlers, across each ICC team. Clearly,
Australia, England, and South Africa prefer utilizing
fast bowlers. Sri Lanka and West Indies seem to pre-
fer using slightly more fast bowlers than spinners.
In contrast, other Asian teams, such as Bangladesh,
India, and Pakistan prefer to use more spinners than
fast bowlers or medium-fast bowlers. Except for India
and New Zealand, all the other teams utilize medium-
fast bowlers less frequently. Evidently, New Zealand
prefers using more fast bowlers and fewer spinners,
while India prefers more spinners and fewer fast
bowlers.

The average percentage of runs conceded per over
by different bowling styles is shown in Table 4. The
highest average percentage of runs conceded per
over is associated with medium-fast bowlers, and
the spinners have conceded the fewest. The stan-
dard deviations of the runs conceded per over by

Fig. 2. Distribution of Bowling Types Across Different Teams.
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Table 4

Average Percentage of Runs per Over Conceded by Different Types
of Bowlers

Bowling Style Mean Standard Deviation

Fast 5.17 2.74
Medium 5.20 2.68
Spin 4.66 2.54

Table 5

Average Percentage of Runs Conceded per Over in Different Stages

Stage Mean Standard
Deviation

Lower
Quartile

Median Upper
Quartile

1 4.71 2.69 2.70 4.44 6.34
2 4.36 2.22 2.72 4.07 5.71
3 4.94 2.48 3.13 4.65 6.39
4 5.93 2.91 3.66 5.56 7.75

fast bowlers and medium-fast bowlers are somewhat
higher than for spinners. In terms of Economy Rate
spinners performed well in the T20I format. Fast
bowlers conceded fewer runs per over than medium-
fast bowlers with a slightly higher standard deviation.

The second column of Table 5 provides the over-
all average percentage of runs conceded per over in
Stages one (1) through four (4). Fielding restrictions
are applied during the PowerPlay (Stage 1), with the
intent of providing advantage to the batting team for
scoring many runs, while also keeping the game quite

interesting for fans. However, on average, runs con-
ceded per over during the PowerPlay are generally
fewer than those in Stages three (3) and four (4).
Stage two (2) typically produces the fewest average
runs conceded per over when compared to all other
stages. Usually, the highest average number of runs
conceded per over occurs in Stage four (4), when
no additional field restrictions are in effect. Figure 3
summarizes and emphasizes notable variation across
the individual teams.

On average, spinners concede the fewest runs
per over across all the teams. The average number
of runs conceded per over by fast bowlers and
medium-fast bowlers are fairly consistent for Aus-
tralia, Bangladesh, England, New Zealand, Pakistan,
and South Africa. For India and the West Indies,
fast bowlers conceded the most runs per over, and
for Sri Lanka, medium-fast bowlers conceded the
most runs per over. Compared to spinners, there is
little difference between the runs conceded per over
by fast bowlers and medium-fast bowlers among
Australia, England, and South Africa. However,
these countries have more fast bowlers and fewer
medium-fast bowlers than spinners. In contrast, India
uses more spinners and fewer fast bowlers compared
to medium-fast bowlers. Their fast bowlers conceded
more runs per over while their spin bowlers con-
ceded fewer runs per over when compared to their

Fig. 3. Average Percentage Runs Conceded per Over by Different Teams with Different Bowlers.
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Fig. 4. Average Percentage of Runs Conceded per Over in Each Stage by Different Teams.

Table 6

Average Percentage of Runs Conceded per Over in Each Stage by
Different Types of Bowlers

Stage Runs Conceded
Fast Medium Spin

1 4.77 4.70 4.52
2 4.60 4.80 4.14
3 4.96 5.06 4.87
4 5.99 6.06 5.58

medium-fast bowlers. Additionally, medium-fast
bowlers and fast bowlers for New Zealand conceded
more runs per over than spin bowlers, on average.
Despite these numbers, New Zealand has more
fast bowlers and fewer spinners than medium-fast
bowlers.

Figure 4 illustrates the variation in runs conceded
per over across four stages by the different teams.
These teams seem to conceded more runs per over
in Stage 4. Apparently most of the teams conceded
fewer runs per over in Stage 2. Compared to Stage
2, the average runs conceded per over in Stages 1
and 3 are greater. In contrast, Sri Lanka manages to
concede the fewest runs per over, on avarage, in Stage
1, even with the field restrictions imposed during the
PowerPlay.

Table 6 summarizes the average percentage of runs
conceded per over by the different styles of bowlers
across the four stages. On average, spinners con-
ceded the fewest runs per over and this is consistent
across all stages. In Stages 2, 3, and 4, medium-fast
bowlers conceded more runs per over when compared

to both fast bowlers and spinners. For fast bowlers and
spinners, Stage 2 is where they conceded the least
average percentage of runs per over. Moreover, fast
bowlers conceded more runs per over than medium-
fast bowlers in Stage 1 while the contrary occurs for
the other three stages.

