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Modeling and simulating durations of men’s
professional tennis matches by resampling
match features

Francesco Lisi∗ and Matteo Grigoletto
Department of Statistical Sciences, University of Padua, Italy

Abstract. In this paper we analyze the factors impacting on the length of a men’s professional tennis match and propose
a model to simulate matches’ durations. Two distinctive features of the model are that i) it considers all kinds of events
that impact on the duration of a match and ii) it is based only on publicly available data. Once built, the model allows to
analyze the impact of different formats or rule changes on matches’ duration. The model is built and validated using a dataset
including 19,961 matches played in the period January 2011 – December 2018. The simulated and observed distributions
of the durations are compared with an in-depth goodness-of-fit analysis. This points out that the model provides a good
description of the real distribution both in the central part and in the tails. We also show that our model improves similar
models present in the literature. Finally, several case studies are analyzed: the effect of abolishing the first service or the
advantages or both; the new tie-break format at Wimbledon; and the introduction of fifth set tie-break at Roland Garros.

Keywords: Tennis analytics, length of tennis matches, tennis match formats, Monte Carlo methods, goodness-of-fit tests, rule
changes, one service

1. Introduction

In recent years tennis’ governing boards have
begun to consider introducing new rules or modify-
ing the current matches’ format in order to reduce the
length of tennis matches and to make the “product”
tennis more attractive.

Reducing the length of matches is important
because very long matches can make it difficult for
tournaments to complete the schedule on time, mostly
when there are also delays due to weather conditions.
They also increase the risk of injury and physical
stress for the players and, thus, of “retired matches”.
From the audience point of view, there is concern
that people may lose interest in tennis if very long
matches become the norm. Finally, long matches are
often difficult to manage by TV broadcasts.

∗Corresponding author: Francesco Lisi, E-mail: francesco.
lisi@unipd.it.

Which is the best way to reach the goal, however, is
still under discussion. To reduce injuries and increase
fairness of matches, Pollard and Noble (2003) and
Pollard and Noble (2004a) propose the use, also in
single matches, of the no-advantage game, i.e. when
the score is at deuce (40-40), players need only one
point to win the game. They also propose the so-called
“50-40 game”, i.e. the server is required to reach 50
(one point more than 40) while the receiver needs
to reach only 40. Thus, the server has the advantage
of serving but the disadvantage of having to win one
more point than the receiver in order to win the game.
The 50-40 game was also suggested by Barnett et al.
(2006) to reduce the likelihood of long matches.

Pollard and Barnett (2018) explored some possible
structures for “short games”. Besides the no-ad and
the 50-40 game, they proposed i) the 30-30 advantage
game, where the winner is the first player to win at
least 3 points with at least 2 points more than the
opponent; ii) the 50-40, 40-0, 40-15 game, the same
as the 50-40 game except that the server also wins the

ISSN 2215-020X © 2021 – The authors. Published by IOS Press. This is an Open Access article distributed under the terms
of the Creative Commons Attribution-NonCommercial License (CC BY-NC 4.0).

mailto:francesco.{penalty -@M }lisi@unipd.it
https://creativecommons.org/licenses/by-nc/4.0/


58 F. Lisi and M. Grigoletto / Modeling and simulating durations of men’s professional tennis matches

game at 40-0 or 40-15; iii) the “50-40, B3” game, the
same as the 50-40 game except that at 40-30 the best
of 3 points system is used to determine the winner.
Thus, the server has to win 4 points while the receiver
only three points but, if the score is 40-30, the game
is won by the first player winning 2 points.

A different format is the so-called Fast4, originally
introduced in Australia. This format is as follows: best
of five sets, first to four games sets, no-ad and shot-
clock at 25 seconds. To test this format, the ATP opted
for an entirely new competition, called Next Gen
ATP Finals. It is an year-end tournament played by
the eight highest-ranked male players aged 21-and-
under. In this tournament other new rules have been
introduced, such as camera based ball-tracking tech-
nologies instead of linesmen and the no-let rule (then
discarded). The duration of matches with this format
has been studied by Kovalchik and Ingram (2018) and
Simmonds and O’Donoghue (2018). Kovalchik and
Ingram (2018) found that Fast4 best-of-three (Bof3)
matches have, approximately, a number of points
played which is half the points played in traditional
Bof3 matches and one-third the points played in best-
of-five matches (Bof5). Moreover, their simulations
suggest that Fast4 formats have an expected duration
under 60 minutes. Assuming the same probability of
winning a point on serve for both players, Simmonds
and O’Donoghue (2018) found that the average num-
ber of points played in Fast4 Bof5 matches ranges
from 141 to 145, while the corresponding average in
a traditional Bof5 match ranges from 270 to 280.

Another change, which has been proposed several
times since the 1920s (Klaassen and Magnus, 2014)
and aiming at reducing the service dominance, is the
abolition of second service.

Several kinds of tie-breaks have also been exper-
imented (Pollard and Noble, 2004b). Currently, a
7-point tie-break is played at 6-6 in each set for best-
of-three matches, but grand slam championships have
specific rules for the fifth-set tie-break. Since 2019,
a 10-point tie-break is played at 6-6 at the Australian
Open, while a a 7-point tie-break is played at 12-12
at Wimbledon. The US Open has a traditional 7-point
tie-break at 6-6 whereas the Roland Garros is the only
grand slam tournament without tie-break in the fifth
set.

Finally, rules’ modifications not involving the
score include the introduction in all tournaments of
a countdown ensuring that players serve within 25
seconds after the conclusion of the previous point1, a

1This has been introduced in 2018.

strict time check of the five minute warm-up before
the match begins, just one three minute medical time-
out per match and the reduction of the seeds from 32
to 16, in order to give the lesser ranked players a better
chance.

It is clear that some of these changes have only a
marginal impact on the match structure, while others
are more impacting or even completely modify the
traditional scoring system. For example, the Fast4
format strongly reduces the length of matches, but
has been criticized in that it completely changes the
actual structure of the sets.

Moreover, when introducing new rules or modify-
ing the traditional scoring system, it is important to
focus on the final goal. This could be, for example,
the reduction of the mean or of the standard deviation
of match durations but also having a greater aver-
age excitement per point played or keeping the same
probability that the better player wins (see Pollard
and Barnett, 2018).

It is also important to note that while formats such
as Fast4 have been actually played by professional
tennis players, for other formats we have no experi-
ence. For example, no matches using traditional rules
but with no-advantages or with only one service have
ever been played. In addition, when many changes
are jointly applied, as in the Next Gen ATP finals,
the contribution of each of them is not easy to iso-
late. Hence, to evaluate their impact on the length of
matches we need to resort to simulations, and this
motivates the rest of this work.