As seen, the effect of bowlers across stages varies
noticeably among teams. The average runs conceded
per over in each stage by each team using different
types of bowlers is summarized in Table 8. Table 7
summarizes the percentage of bowlers used in differ-
ent stages by each team.

In cricket every team gets the opportunity to use
a new ball at the beginning of an innings. Depend-
ing on field conditions, fast and medium-fast bowlers
may be able to swing a new ball at a fast pace. Con-
sequently, it is a common practice of the bowling
team to start its 20 over innings with fast bowlers or
medium-fast bowlers. When a ball swings, it is usu-
ally difficult for a batsmen to judge its trajectory, and
there is a tendency to play poor shots. So, when com-
bined with swing and pace, a bowling team should
try to get a few quick wickets at the early stages of
a match. This creates pressure on the batting team,
forcing it towards a lower total. This phenomenon
causes a team to use fast and medium-fast bowlers
more frequently in Stage 1, as demonstrated in Table
7. Nonetheless, there are situations where some teams
begin with a spinner for an orthodox start.

As a match progresses, the ball becomes tattered
and it is easier for spinners to spin the ball. So, teams
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Table 7

Percentage of Bowlers Used in Different Stage by Each Team

Team Bowling Percentage of Stage
Style Bowlers Stage 1 Stage 2 Stage 3 Stage 4

Australia Fast 63.48% 86.61% 37.05% 45.71% 74.64%
Medium 8.93% 4.76% 7.59% 10.71% 13.21%

Spin 27.59% 8.63% 55.36% 43.57% 12.14%
100.00% 100.00% 100.00% 100.00% 100.00%

Bangladesh Fast 35.63% 47.40% 20.31% 30.00% 39.38%
Medium 14.84% 17.19% 10.16% 10.63% 20.00%

Spin 49.53% 35.42% 69.53% 59.38% 40.63%

England Fast 54.70% 79.00% 25.00% 32.80% 71.20%
Medium 17.30% 16.33% 16.50% 16.00% 20.40%

Spin 28.00% 4.67% 58.50% 51.20% 8.40%

India Fast 15.13% 26.75% 5.26% 4.74% 19.47%
Medium 37.37% 51.75% 15.79% 26.84% 47.89%

Spin 47.50% 21.49% 78.95% 68.42% 32.63%

New Zealand Fast 39.76% 53.57% 25.60% 27.14% 47.14%
Medium 34.29% 37.30% 30.36% 30.48% 37.62%

Spin 25.95% 9.13% 44.05% 42.38% 15.24%

Pakistan Fast 29.71% 40.38% 8.17% 19.62% 44.23%
Medium 24.13% 36.22% 10.58% 15.38% 29.23%

Spin 46.15% 23.40% 81.25% 65.00% 26.54%

South Africa Fast 55.13% 77.50% 28.13% 38.50% 66.50%
Medium 20.88% 18.33% 21.88% 20.50% 23.50%

Spin 24.00% 4.17% 50.00% 41.00% 10.00%

Sri Lanka Fast 42.98% 64.18% 16.49% 24.68% 57.02%
Medium 20.53% 17.02% 23.40% 18.30% 24.68%

Spin 36.49% 18.79% 60.11% 57.02% 18.30%

West Indies Fast 37.11% 44.07% 22.78% 28.44% 48.89%
Medium 29.67% 21.48% 26.11% 38.22% 33.78%

Spin 33.22% 34.44% 51.11% 33.33% 17.33%

tend to introduce spinners in Stage 2, as seen in Table
7. During Stage 4 it is common for batsmen to attempt
riskier shots so as (i) to accumulate additional runs to
reach a target set by the opposing team, or (ii) to set a
higher target for the opposing team. A common prac-
tice for a bowling team to use its best fast bowlers in
the last few overs of an innings. The idea behind this
strategy is to use a bowler’s pace and pitching expe-
rience to target areas most likely to prevent batsman
from scoring runs, or even forcing batsmen to attempt
poor shots, causing them to be more vulnerable to
sacrificing wickets.

Usually a balanced team consists of two or three
spinners, two or three fast and medium-fast bowlers,
and five or six batsmen. A balanced team allows
the captain considerable flexibility for using the
most effective bowler in a given stage of the match.
For example, the subsequent paragraphs describe

insights into the bowling strategies used by India,
New Zealand, and England.

For India, Table 8 shows the fewest runs conceded
per over are from spinners during Stages 2 and 3. In
Stage 4, the runs conceded per over by both medium-
fast bowlers and spinners are the same, and lower
than the runs conceded per over by fast bowlers. Fast
bowlers conceded the most runs per over in Stage 1,
while medium-fast bowlers conceded the least. India
uses more medium-fast bowlers in Stages 1 and 4,
and more spinners in Stages 2 and 3, as seen in Table
7. Furthermore, as fast bowlers conceded more runs
per over in both Stages 1 and 4 when compared to
other stages, India uses relatively fewer fast bowlers
in Stages 1 and 4. In summary, it seems that India uses
its bowlers effectively, given that it has more spinners
and fewer fast bowlers than medium-fast bowlers, as
shown in Figure 2.
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Table 8

Average Percentage of Runs Conceded per Over in Each Stage by Each Team Using Different Bowlers

Team Runs conceded
Stage 1 Stage 2 Stage 3 Stage 4

F M S F M S F M S F M S

Australia 4.64 4.42 5.21 4.20 4.94 4.48 5.07 4.67 4.80 5.92 5.81 6.24
Bangladesh 4.64 4.37 4.57 4.45 4.67 3.56 5.55 5.28 5.17 6.47 6.66 5.57
England 4.64 4.80 4.10 4.67 5.11 4.45 4.75 4.92 4.87 5.93 5.84 5.78
India 4.98 4.68 4.75 5.13 5.21 3.92 5.10 5.66 4.82 6.88 5.61 5.61
New Zealand 4.76 4.55 4.16 4.64 4.31 3.77 4.60 4.97 4.87 6.47 6.32 5.67
Pakistan 5.25 4.99 4.34 4.07 4.61 4.08 4.70 5.12 4.82 6.04 6.28 5.32
South Africa 5.02 4.47 5.48 4.26 5.09 4.70 4.73 5.17 5.02 5.36 5.58 5.27
Sri Lanka 4.44 4.43 4.49 5.07 4.90 4.21 5.25 5.54 4.95 5.89 6.37 5.41
West Indies 4.90 4.98 4.36 5.47 4.64 4.01 5.05 4.60 4.55 6.00 6.19 5.64

F - Fast Bowlers, M - Medium Fast Bowlers, S - Spinners.

From Table 7, New Zealand uses more fast bowlers
and fewer spinners in Stages 1 and 4 when compared
to medium-fast bowlers. In Stage 3, New Zealand
uses fewer fast bowlers compared to other bowling
styles. In contrast, New Zealand’s fast bowlers con-
ceded the most runs per over during Stages 1 and
4, and the least in Stage 3, as seen in Table 8. Fur-
thermore, spinners conceded the fewest runs per over
in Stages 1 and 4; however, New Zealand uses fewer
spinners in Stages 1 and 4, compared to other bowling
styles.

For England, fast bowlers conceded the most runs
per over in Stage 4 and spinners conceded the least,
as shown in Table 8. In Stage 3, the smallest aver-
age percentage of runs conceded per over occurs with
fast bowlers, and the most conceded is from medium-
fast bowlers. Nevertheless, England uses more fast
bowlers and fewer spinners in Stage 4, yet more spin-
ners in Stage 3.

We next model, using both OLS and QR, the Per-
centage of Runs Conceded Per Over as the dependent
variable with respect to the independent variables of
Stage and Bowling Style.

3.1. Ordinary least squares model

For the Ordinary Least Squares (OLS) linear
regression model, the behavior of the conditional
mean of a response variable, based on one or more
explanatory variables, is investigated. OLS estima-
tors are consistent and optimal within the class of
linear, unbiased estimators, whenever the errors are
homoscedastic and serially uncorrelated (Hayes and
Cai (2007)).

As described earlier in this study, the Percentage
of Runs Conceded per Over is considered as the
response variable and Stages (1, 2, 3, 4) and Bowling
Style (fast, medium-fast, spin) are the two predictor

Table 9

Ordinary Least Square (OLS) Model (Overall)

Effect Estimate Srandard Error t Value Pr > |t|
Intercept 5.1249 0.08132 63.02 < .0001
Stage 1 -0.3280 0.08218 -3.99 < .0001
Stage 2 -0.5493 0.08744 -6.28 < .0001
Stage 4 0.8968 0.08497 10.55 < .0001
Stage 3 0 . . .
Fast Bowling -0.0497 0.07605 -0.65 0.5131
Spin Bowling -0.3437 0.08142 -4.22 < .0001
Medium Fast
Bowling

0 . . .

variables. During Stage 3, which consists of overs
eleven through fifteen, the game usually progresses
smoothly. Hence, for the Stages predictor variable,
Stage 3 is used as a reference category. Likewise, the
medium-fast bowling style is used as the reference
category for the Bowling Style predictor variable. A
summary of OLS regression results is provided in
Table 9.