Within this context, in this paper we focus on
studying and simulating professional tennis matches’
lengths. In this regard, we stress that in the litera-
ture only few papers faced this issue and most of
them considered length in terms of number of points
played, rather than in terms of time. Examples of
the former approach are the works of Barnett et al.
(2006), Barnett (2016), Ferrante et al. (2017), Sim-
monds and O’Donoghue (2018), Pollard and Barnett
(2018). However modeling the time length of tennis
matches is much more complex. To the best of our
knowledge the only work considering durations in
terms of time is Kovalchik and Ingram (2018), who
compare different formats using simulations.

To estimate the duration of a tennis match we need
to understand the factors impacting on it. Follow-
ing Kovalchik and Ingram (2018), the total duration
is made of two components: time in-play and time
between-play.

Time in-play is the time between the service and
the conclusion of the point. The total time in-play for
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a match is simply the sum of the time in-play of each
point of the match. Time between-play is made up
of the time the players take to prepare to serve, the
number and duration of game and set changeovers
and of any other kind of stops, such as exceedances
of official time limits, hawk-eye calls, point’s repeti-
tions, medical time outs, interruptions caused by the
audience, and other unexpected events (Carboch et
al., 2016).

The duration of a match depends also on the dif-
ference of level between the players and, particularly,
on their service characteristics: in general, the more
equilibrated the match, the longer its total duration.
Also important are the surface where the match is
played, the air temperature and humidity (Périard et
al., 2014) and the level of the tournament (Master
series 1000, World tour ATP 500 and World tour ATP
250)2. The round at which the match is played has no
direct impact on the duration but, due also to the seed-
ing mechanism, it is correlated with the difference of
level between the players. In particular, early round
matches tend to show a greater difference in the play-
ers’ level. And of course, duration strictly depends on
the format of the match.

While it is relatively easy to account for some of
these factors, it is less obvious how to include oth-
ers in a model. Examples of the latter kind are the
exceedances of official time limits and the weather
conditions. Nevertheless, only considering all these
issues we can reach an effective description of actual
durations.

In the present work, along the lines of Kovalchik
and Ingram (2018), we propose a different kind of ten-
nis matches’ length simulator which leads to a better
approximation of the observed length distributions.
Particular attention is paid to assessing the consis-
tency of the distributions of simulated durations with
the observed ones. To this goal we consider differ-
ent statistical tests, looking both at the center and at
the tails of the distribution. We compare formats that
can reduce the probability of very long matches but,
meanwhile, change as little as possible the traditional
structure of sets. Thus we don’t consider the Fast4
or IPTL (International Premier Tennis League) for-
mats, which have already been studied by Kovalchik
and Ingram (2018), but focus on traditional matches
including only one change at a time.

2We have chosen this classification just for convenience,
because we do consider only these kinds of tournaments. There
are, however, also lower level tournaments like the ATP challengers
and the ITF World tennis tour. We could have considered also an
ITF structure of tournaments or included the Davis cup matches.

In particular, besides analyzing the possibility of
abolishing the advantages, we consider the impact
of abolishing the first service (which was rarely, if
ever, considered in the literature). Finally, we exam-
ine two other specific case studies: the effects of the
recent introduction of the tie-break in the fifth set at
Wimbledon and of the possible introduction of the
tie-break in the fifth set at Roland Garros.

2. Observed matches’ duration analysis

In order to better understand how to build the simu-
lation model and how to make comparisons between
simulated and observed data, in this section we ana-
lyze some empirical data on durations.

Match durations, and most other data, were
retrieved from the OnCourt database3. Our dataset
considers matches played in the period January
2011–December 2018. For each match we have
the following information: tournament (Grand Slam,
ATP1000, ATP500, ATP250), surface, round, final
score, duration and, for each player, number of first
and second serves, number of first and second serves
in, number of winning first and second serves, number
of aces, number of double faults, number of returns
and of winning returns, total points won.

We discarded cases with missing durations,
Olympics and Next Gen ATP Finals matches as well
as walkover and retired matches. After that, our sam-
ple consists of 3715 best of five matches and 16246
best of three matches. Figure 1 shows kernel den-
sity estimations of the match length’s distribution
together with mean durations. The humps in the right
tail of both distributions are the effect of the different
number of sets with which the match can conclude.
Table 1 lists the values of some specific quantiles,
from the median (Q50) to the 99.9% quantile (Q999).
Median lengths are 92 minutes (mean 98) for best of
three matches and 142 minutes (mean 150) for best
of five matches.

We now analyze durations with respect to differ-
ent factors which have an impact on the length of
a match. Figure 2 shows how durations’ quantiles
change with respect to the type of tournament. The
left panel, regarding best of 3 matches, suggests that
ATP1000 matches are slightly longer than ATP500
and ATP250 matches, especially for extreme quan-

3OnCourt is a program including data for all Grand Slam,
ATP1000, ATP500 and ATP250 matches played since 1990. For
more details, see http://www.oncourt.info/.
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Fig. 1. Duration density functions: duration for best of 5 (left) and best of 3 (right) matches. Red lines show mean durations: 149 minutes
for best of 5 and 98 minutes for best of 3 matches.

Table 1

Empirical quantiles for best of 3 and best of 5 matches duration
(in minutes)

Match Q50 Q75 Q90 Q95 Q999
Best of 3 92 119 142 154 200
Best of 5 142 179 214 233 319

tiles. This can be explained with the globally higher
level of players taking part in ATP1000 tournaments
and, thus, with more equilibrium between the two
players in a match. The right panel refers to best of
5 matches and distinguishes durations with respect
to Grand Slam championships. Results point out that
Wimbledon matches have shorter durations than the
other grand slam tournaments, except for the 99.9%
quantile.

The effect of early rounds (up to eighth of final) and
final rounds (from fourth of final) on matches’ dura-
tions is illustrated in Figure 3. Final rounds matches
tend to be longer than those in early rounds, where
often there is less equilibrium, especially for best of
5 matches.

To further investigate this issue, following
Klaassen and Magnus (2014), we considered the
parameter δ = abs(pA − pB) as a measure of the
level difference between players, where pA and pB

are the probability that players A and B win a point
on their own serve. Using the fraction of points won
on serve as estimates of pA and pB, we performed a
spline regression of durations on δ. Figure 4 shows
the relation between the level difference (δ) and the
duration: clearly the duration decreases non linearly
with δ, that is when the match is less balanced.