Relative to Stage 3, Table 9 shows the percent-
age of runs conceded per over in Stages 1, 2, and 4
are statistically significant. The percentage of runs
conceded per over by fast bowlers is not significant
relative to medium-fast bowlers, but for spinners it is
significant at the 5% significance level. Also, relative
to Stage 3, Stage 1 and Stage 2 bowlers have con-
ceded the smallest percentage of runs per over. On
the other hand, the results show that the percentage
of runs conceded per over in Stage 4 is significantly
higher when compared to that in Stage 3. Note that the
OLS regression model can only explain the effect of
the predictors with respect to the conditional mean. In
practice, it would also be useful to know the effects of
the predictors at different quantiles as well. For exam-
ple, a team captain can assess the risk and decide the
type of the bowler to be used in a particular over by
looking at a regression model that explains the 0.9
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Table 10

Quantile Regression Model (Overall)

Effect At 0.25
Quantile

At 0.50
Quantile

At 0.75
Quantile

Estimate Estimate Estimate
P-Value P-Value P-Value

Intercept 3.3613 4.8738 6.6152
< .0001 < .0001 < .0001

Stage 1 -0.5566 -0.3039 -0.1515
< .0001 0.0043 0.1971

Stage 2 -0.3540 -0.5801 -0.6870
< .0001 < .0001 < .0001

Stage 4 0.4297 0.8381 1.2060
0.0002 < .0001 < .0001

Stage 3 Reference
Fast Bowling -0.0873 -0.1119 -0.0459

0.3029 0.2595 0.6122
Spin Bowling -0.3930 -0.4177 -0.4637

< .0001 < .0001 < .0001
Medium Fast Bowling Reference

quantile of the percentage of runs conceded per over.
This cannot be accomplished using an OLS model;
however, a quantile regression model is capable of
providing valid inferences for all quantiles. Using
quantile regression to model bowling effectiveness,
along with some key results concerning this model,
is discussed in the next section.

3.2. Quantile regression models

In this section, we use Quantile Regression (QR)
to model the Percentage of Runs Conceded per Over
with respect to the independent variables Stage and
Bowling Style. To facilitate comparisons, Table 10
gives parameter estimates and significance results
for three QR models: 0.25, 0.50, and 0.75. Graph-
ical representations for the effect plots over the entire
quantile spectrum are presented in Figure 5 for a more
comprehensive view.

Table 10 results demonstrate noticeable differ-
ences in the parameter estimates of the effects of the
factors at different quantiles. It provides the differ-
ing effects of the Stage and Bowling Style factors
at pre-specified quantiles of the Percentage of Runs
Conceded per Over. However, the OLS model is inca-
pable such conclusions since it provides inferences
only for the conditional mean. For example, at the
0.25 quantile, and relative to the Stage 3 baseline,
there is a decrease of 0.56 percentage points in the
number of runs per over conceded in Stage 1. As
mentioned earlier, the results shown throughout this
study are based on the percentage points of total runs
conceded per over. Of course, it is simple to convert
these percentages to raw numbers of runs (e.g. 0.56

percentage in a match with 264 total runs is 1.48 raw
actual runs). In contrast, at the 0.75 quantile, and rel-
ative to the Stage 3 baseline, there is only a decrease
of 0.15 percentage points in the number of runs con-
ceded per over in Stage 1, which is not statistically
significant. Relative to the Stage 3 baseline, in Stage 2
bowlers have conceded 0.35 percentage points fewer
at the 0.25 quantile, while this figure rises to 0.69
percentage points fewer at the 0.75 quantile, and to
0.58 percentage points fewer at 0.50 quantile.

Results in Table 10 further demonstrate that spin-
ners concede fewer runs per over when compared to
the medium-fast bowlers, and the effect is statisti-
cally significant for all three quantiles. Additionally,
for all three quantiles, there is no significant differ-
ence between fast bowlers and medium-fast bowlers
with respect to the number of runs conceded per over.
This result is consistent with the OLS model as well.
However, for the 0.75 quantile model, and when com-
pared to Stage 3, it is important to note that the effect
of Stage 1 is not statistically significant at the 5% sig-
nificance level, but the OLS results indicate that the
effect during Stage 1 is statistically significant. Bear
in mind that OLS only models the conditional mean
of the response variable.

Plots of the changes to the effect of the predictors
(regression coefficients) as the quantile level moves
from lower quantiles, near 0.1 to upper quantiles,
near 0.9, are shown in Figure 5. The model effect
of Stage 1 is increasing steadily as the quantile level
changes from lower to upper. A change in the sign
of the effect near the 0.8 quantile suggests that rel-
ative to Stage 3, the Stage 1 bowlers have conceded
fewer runs per over at quantile levels less than the
0.8 quantile value, and conceded more runs per over
at quantile levels greater than the 0.8 quantile value,
even though the latter is not statistically significant.
In other words, when considering low-scoring situa-
tions (lower quantiles), bowlers concede fewer runs
per over in Stage 1 than in Stage 3. However, for
high-scoring situations (upper quantiles), the number
of runs conceded per over in Stage 1 is greater when
compared to that in Stage 3. The effect of Stage 2
is decreasing steadily as the quantile level increases,
and it is significant throughout the entire spectrum
of all quantiles. This implies that in Stage 2, bowlers
concede fewer runs per over than in Stage 3; it is
also seen that this difference increases as the quan-
tile level increases. Similar to the descriptive analysis
discussed earlier, bowlers concede significantly more
runs per over in Stage 4, when compared to Stage 3,
across all quantiles.
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Fig. 5. Quantile Process Plots for Estimated Parameters with 95% Confidence Interval.

Additionally, Table 10 shows that the number of
runs conceded per over by fast bowlers is not signif-
icant when compared to medium-fast blowers, and
this is consistent across all the quantiles. In contrast,
spinners conceded fewer runs per over than medium-
fast bowlers, and this is also consistent across all
quantiles. Apparently, this difference is greater for
quantiles in the middle range of (0.1, 0.9).

To investigate whether there is a difference in the
results shown above across different teams, QR mod-
eling was repeated for individual teams. Those results
were quite consistent, barring a few exceptions. Fig-
ures 6a, 6b, and 6c show quantile process plots of
the effects (regression coefficients) of the predictors
for each team. These plots indicate that the results
for individual teams are mostly consistent, with the
graphs being based on the full data set associated with
Figure 5.

The quantile plot for Stage 1 is steadily increas-
ing for most of the countries, while the quantile plot
for Stage 2 is generally decreasing for most of the
countries. The signs of the effects being negative
for these two stages indicate that the runs conceded
per over in Stages 1 and 2 are relatively lower than
that in State 3. In contrast, the plots for Stage 4 are
steadily increasing and the sign of that effect is posi-
tive. This indicates that, relative to Stage 3, in Stage
4 bowlers conceded more runs per over. In general,
this phenomenon is somewhat consistent across the
individual teams. Spinners concede fewer runs per
over than medium-fast bowlers; but when compared

to medium-fast bowlers, there is no significant differ-
ence in the number of runs per over conceded by fast
bowlers. These bowling style effects are also mostly
consistent among all teams.

Notice that there are a few cases where the results
for individual teams were somewhat different from
the pattern in the overall model that was based on
the full data set associated with Figure 5. For exam-
ple, Figure 5 shows that the overall effect of Stage 1
changes its sign near the 0.8 quantile; but, as shown in
Figure 6a and 6b, for the countries South Africa, Pak-
istan, and West Indies, the sign of the effect changes
near the 0.60, 0.40, and 0.25 quantiles, respectively.
Furthermore, even though the effect is not significant,
and contrary to the overall pattern in Figure 5, Indian
and West Indies fast bowlers seem to concede more
runs per over than their medium-fast bowlers.

4. Bayesian quantile regression

In this section we offer a Bayesian approach
to quantile regression for modeling bowling effec-
tiveness. Yu and Moyeed (2001) introduced the
possibility of using a likelihood function based on the
asymmetric Laplace distribution for Bayesian Quan-
tile Regression (BQR). They argue that using an
asymmetric Lapalace distribution is a more natural
and effective way to model when considering BQR.
Naturally, the Markov Chain Monte Carlo (MCMC)
procedure is used to empirically approximate the
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Fig. 6a. Quantile Process Plots for Estimated Parameters with 95% Confidence Bands for Australia, Bangladesh, and England.
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Fig. 6b. Quantile Process Plots for Estimated Parameters with 95% Confidence Bands for India, New Zealand, and Pakistan.



210
S.M

.B
.B

ow
ala

etal./A
quantile

regression
approach

w
ith

a
B

ayesian
extension

Fig. 6c. Quantile Process Plots for Estimated Parameters with 95% Confidence Bands for South Africa, Sri Lanka, and West Indies.
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Fig. 7. Distribution of Percentage of Runs Conceded Per Over.

posterior distributions. The probability density func-
tion for the asymmetric Laplace distribution used here
has the form

f (y; μ, σ, p)

= p(1 − p)

σ
exp

(−(y − μ)

σ
[p − I(y ≤ μ)]

)
,

where p, (0 < p < 1), is called a skew parameter, σ,
(σ > 0), is a scale parameter, μ, (−∞ < μ < ∞), is
a location parameter, and I(.), −∞ < y < ∞, is the
indicator function defined over the entire real line.
See Yu and Zhang (2005) for greater detail.

A histogram of the response variable, the percent-
age of runs conceded per over, is provided in Figure
7, where this marginal distribution is seen to be asym-
metric and right-skewed.

The BQR model studied here is

qp(y | Stage, Bowling style)

= β0(p) + β1(p) ∗ Stage1 + β2(p) ∗ Stage2 +
β3(p) ∗ Stage4 + β4(p) ∗ Fast + β5(p) ∗ Spin,

where the response variable Y is the percentage of
runs conceded in a given over.

Figure 8 shows the trace plots, autocorrelation
plots, and the kernel density estimates of the param-
eters β0(p), β1(p), β2(p), β3(p), β4(p), and β5(p),

respectively, for the 0.50 quantile. Figures 11 and 12
in the Appendix provide similar plots for the 0.25 and
0.75 quantiles. The kernel density estimates for all
six parameters are relatively unimodal and smooth.
But, the autocorrelation plots show evidence of non-
negligible autocorrelation in the posterior samples,
which is usually an indication of slow mixing.