It clearly appears that a good simulator of matches’
length should include, directly or indirectly, all pre-
vious factors in the same proportions as they actually
occur.

3. Modeling and simulating tennis matches’
durations

In this section we show how to build a model for
a realistic simulator of durations. The model is sim-
ilar to the one proposed by Kovalchik and Ingram
(2018), but not the same. In particular, it differs
in that:

a) it does not require, and it never uses, Hawk-Eye
data. This is a distinguishing feature of our model.
While, in principle, using Hawk-Eye data would be
preferable, it is not easy to find this kind of data
and we believe that an approach based on publicly
available data4 is more desirable for most users; b)
it does not neglect time due to unusual match inter-
ruptions as well as the effect of exceeding the time
prescribed by the International Tennis Federation’s
rules; c) when simulating matches, it does not work
with fixed probabilities of winning a point on serve,
hence also γ = pA + pB and δ = pA − pB are not
fixed. In particular, it resamples the “observed” pA

and pB and, thus, γ and δ, over thousands of matches.
This allows a better description of the actual variabil-
ity of match conditions; d) since the final result of
a match includes, in some way, the set of all condi-

4Actually part of the data we use are not completely free. How-
ever, it is very easy and very cheap to access them. In this sense
we can consider them as “publicly available”.
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Fig. 2. Observed duration’s quantiles for best of 3 matches (left) and best of 5 (right).

Fig. 3. Observed duration’s quantiles for early and final rounds for best of 3 matches (left) and best of 5 (right).

tions under which the match is played (temperature,
humidity, hour of the day, indoor or outdoor, etc.) this,
indirectly, allows us to account for all factors influ-
encing its duration. In addition, since we resample
real matches, each factor is weighted with the correct
proportion (it occurs with the right frequency).

Among the “ingredients” previously described, we
can distinguish between stochastic and deterministic
factors. Elements necessary to simulate the in-play
time are mainly stochastic, while those necessary to
simulate between-play time can be deterministic or
stochastic; time describing all the non standard inter-
ruptions will be treated by a suitable parameter.

3.1. Modeling time in play

To simulate the in-play time we need to attribute
a duration to each played point. For a given number
of shots in a point, and using the well-known rela-
tion time = distance/speed, we estimate the time per
point as the sum of time for each shot in that point.
To replicate the physical mechanism leading to the
duration of a single point we need to know the distri-
butions of:
a) shots per point, to account for the variability of the
number of shots;
b) the ball’s speed, to manage different speeds;
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Fig. 4. Relations between observed δ = abs(pA − pB) and durations for best of 3 matches (left) and best of 5 (right).

c) the distance covered by the ball, because it is not
constant.

3.1.1. Shots per point distribution
The distribution of the number of shots per point is

the one suggested by Carboch et al. (2019), who ana-
lyzed in detail 24 matches played at the Australian
Open, at Roland Garros and at Wimbledon. Matches
were chosen to represent both early rounds and final
rounds and were analyzed by three evaluators. Car-
boch et al. (2019) pointed out that most points end
within the first three shots. These results are in line
with those provided by the Match Charting Project
(MCP)5, that gives categorized observed frequencies
for 1–3 shots; 4–6 shots; 7–9 shots and 10 or more
shots, on different surfaces.

The advantage of using the Carboch et al. (2019)
distribution is that it provides the probability of a spe-
cific number of shots, instead of a categorized number
of shots 6.

In their work, Carboch et al. (2019) produced
observed frequencies of rally shots for different
surfaces: clay, grass and hard. As the rally shots dis-
tribution for any specific surface is based on a limited
number of matches ( 7 played at the Australian Open,
10 at the French Open and 7 at Wimbledon), to reduce

5www.tennisabstract.com
6In a previous version of this paper the rally shots distribution

was obtained from the categorized frequencies provided by MCP,
to which a Quasi-Poisson distribution was fitted, as in Kovalchik
and Ingram (2018). The final results and conclusions were very
similar to those obtained using the Carboch et al. (2019) distribu-
tion.

Fig. 5. Frequencies of rally shots obtained as a weighted mean
of the frequencies provided by Carboch et al. (2019) for different
surfaces.

the sample error, in our analyses we preferred not to
differentiate among surfaces and consider a weighted
mean of the observed frequencies over the three sur-
faces. We are very confident that this choice does
not affect the final results. In addition, the maximum
length of a rally was set at 30. The resulting rally shots
distributions is represented in Figure 5 and listed in
Table 2.

3.1.2. Ball’s speed distribution
The distribution of the shots’ speed was estimated

using data from some interactive graphs published in
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Table 2

Percentage frequencies of rally shots

rally 1 2 3 4 5 6 7 8 9 10
Freq. 7.28 22.88 18.49 12 9.75 6.83 6.28 4.40 2.84 2.60
rally 11 12 13 14 15 16 17 18 19 20
Freq. 1.65 1.54 0.83 0.73 0.55 0.27 0.27 0.19 0.12
rally 21 22 23 24 25 26 27 28 29 ≥ 30
Freq. 0.04 0.04 0.04 0.03 0.03 0.03 0.02 0.02 0.02 0.04

the blog on-the-T, containing median forehand7

and backhand8 speeds for 86 top players, measured
by Tennis Australia’s Game Insight Group during the
Australian Open tournaments, 2014 to 2016. In our
simulations, data for forehands and backhands have
been merged in order to obtain a unique distribution
representing different speeds occurring in a match.
Figure 6 shows the estimated kernel distributions for
forehand, backhand, and both ground strokes. For
forehand the median speed ranges from 106 to almost
140 km/h, with a mean around 123 km/h; backhands
are usually slower: their speed ranges from 91 to 123
km/h with a mean of 110 km/h. When we consider
the speed of both ground strokes the range is 91–139
km/h and the mean is 117 km/h.

3.1.3. Distance covered by the ball
The length of a tennis court is 23.77m. On the one

hand, diagonal and long shots can cover more than
this distance and the ball’s trajectory is nonlinear;
on the other hand, dropshots, volleys, passing shots
and non-long shots, are sensibly shorter. Therefore,
for the distance distribution we selected a N(23, 32).
This means that the trajectory, at μ + 3 · σ, reaches
the equivalent of 32 linear meters.

We tried other values for mean and standard devi-
ation, but final results are not much affected by this
choice. This is not surprising, given that at the mean
speed of 117 km/h the ball takes 0.7 seconds to cover
the 23.77 meters of the court’s length.