Table 11 provides Monte Carlo Standard Errors
(MCSE) for each model parameter. The errors are
small relative to the posterior standard deviations
(SD), and small MSCE/SD ratios are indications that
the Markov Chain has stabilized and the mean esti-
mates do not vary much over time.

As was accomplished in the previous section, it is
useful to examine the quantile process, or how the
estimated regression parameters for each covariate
change as the quantile p varies over the interval (0,
1). Specifically, the quantile levels 0.1 to 0.9 are used
with increments of 0.10. Figure 9 shows the quan-
tile process plots for the estimated parameters except
for the intercept term (β0), and the corresponding
quantile parameter estimates are given in Table 12.
The results show that the parameter estimates tend to
vary widely around the particular quantile of interest.
Throughout the process, β2 and β5 are negative. For
β1, the 95% HPD (Highest Posterior Density) inter-
val is negative throughout most of the process; and
beyond the 0.70 quantile those intervals contain 0. In
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Fig. 8. MCMC Diagnostic Plots At 0.50 Quantile.

contrast, the process contains zero for all the quan-
tiles except the 0.40 quantile for β4. For β3, the 95%
HPD interval is positive throughout the process.

Table 12 provides HPD intervals for the range of
quantiles studied here. The coefficient β1 is steadily
increasing as the quantile level increases from lower

quantiles to upper quantiles. Furthermore, that coef-
ficient changes its sign near the 0.80 quantile. This
indicates that relative to Stage 3, in Stage 1 bowlers
concede fewer runs per over for quantiles below 0.80,
but changes to conceding more runs per over for quan-
tiles above 0.80. The effects plots in Figure 9 confirm
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Table 11

Monte Carlo Standard Errors (MCSE) at 0.50 Quantile

Parameter MCSE Standard MCSE/SD
Deviation

β0 0.0022 0.0832 0.0259
β1 0.0022 0.0830 0.0266
β2 0.0023 0.0804 0.0280
β3 0.0018 0.0832 0.0217
β4 0.0021 0.0806 0.0260
β5 0.0021 0.0817 0.0260

this relationship. Recall that this same conclusion
was reached using the non-Bayesian approach of
the previous section. The coefficient β2 is steadily
decreasing as the level of quantile increases from
lower quantiles to upper quantiles. So, relative to
Stage 3, in Stage 2 bowlers concede fewer runs per
over throughout the entire spectrum of quantiles, and
this effect is greater for higher quantiles. For exam-
ple, the decrease in the percentage of runs conceded
per over in Stage 2, when compared to Stage 3, is
0.2578 for the 0.2 quantile, and it is 0.7193 for the
0.8 quantile. Again, this outcome is also consistent
with the non-Bayesian analysis previously presented.
The coefficient β3 steadily increases as the quantile
level increases from lower quantiles to upper quan-
tiles. This indicates that relative to Stage 3, in Stage
4 bowlers concede more runs per over throughout
the entire spectrum of the quantiles. Additionally,

this effect gradually becomes larger as one views
from lower quantiles to upper quantiles. For exam-
ple, the increase in the percentage of runs conceded
per over in Stage 4, when compared to Stage 3, is
0.4762 for the 0.2 quantile and it rises to 1.3345
for the 0.8 quantile. The coefficient β4 is not sig-
nificant for all quantiles except those near 0.40. Even
though this effect is not significant, having a neg-
ative coefficient for most of the quantiles indicates
that fast bowlers concede fewer runs per over than
medium-fast bowlers. This is also consistent with
the outcome of our non-Bayesian approach. Finally,
the coefficient β5 is significant and negative for all
the quantiles. This indicates that relative to medium-
fast bowlers, spinners tend to concede fewer runs per
over; and this difference is greater for lower and upper
quantiles, while smaller for the middle quantiles. As
before, this outcome is consistent with our previous
non-Bayesian analysis.

In summary, the quantile plots of the regression
coefficients in Figure 9 using the BQR approach are
similar to the plots in Figure 5. This confirms that the
outcome of the BQR analysis is consistent with the
usual QR analysis discussed in the previous section.
For completeness, similar plots were also derived for
individual ICC teams and are given in Figures 10a,
10b, and 10c. These plots are similar to those shown
in Figures 6a, 6b, and 6c, again showing consistency
with the usual QR approach.

Table 12

Quantile Process Table For Estimated Parameters with 95% HPD Interval

p β1 β2 β3
Mean HPD Lower HPD Upper Mean HPD Lower HPD Upper Mean HPD Lower HPD Upper

0.1 -0.7644 -0.9498 -0.5844 -0.1674 -0.3462 0.0163 0.3971 0.2224 0.5823
0.2 -0.5894 -0.7740 -0.4175 -0.2578 -0.4272 -0.1026 0.4762 0.3047 0.6643
0.3 -0.4285 -0.6107 -0.2526 -0.4083 -0.5723 -0.2475 0.5383 0.3743 0.7068
0.4 -0.3287 -0.4766 -0.1866 -0.5259 -0.6944 -0.3681 0.6837 0.5247 0.8422
0.5 -0.2989 -0.4621 -0.1331 -0.5938 -0.7433 -0.4294 0.8384 0.6735 1.0080
0.6 -0.2569 -0.4107 -0.1002 -0.5988 -0.7664 -0.4263 0.9741 0.7996 1.1368
0.7 -0.2575 -0.4215 -0.0716 -0.6557 -0.8323 -0.4831 1.1639 0.9776 1.3359
0.8 0.0213 -0.1867 0.2218 -0.7193 -0.9255 -0.5143 1.3345 1.1171 1.5336
0.9 0.2255 -0.0592 0.4984 -0.6953 -0.9653 -0.4411 1.5614 1.2716 1.8396
p β4 β5

Mean HPD Lower HPD Upper Mean HPD Lower HPD Upper
0.1 -0.0528 -0.2228 0.1205 -0.2314 -0.4145 -0.0540
0.2 -0.1364 -0.2970 0.0298 -0.3669 -0.5315 -0.1933
0.3 -0.0777 -0.2343 0.0880 -0.4208 -0.6012 -0.2530
0.4 -0.1542 -0.3046 -0.0308 -0.4945 -0.6441 -0.3410
0.5 -0.1186 -0.2789 0.0371 -0.4296 -0.5842 -0.2686
0.6 -0.0750 -0.2258 0.0688 -0.4686 -0.6287 -0.3180
0.7 -0.0867 -0.2552 0.0751 -0.5324 -0.7020 -0.3530
0.8 0.0080 -0.1634 0.1883 -0.4189 -0.6100 -0.2345
0.9 0.0844 -0.1577 0.3305 -0.2684 -0.5184 -0.0038
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Fig. 9. Bayesian Quantile Process Plots for Estimated Parameters with 95% HPD Interval.

5. Discussion and conclusions

This article has shown that quantile regression can
effectively be used to model the bowling performance
of T20I cricket. In addition, a Bayesian-type exten-
sion to the same model has also been studied. For
modeling purposes, the twenty over innings of a T20I
match was divided into four stages: Stage 1 (overs 1-
6 PowerPlay), Stage 2 (overs 7-10), Stage 3 (overs
11-15), and Stage 4 (overs 16-20). Additionally,
bowlers were partitioned into three separate types:
fast bowlers, medium-fast bowlers, and spinners.
Given that ordinary least squares (OLS) regression
can only model the conditional mean of the response
variable, we have shown the relevance of quantile
regression in modeling the entire spectrum of the dis-
tribution of the response variable. To alleviate other
effects, like environmental conditions and ground
effects, the percentage of runs conceded per over has
been used as the response variable, instead of sim-
ply runs per over. As a result, greater insight into
the effects of the predictors throughout the entire
spectrum of quantiles is gained, which would not be
possible to accomplish using the usual OLS model.
Not having to fulfill the assumptions of normality
and homoscedasticity, combined with robustness to
the presence of outliers, are principal reasons why
practitioners tend to prefer quantile regression over
OLS regression. We have also employed a Bayesian
framework to the quantile regression problem as a

means of confirming the findings. A considerably
large data set, which includes 8040 overs from the
T20I matches played up to May 2019, has been used
in these analyses.

There are several key findings in this study. Rel-
ative to Stage 3, bowlers have conceded more runs
per over in Stage 1, and this difference appears to
be decreasing with the quantile level of the response
variable. Similarly, in Stage 2, bowlers have conceded
fewer runs per over than in Stage 3, and this difference
is increasing with the quantile level of the runs con-
ceded per over. When compared to Stage 3, bowlers
have conceded more runs per over in Stage 4 and this
difference is more pronounced in the upper quantiles.
With respect to Bowling Styles, when compared to
medium-fast bowlers, spinners have conceded fewer
runs per over, and this disparity is more visible for
quantiles in the middle range. There is no signifi-
cant difference between the number of runs conceded
per over for fast bowlers when compared to medium-
fast bowlers. Based on the results from the individual
country models, it is noted that these patterns are
consistent for most of the ICC teams, but with a
few exceptions. Results obtained from the Bayesian
framework were also consistent with those of the non-
Bayesian approach studied here. To see if a difference
in the effectiveness of bowling styles during different
stages of the match was detectable, revised models
including interactions terms were studied. How-
ever, these interaction terms were not statistically
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Fig. 10a. Bayesian Quantile Process Plots for Estimated Parameters with 95% HPD Interval for Australia, Bangladesh, and England.
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Fig. 10b. Bayesian Quantile Process Plots for Estimated Parameters with 95% HPD Interval for India, New Zealand, and Pakistan.
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Fig. 10c. Bayesian Quantile Process Plots for Estimated Parameters with 95% HPD Interval for South Africa, Sri Lanka, and West Indies.
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significant except in a very few cases, so that effort
proved fruitless.