3.2. Modeling time between play

For the time between play we can distinguish two
components: time due to regular match interruptions,
that we call regular time (RT), and time due to any
other kind of interruptions, that we call additional
time (AT). Regular time is made up of the time a
player takes for 1st service and, if needed, for 2nd

7http://on-the-t.com/2016/11/26/aoleaderboard-
forehand-speed/

8http://on-the-t.com/2016/10/22/aoleaderboard-
backhand-speed/

service preparation, changeovers and end of sets. The
maximum durations of these interruptions are ruled
by ITF: 20 seconds for first serve preparation9, 90
seconds for changeover and 120 seconds for end of
set. We assume that players always use all the avail-
able time. Although the maximum length of the stops
is ruled by ITF, a non trivial issue is the actual time
a player uses for serve preparation and changeovers.
Kovalchik (2018) showed that a professional tennis
player takes, on mean, 19–20 seconds to serve but,
in the meanwhile, she also showed that the mean
time before a crucial point is around 25 seconds and
can reach 40 seconds. The increasing time for serve
preparation, when important points are involved, is
supported also by the findings of Kolbinger et al.
(2019). These authors, in a study considering 6231
rallies collected from 21 matches at the Australian
Open 2016, indicated a mean time between points of
21.5 seconds with a standard deviation of 5.20 sec-
onds. Hornery et al. (2007) found an average time
of 25.1 seconds for matches played on hard court.
According to the investigation of Périard et al. (2014),
in hot conditions players take, on average, a 9.6 sec-
ond longer break between points. Results in line with
these findings were also pointed out by Carboch et
al. (2019). As concerns the time rule violation, Kol-
binger et al. (2019) found out that this occurs 58.8%
of the times. Since long matches are usually very bal-
anced, and balanced matches lead to several crucial
points, we can safely assume that the occurrence of
important points tends to increase with the length
of the match. It is also reasonable to assume that
in longer-lasting matches players are tired and tend
to “nibble” some additional seconds between points.
This suggests a possible link between the additional
time required for serve preparation and the length
of the match itself (see also Kolbinger et al. (2019)
and Mühlberger and Kolbinger (2020)) . Mühlberger
and Kolbinger (2020) took a close look at the time

9Recently this time has increased to 25 seconds but, since
we use data up to 2018, we left it at 20 seconds. However, we
have to note that, according to the ATP rules, the 20 seconds limit
was adopted only at grand slam tournaments, while for the other
tournaments 25 seconds were already allowed.
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Fig. 6. Ball’s speed distributions. From left to right: forehand speed, backhand speed, both ground strokes. Vertical lines show mean speeds.

between points in 18 matches at the 2018 men’s single
US Open tournament after the introduction of an on-
court serve clock to measure the time limit between
points. Their conclusions are that, compared to previ-
ous studies, the number of rule violations decreased
(26.3%) but the average time did not. They also con-
firm that players use time between points to recover
after long rallies and show that umpires can have a
significant influence on the inter-point time.

For these reasons, we model the time for first
serve preparation as a Gamma random variable whose
distribution is given by c + Gamma(a, b). For sec-
ond serve preparation there is no “hard” time limit;

according to Kovalchik and Ingram (2018), we fix
it to 10 seconds. Parameters a, b and c have to be
estimated. However, since we have no empirical data
for this issue, we adopt an indirect strategy, consist-
ing in choosing the parameters which lead to the best
final result in terms of distance between the distribu-
tions of simulated and observed durations. Following
this approach we model time for first serve prepa-
ration as 14 + Gamma(1.8, 0.305). To the best of
our knowledge there are no data in the literature on
changeover time violations. However, some measure-
ments taken by the authors of this paper suggest that
thresholds are often, and sometimes heavily, violated.
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Therefore, using the same approach as before, we
model changeover time as 88 + Gamma(1.8, 0.275)
and end-of-set time as 118 + Gamma(1.8, 0.275).

Additional time is more difficult to define and
model. Exceedances of the previously defined times
can be due to several reasons: exceedances of ruled
time thresholds, but also, for example, Hawk-Eye
calls. Each player has three unsuccessful challenges
per set, with an additional challenge if the set reaches
tie-break. If the player’s call is correct, then he/she
retains the same number of challenges. Thus in a
match there could be several calls, each one tak-
ing some time and, at the discretion of the umpire,
some challenged points can be replayed. Some ten-
nis analysts argue that players sometimes “tactically”
call Hawk-Eye in order to gain time Kolbinger et
al., 2019, Mühlberger and Kolbinger, 2020,and refer-
ences therein. Random interruptions can also occur,
due to medical time outs, audience bothering or mov-
ing, arbitration disputes, toilet breaks, heat time-outs
and so on. There are also a number of possible unusual
causes of interruptions, from ball boys hit by a ball
to field invasion by animals or strikers.

It is clear that accounting for this additional time,
which is neither constant nor imputable to a sin-
gle specific cause, is not trivial. Thus we globally
model AT as a parametric function of the simu-
lated time passed since the beginning of the match
(T0). In particular, we measure the additional time as
AT = β log(T0), where β is a parameter that needs
to be estimated. AT is added to the duration of the
match obtained without accounting for any unex-
pected interruptions. The parameter β is estimated as
the value minimizing the distance between the dis-
tributions of observed and estimated durations. The
ratio behind this approach is to allow the simula-
tion mechanism to adapt to the observed data without
any attribution to a specific cause. The effect of this
component was not accounted for by Kovalchik and
Ingram (2018) but we found that its consideration sig-
nificantly improves the fitting between simulated and
observed durations, especially in the distributions’
tails.

3.3. Matches simulations

To develop the match and, hence, to find the num-
ber of points, games and sets played, as well as the
number of changeovers, we used Monte Carlo shot-
level simulations (Newton and Aslam, 2006, 2009).

Even if this is the same approach followed by
Kovalchik and Ingram (2018), the implementation of

the model is quite different and, we believe, more
appropriate. Indeed, Kovalchik and Ingram (2018)
simulated matches only under some combinations
of the quantities γ = pA + pB and δ = pA − pB

(which they call bonus and malus). More in detail, for
ATP matches they considered four values of δ (0.00,
0.05, 0.10 and 0.15) and three values of γ (1.20, 1.25
and 1.30 for hard and clay and 1.25, 1.30 and 1.35
for grass); then these values were further restricted
to represent different round conditions. The authors
declared that their values of γ and δ, “capture 95%
of match conditions”. However, when we consid-
ered all the matches played in the period 2011–2018
and estimated the distribution of the “observed” (ex-
post) values of δ (malus) and γ (bonus) we found the
quantiles reported in Table 3. These quantiles suggest
that the values used by Kovalchik and Ingram (2018)
cover only around 89% of match conditions for best
of 5 matches, and around 71% for best of 3 matches.