In conclusion, this study has demonstrated the
usefulness of the quantile regression approach for
evaluating the performance of bowlers in the game
of cricket. The findings here can be useful for cricket
administrators, team managers, and captains pursu-
ing an effort to mobilize their bowlers effectively.
Because this study considered only one key aspect
of the bowler performance, runs conceded per over,
other avenues remain open for investigation. Future
research will incorporate another key aspect of bowl-
ing performance: the number of wickets taken per
over, which is a natural extension of this work.
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6. Appendix

Leibnitz Rule: Let f (θ, x) be a real-valued func-
tion such that it and its partial derivative fθ(θ, x)

Fig. 11. MCMC Diagnostic Plots At 0.25 Quantile.

are continuous in θ and x in some region R of the
(θ, x) plane, including a(θ) ≤ x ≤ b(θ), θ0 ≤ θ ≤ θ1,
where a(θ) and b(θ) are both continuous, with con-
tinuous derivatives, on [θ0, θ1] as well. Then, for
θ ∈ [θ0, θ1]
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Fig. 12. MCMC Diagnostic Plots At 0.75 Quantile.
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(b(θ))

)

− f (θ, a(θ))

(
d

dθ
(a(θ))

)
+
∫ b(θ)

a(θ)

[
∂

∂θ
(f (θ, x)

]
dx.

Proposition. As a function of x̂, the expected loss,
E[Lτ(X − x̂)] = ∫ +∞

−∞ Lτ(x − x̂)dF (x) =
(τ − 1)

∫ x̂

−∞(x − x̂)dF (x) + τ
∫ +∞
x̂

(x − x̂)dF (x),
given in Equation (3) where F (x) is the absolutely
continuous cumulative distribution of X and f (x) is
its corresponding density, is minimized when x̂ is
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the τth percentile of the distribution of X. That is,
F (x̂) = τ.

Proof. Define g(x, x̂) := (x − x̂)f (x) and note that
g(x̂, x̂) = 0 and

(
∂
∂x̂

(g(x, x̂))
) = −f (x). So, symbol-

ically,
[

∂
∂x̂

(g(x, x̂))
]
dx = −f (x)dx = −dF (x). Now

apply Leibniz Rule twice as shown below.
d

dx̂
(E[Lτ(X − x̂)]) = d

dx̂[
(τ − 1)

∫ x̂

−∞
(x − x̂)f (x)dx + τ

∫ +∞

x̂

(x − x̂)f (x)dx

]

= (τ − 1)
d

dx̂

(∫ x̂

−∞
g(x, x̂)dx

)

+ τ
d

dx̂

(∫ +∞

x̂

g(x, x̂)dx

)

= (τ − 1)
d

dx̂

(
lim

t→−∞

∫ x̂

t

g(x, x̂)dx

)

+ τ
d

dx̂

(
lim

u→+∞

∫ u

x̂

g(x, x̂)dx

)

= (τ − 1) lim
t→−∞

(
d

dx̂

∫ x̂

t

g(x, x̂)dx

)

+ τ lim
u→+∞

(
d

dx̂

∫ u

x̂

g(x, x̂)dx

)

= (τ − 1) lim
t→−∞

(∫ x̂

t

(
∂

∂x̂
g(x, x̂)

)
dx

)

+ τ lim
u→+∞

(∫ u

x̂

(
∂

∂x̂
g(x, x̂)

)
dx

)

Table 13

Effective Sample Size (ESS) at 0.50 Quantile

Parameter ESS Autocorrelation
Time

Efficiency

β0 1493.7 20.0846 0.0498
β1 1416.4 21.1806 0.0472
β2 1279.1 23.4548 0.0426
β3 2115.4 14.1818 0.0705
β4 1484.4 20.2099 0.0495
β5 1477.3 20.3069 0.0492

= (τ − 1) lim
t→−∞

(∫ x̂

t

(−1)dF (x)

)

+ τ lim
u→+∞

(∫ u

x̂

(−1)dF (x)

)

= (1 − τ) lim
t→−∞

(∫ x̂

t

dF (x)

)
− τ lim

u→+∞

(∫ u

x̂

dF (x)

)

= (1 − τ) lim
t→−∞

[F (x̂) − F (t)] − τ lim
u→+∞

[F (u) − F (x̂)]

= (1 − τ)[F (x̂) − F (−∞)] − τ[F (+∞) − F (x̂)]

= (1 − τ)[F (x̂) − 0] − τ[1 − F (x̂)]

= F (x̂) − τ.

Therefore, x̂ is a critical value for E[Lτ(X − x̂)].
To see that x̂ is indeed a minimum value compute
d2

dx̂2 (E[Lτ(X − x̂)]) = d
dx̂

(F (x̂) − τ) = f (x̂) > 0.
Table 13 shows the Effective Sample Sizes. The

autocorrelation times for the three parameters range
from 14.18 to 23.45 and the efficiency rates are low.
These results account for the relatively small effective
sample sizes, given a nominal sample size of 30, 000.