To build our model, instead, we used probabilities
that: player A (B) wins a point on his own service
given that the first service is in; the first service of
player A (B) is in; player A (B) wins a point on his
second service given that the second service is in;
the second service of player A (B) is in. These prob-
abilities have been estimated using 20,096 matches
played between 2011 and 2018, whose statistics are
provided by the On court database10. Table 4 lists
means, across all matches, of the estimated probabil-
ities, divided also for surface.

For each simulated match, the set of model’s
parameters (probabilities) is sampled from the ones
characterizing the observed matches. This allows us
to capture 100% of the match conditions, in terms
of differences between players and with respect to
weather conditions, kind of tournament, round, etc. In
addition, given that we resample observed matches,
all these features are weighted in the correct way.

A step by step description of the simulation proce-
dure is given in the Appendix.

4. Simulation results

This section is devoted to an in-depth analysis
of the coherence between simulated and observed
matches’ lengths. A description of time components
is also provided.

Table 5 lists the simulated quantiles and means,
with their Monte Carlo intervals, and the correspond-

10http://www.oncourt.info/

http://www.oncourt.info/
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Table 3

Quantiles of observed γ and δ

Best of 5 Q1 Q10 Q30 Q50 Q70 Q90 Q99
γ (bonus) 1.051 1.134 1.205 1.249 1.298 1.360 1.478
δ (malus) 0.002 0.014 0.041 0.068 0.097 0.157 0.284
Best of 3 Q1 Q10 Q30 Q50 Q70 Q90 Q99
γ (bonus) 1.008 1.129 1.214 1.272 1.329 1.415 1.529
δ (malus) 0.002 0.021 0.060 0.100 0.148 0.231 0.366
All together Q1 Q10 Q30 Q50 Q70 Q90 Q99
γ (bonus) 1.008 1.129 1.214 1.271 1.328 1.414 1.529
δ (malus) 0.002 0.021 0.059 0.099 0.147 0.230 0.365

Table 4

Means of the estimated probabilities for different surfaces.

Probab. Hard Clay Grass Tot
P(1st serve in) 60.0 61.6 62.4 60.7
P(2nd serve in) 88.5 90.1 86.4 88.8
P(Point won on 1st serve | 1st serve in) 72.6 69.0 74.1 72.0
P(Point won on 2nd serve | 2nd serve in) 56.8 55.6 58.1 56.5
P(Point won on 1st serve) 43.5 42.5 46.2 43.4
P(Point won on 2nd serve) 51.3 50.7 52.2 51.2

Table 5

Observed and simulated quantiles and means for Bof3 and Bof5 matches durations (in minutes), with their 95% Monte Carlo intervals in
parentheses. Note that all values referring to simulated matches are rounded to the nearest minute. Sample size: 16246 for Bof3 and 3715

for Bof5 matches

Best of 3 Q2.5 mean Q97.5 Q99.0 Q99.9
Observed 54 98 164 175 200
Simulated 54 98 166 179 208

(53–55) (97–98) (164–168) (174-184) (203–219)
Best of 5 Q2.5 mean Q97.5 Q99.0 Q99.9
Observed 84 150 253 274 319
Simulated 84 150 254 275 324

(83–85) (150–151) (251–256) (272–279) (316–332)

ing observed values for Bof3 and Bof5 matches
played in 2011–2018.

To account for the variability in simulations, the
α-quantile for simulated data refers to the mean of
500 α-quantiles, each one computed over 15000 sim-
ulated matches. The 500 values for each α-quantile
allow us to compute the 95% Monte Carlo intervals
both for the mean and for the the quantiles, written in
parentheses in Table 5. The 2.5% percentile and the
mean are correctly estimated in both cases and the
errors for the 97.5% percentiles are +2 minutes, for
Bof3, and +1 minute, for Bof5 matches. For higher-
order quantiles, i.e. 99.0% and 99.9% quantiles, the
model overestimates the “observed” percentiles by
+4 and +8 minutes for Bof3 matches, and by +1
and +5 minutes for Bof5 matches. Up to quantile
97.5% Monte Carlo intervals are quite narrow and,
as usual, moving towards the right distribution’s tail,
they become larger.

These results show a very good fit, especially if
compared with the results obtained with the model

by Kovalchik and Ingram (2018) which – according
to the values published in their paper – underestimates
the 97.5% actual percentile by 12 minutes for Bof3
matches and by 24 minutes for Bof5 matches and, in
the meantime, overestimates the 2.5% percentile by
7 minutes both for Bof3 and Bof5 matches.

4.1. Goodness-of-fit of the model

Simulated distributions of matches’ lengths (see
Figs. 8 and 9) are now compared with the observed
ones using graphical representations as well as sta-
tistical tests. Analyses are conducted separately for
best of 3 and best of 5 matches.

Let us denote by Dobs and Dsim the observed
and simulated distributions of a match length. To
test H0 : Dobs = Dsim we consider several statistical
methods of goodness-of-fit that we can roughly divide
into four categories:
1) graphical methods, such as graphs of the density
distributions and their QQ-plot;
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2) a statistical test based on permutations, i.e. the
Fisher-Pitman (FP) test (e.g. Hollander and Wolfe,
1999). This test mainly considers the center of the dis-
tribution while giving less importance to tails because
the null hypothesis of equality is tested only against
shift alternatives;
3) tests based on the distance between the CDF’s.
They consider all the quantiles of the distributions
and, thus, give more relevance to the tails. The
two-sample Kolmogorov-Smirnov (KS) test (e.g.
Conover, 1971, pp. 309–314) and the Anderson-
Darling (AD) test Scholz and Stephens, 1987 belong
to this category. The Anderson-Darling test is gen-
erally more powerful than the Kolmogorov-Smirnov
test Razali and Wah, 2011; while the former is more
sensitive to the tails of the distribution, the latter is
more aware of the distribution center;
4) methods focusing only on the distribution tails and
giving less importance to the central part of the distri-
bution. They refer to the extreme value theory (EVT)
and are based on the comparison between the tail
parameters of the two distributions.
Before applying these methods, we want to stress that
a suitable evaluation of goodness-of-fit requires to
specifically account for the tail behavior of the distri-
bution. Figure 7 shows two examples of QQ-plots for
which the FP test fails to reject the null hypothesis,
while the KS and AD tests largely reject it. Look-
ing at the left panel of Figure 7, it is clear that the
two distributions are almost identical in the left tail
and in the central part, but strongly differ in the right
tail; similarly, in the right panel example, in spite of
a generally inadequate fitting, especially in the tails,
the fitting in the central part of the distribution is suf-
ficient for the FP test not to reject the null hypothesis
at the 5% confidence level.

The application of the Kolmogorov-Smirnov,
Anderson-Darling and Fisher-Pitman tests to simu-
lated and observed distributions leads to the following
p-values: pKS = 0.09, pAD = 0.19 and pFP = 0.77
for Bof3 matches and pKS = 0.64, pAD = 0.61 and
pFP = 0.97 for Bof5 matches. Clearly, the hypothe-
sis of equal distributions is not rejected at the usual
5% significance level11.

11For Bof5 matches, tests have been applied to all available
data (3715). Instead, the number of Bof3 matches (16256) would
have made the tests too powerful and, thus, they would have always
rejected H0. This is a well-known problem in inferential statistics.
To bypass this problem tests have been applied to a sample of 4000
durations, i.e. about the same number used for Bof5 matches.
The issue concerning p-values is well known in statistics and
implies that for large samples differences are nearly always sig-
nificant (see Chatfield, 1995, p. 70). Betensky (2019) recently

The estimation of the tail parameters of the dis-
tributions has been performed using the so-called
peak-over-threshold method within the extreme value
theory framework (see e.g. Coles, 2001). The analysis
of the mean excess plot suggested to fix the threshold
to 120 minutes for Bof3 matches and to 180 minutes
for Bof5 matches. Maximum likelihood estimates of
the tail parameter ξ for simulated and observed data
are ξ̂sim = −0.191, ξ̂obs = −0.210, in the case of
Bof3 matches and ξ̂sim = −0.171, ξ̂obs = −0.163 in
the case of Bof5 matches. Figure 10 shows the esti-
mates together with their 95% confidence intervals:
it is clear that they overlap, suggesting that the two
distributions have the same right-tail behavior.

This in-depth analysis of goodness-of-fit allows us
to conclude that our model leads to an extremely real-
istic simulation of tennis matches’ durations, also for
quite long matches.

4.2. Time components analysis

Given that our simulation model works well and
coherently with the observed durations, we can now
analyze the time components of a match. All the fol-
lowing considerations are based on the mean results
over 50, 000 simulated matches.

Figure 11 shows the percentage components of
time in a match. Within our framework, the effec-
tive playing time amounts to 9.6% for Bof3 matches
and 10.5% for Bof5 matches. Thus time between play
takes around 90% of the total length of a match. The
effective playing time reported in literature is usually
greater and ranges from around 10 to around 30% of
the total time of a match, see for example Smekal et
al. (2001), Morante and Brotherhood (2005), Kovacs
(2006), Fernandez et al. (2006), Mendez-Villanueva
et al. (2007), Kilit et al. (2016). However, in the liter-
ature, studies are quite heterogeneous with respect to
methods, experimental conditions and results. Some
works are based only on few matches (10 in Smekal
et al., 2001, 39 in Morante and Brotherhood, 2005) or
few players (20 in Smekal et al., 2001, 8 in Mendez-
Villanueva et al., 2007, 10 in Kilit et al., 2016);
others are not based on real matches (in Smekal et
al., 2001, each match lasts 50 minutes, in Kilit et al.,
2016, simulated tennis matches last one hour); oth-
ers refer to players of a quite different level (Smekal
et al., 2001, consider players without ATP ranking,
Kilit et al., 2016, consider players with ATP ranking

emphasized the need to always interpret p-value and sample size
jointly.
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Fig. 7. Examples of QQ-plots for which the FP test does not reject while the KS and AD tests do.

Fig. 8. Best of 3: distributions and QQ-plots. Tests’ p-values: KS=0.08, AD=0.33, FP=0.54.

between 800 and 1600; some references in Fernan-
dez et al., 2006, take into account a national or
regional level, Kovacs, 2006, a college level). Even
more importantly, some authors explicitly declare
that the effective playing time was determined by
dividing the entire playing time of a game by the
real playing time performed in a specific game,
without including breaks, see Mendez-Villanueva
et al. (2007), Kilit et al. (2016), Smekal et al.
(2001).

The time required for serve preparation amounts,
globally, to 55.4% for Bof3 matches and 60.9% for

Bof5 matches. Changeovers and end of sets take
around 20 − 22% of the total time. It is interest-
ing to note that the additional time component (AT,
Other) takes a non negligible fraction: 14.7% for
Bof3 matches and 6.1% for Bof5 matches, and this is
important for the description of actual durations. As
a proof of this, the model by Kovalchik and Ingram
(2018), which simply assumes that players use only
all the ruled time, both for serve preparation and for
changeovers, significantly underestimates the actual
high-order quantiles. As the occurrence and duration
of some unusual events do not directly depend on the
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Fig. 9. Best of 5: distributions and QQ-plots. Tests’ p-values: KS=0.47, AD=0.42, FP=0.75

Fig. 10. Estimates of the tail parameters (ξ) for observed and simulated Best of 3 and Best of 5 matches. Bof3 matches: ξ̂sim = −0.191,
ξ̂obs = −0.210; Bof5 matches: ξ̂sim = −0.171, ξ̂obs = −0.163.

number of sets or games, it is not strange that the
percentage impact of these events is higher for Bof3
matches. For example, a three-minute medical time-
out weighs around 3% on the mean duration of a Bof3
match and around 2% on the mean duration of a Bof5
match. However, in absolute terms, and with respect
to mean durations, the AT component lasts, on aver-
age, around 9 minutes for Bof5 matches and around
14 minutes for Bof3 matches. This finding is bizarre
because one could expect that the longer the match,
the more likely the occurrence of some unusual event.

We have no clear explanation for this issue yet and,
thus, it will need more analyses in the future.

5. Case studies

Having proved that our model works well and
correctly fits the data, we used it to perform three
different applications. The first is about formats
reducing the probability of long matches without
impacting too much on the current match setting. The
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Fig. 11. Percentage time components for Bof3 and Bof5 matches. 1st serve: time for 1st serve preparation; 2nd serve: time for 2nd serve
preparation; changeover: time for changeovers and end of sets; other: time for any other kind of interruption.

second and third applications concern new rules for
tie-break in the fifth set at Wimbledon and the oppor-
tunity to introduce tie-break in the fifth set at Roland
Garros.

5.1. Abolishing first service or advantages

The Fast4 format, which is currently experimented
at the Next gen ATP finals, clearly reduces the
matches’ length but has a strong impact on the whole
architecture of the match and is often perceived by
players and audience as “another sport”. Our goal,
instead, is to experiment formats which, while reduc-
ing the probability of very long matches, preserve the
normal structure of sets.

Let us consider Figure 12. The left panel shows
the evolution of the ratio, TBt , between the number
of sets requiring at least 12 games and the number
of sets played in year t. The right panel shows the
mean number of aces per match in each year for the
first 100 top players. The red lines are kernel esti-
mates of the relation. Both graphs are monotonically
increasing. While at the beginning of 1990s one set
in seven finished 7-5 or 7-6, now the same occurs
in one set in five, with the mean number of aces per
match increased from the almost six in the 1990s to
the current nine. One of the reasons for this increase is
the technological improvement in rackets and strings,
which allows to serve faster.

These graphs help to understand that a shorter
duration of matches, without impacting on the sets
structure, may be achieved by breaking the equilib-
rium and reducing the service dominance. To reach
this goal both the abolition of the advantages on 40-

40 (also called sudden death or killer point) and the
abolition of the second serve could be effective Mag-
nus and Klaassen, 2000. However no single matches
are actually played with only these limitations. Thus,
to evaluate their impact we resort to simulations. In
particular, while the abolition of the advantages has
been considered by Kovalchik and Ingram (2018), the
abolition of the second serve has never been studied
using simulations. Yet, this option has been proposed
several times since the 1920s, because there is no
particular reason why the player at serve should have
two possibilities and because no other sport has such
a rule. Nevertheless, it has never been applied.

To simulate a match with only one serve we have
to imagine the consequences of abolishing the two-
service rule in terms of serve performance. In this
work we follow the view of Klaassen and Magnus
(2014): a player with only one service is equivalent
to a player with two services who has fault the first
one. Thus, we use data referring to the current second
service and to model’s parameters. This is also why
we use the expression ‘abolishing the first service’
instead of ‘abolishing the second service’.

In our simulations we compare four formats:
- the standard format, providing for matches played
best of 5 or best of 3, with 2 services, advantages on
40-40, and a 7 point tie-break on 6-6 in all sets;
- the standard format played with only one service;
- the standard format played with no advantages on
40-40;
- the standard format with no advantages and one ser-
vice.
Results, in terms of median durations and proba-
bilities of a match lasting more that k hours, are
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Fig. 12. Left panel: time evolution of the ratio between the number of sets requiring at least 12 games and the number of sets played in a
year (TBt); right panel: time evolution of the mean number of aces per match in a year. The red lines are kernel estimates of the relation
between the variable and the time. Source: www.atptour.com

given in Table 6. They are based on 20,000 matches
played best of 5. The model’s parameters have been
estimated using only data from grand slams’ cham-
pionships.
Results show that both the ‘No Ad’ and ‘One ser-
vice’ options are effective in reducing the probability
of matches lasting more than three hours, with a
stronger effect produced by the ‘one service’ format.
The effect is even more drastic if both modifications
are introduced, with a 4.4% probability of exceeding
3 hours. Apart from the duration itself, it is known that
shorter formats also imply an increase in the number
of upsets (for instance, Kovalchik and Ingram, 2018)
and, thus, in the uncertainty about the final result of
the match.

5.2. Tie-break at Wimbledon

In 2019, for the first time, tie-break was introduced
in the fifth set at Wimbledon. However it was not
played at 6-6 but at 12-12. Although from this new
rule a very marginal impact is expected on match
durations, we try to quantify it and compare its impact
with that of a standard 7-point tie-break at 6-6.

It is clear that, here, we are not considering emo-
tions and thrill of matches arriving, for example, at
12-12 in the fifth set, can produce.

To replicate as much as possible the features
of matches at Wimbledon, in the simulations all
parameters are fixed using only matches played at
Wimbledon in the past.

Median durations and percentage probabilities of a
Wimbledon match lasting more than k hours are listed
in Table 7. It is clear that a tie-break at 12-12 has no
practical effects on most matches and, on average, has
limited effects also on long matches. For example,
the percentage probability of a match lasting more
than six hours is 0.86 with no tie-break, 0.71 with
a tie-break at 12-12 and 0.68 with a tie-break at 6-
6. While this avoids extremely long matches like the
Isner-Mahut match at Wimbledon 2010, it does not
prevent the occurrence of long matches like the final
played at Wimbledon 2019 by Federer and Djokovic.

5.3. The introduction of tie-break at Roland
Garros

Currently, the French Open is the only Grand Slam
tournament without tie-break in the fifth set. What
would be the consequences of introducing it? Again,
we compare the actual format with one in which a
7-point tie-break is played at 6-6 in the fifth set. Also
in this case, all parameters are set using only matches
played at Roland Garros.

Median durations and percentage probabilities of
a Roland Garros match lasting more that k hours
are listed in Table 8. Tie-break has some effects on
matches lasting at least 3.5 hours. The impact is
not dramatic, although the percentage probability of
matches lasting more than 5 hours decreases from 3.2
to 2.5 and that of lasting more than 6 hours from 1.2
to 0.8.
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Table 6

Median durations (in minutes) and percentage probabilities of a match lasting more that k hours under different formats

Best of 5

Scenario Median P(> 3) P(> 3.5) P(> 4) P(> 4.5)
Standard 144 25.2 10.6 3.5 1.2
No Ad 132 15.0 4.7 1.3 0.4
One service 114 10.1 3.5 0.9 0.2
No Ad & One service 106 4.4 0.9 0.3 0.05

Table 7

Impact of the introduction of tie-break in the fifth set at Wimbledon at 6-6 and at 12-12

Wimbledon

Scenario Median P(> 3) P(> 3.5) P(> 4) P(> 4.5) P(> 5)
No TB (up to 2018) 151 31.7 18.2 9.6 5.0 2.6
5th set TB (12-12) 150 31.2 16.8 8.7 4.5 2.7
5th set TB (6-6) 150 31.2 16.8 8.5 4.2 2.0

Table 8

Impact of the introduction of tie-break in the fifth set at 6-6 at Roland Garros

Roland Garros

Scenario Median P(> 3) P(> 3.5) P(> 4) P(> 4.5) P(> 5)
Current 154 34.12 19.4 10.3 5.4 3.2
5th set TB (6-6) 154 34.2 19.0 9.8 4.7 2.5

6. Conclusions

In this paper, observed durations of male tennis
matches have been analyzed under different view-
points and a procedure to simulate them has been
developed. The comparison between distribution of
observed and simulated durations show that this
approach is able to reproduce the observed features
of the durations’ distribution.

Our procedure has three distinguishing features.
First, it considers durations in terms of actual time
rather than played points.

Secondly, in the simulations we resampled empiri-
cal characteristics of observed matches (probabilities
of winning a point on serve, of winning a point on
first or second serve, percentages of first and second
serves, etc.). As resampled parameters are related to
all sampled matches and these are played under dif-
ferent conditions (surfaces, tournament type, earlier
and final rounds, weather conditions, etc.), this allows
a complete and realistic description of the actual com-
plexity.

Thirdly, we introduced a time component designed
to account for unexpected interruptions (medical
time outs, Hawk-Eye calls, audience bothering,
etc.) as well as violations of the prescribed time
between points, serves and games. The consideration
of this component permits a much better approx-

imation of the right tail in the observed length
distribution.

Particular attention has been paid to the analysis
of the goodness-of-fit of the simulated distributions
and their coherence with the observed ones. These
analyses suggest that our model provides an accurate
description not only of the central quantiles of the
actual length distribution but also of the low-order
and high-order quantiles, that is of the shortest and,
most importantly, longest matches’ length.

The whole procedure requires the estimation of the
distribution of several variables in order to simulate
partial times. Some of them are not directly estimated
from observed data, for example the distributions of
times between two points or between changeovers or
the distribution of the distance covered by the ball in
a shot. Also the choice of the function describing the
additive time accounting for unexpected interruptions
is, in some way, subjective. Indeed, other functions,
for example a logistic function of the total time, could
have been used with similar results. The main reason
for this subjectivity is the lack of information about
the involved features; in this sense these choices can
be viewed as a limit of our study. On the other hand,
all the different distributions with their parameters
and the function for the additive time can be consid-
ered as a sort of “hyper-parameter” which needs to
be adapted in order to best describe what has been
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observed. As the “hyper-parameter” was chosen in
order minimize the discrepancy between the distri-
butions of the observed and simulated durations, the
latter can be thought of as based on the data, although
indirectly.

The investigation of the different time components
reveals that over 90% of time in a match is spent when
the ball is not in play, and that there are evidences that
the maximum lengths of interruptions ruled by ITF
are often exceeded. The latter result is in line with
the findings of Carboch et al. (2019), Kolbinger et al.
(2019) and Mühlberger and Kolbinger (2020).

The present research has certainly some limits. In
this paper we focused only on matches’ durations
without analyzing the impact of changes in the rules
on other characteristics, for example on the average
excitement per point or on expected upsets (Pollard
and Barnett, 2018).

Only men’s matches have been considered here;
a similar analysis for female matches and a suitable
comparison would be surely interesting.

It could be argued that non standard interruptions
may be tournament dependent: for example, heat
time-out is present only at the Australian Open, on
clay there is no Hawk-Eye (which does not mean
there aren’t challenges!), at Wimbledon audience is
usually less noisy than at the US Open, and so on.
Even if, globally, all these causes tend to compen-
sate each other so that a mean effect is enough for
a good fitting, it could be interesting to apply this
model to specific tournaments and to study possible
differences.

A not completely satisfying issue of this paper is
the additive component; while it works well to eval-
uate the distribution of durations, the fact that it is
greater for Bof3 matches than for Bof5 matches is
bizarre and unexpected. At the moment we have no
explanation but this point requires further analyses to
reach a clear interpretation.

More generally, the whole procedure will benefit
from the availability of data allowing more accurate
estimates of the components (time between points
and between changeovers, speed of the ball, distance
covered by the ball, shot rally distribution, unex-
pected interruptions) generating the total duration of
a match.

Conditionally to these limits we have also provided
a description of how the probability of a long match
changes due to modifications of the current format.
For example, the probability of a best of 5 match
lasting more than three hours is around 25% with the
current format, but it can possibly reduce to around

15% by the abolition of advantages on 40-40 and to
around 10% by the abolition of the first serve. Of
course, these findings should be proved and verified
in real matches. Finally, we have quantified the effects
of the new tie-break’s format at Wimbledon and of the
possible introduction of tie-break at Roland Garros.
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Appendix

This appendix contains a step by step description of our simulation procedure. The following notation is used:

- px|1 = Prob(player x wins a point on his first serve, given that it is in)
- p1|x = Prob(the first serve of player x is in)
- px|2 = Prob(player x wins a point on his second serve, given that it is in)
- p2|x = Prob(the second serve of player x is in)
- px = px|1 · p1|x + px|2 · p2|x · (1 − p1|x) = Prob(player x wins a point on his serve)
- dj = duration (in seconds) of the j-th point
- nsj = number of shots in the j-th point
- speedj = mean speed of the shots in the j-th point
- distj = distance covered by each shot in the j-th point
- T0j = partial duration of the match up to the end of the j-th point
- N = total points played
- RT.1 = time required for 1st serve preparation
- RT.2 = time required for 2nd serve preparation
- RT.co = time required for changeover
- RT.es = time required for end of set
- AT = additional time required for any not regular kind of interruption

1. Using observed frequencies of a set of I matches, for each match i ∈ I and for x = A, B, estimate p
(i)
x|1,

p
(i)
1|x, p

(i)
x|2, p

(i)
2|x and, thus, p(i)

x . The estimation of the conditional probabilities allows to simulate different
match’s formats. The set I can consist of all matches, independently of everything, or only of matches
played on a specific surface.

2. The distribution of the number of shots per point is the one suggested by Carboch et al. (2019)..
3. Using data from the on-the-T blog (see notes 4 and 5, p. 8) estimate the distribution Fspeed of forehand and

backhand speed (see Figure 6).
4. The distribution of the distance (in meters) covered by the ball is Fdist ∼ N(23, 32).
1. Time required for first serve, RT.1, is assumed to follow the distribution FRT1 ∼ 14 + Gamma(1.8, 0.305);

time required for second serve is set to 10 seconds.
5. Times RT.co, RT.es for changeovers and end of set are assumed to follow the distributions FRT.co ∼

88 + Gamma(1.8, 0.275) and FRT.es ∼ 118 + Gamma(1.8, 0.275).
6. “Play” a point, using probabilities defined in 1., establishing the winner of the point. If the point simulation

requires a second serve, add 10 seconds (RT.2) to the global duration of the match. To assign a duration to
the played point, choose randomly the number of shots (ns) from distribution Fns (see point 2.), the value
for speed from distribution Fspeed (see point 3.) and the distance covered by the ball (dist) from Fdist (see
point 4.). The in-play time of the point is given by d = ns · (dist/speed).

6. Develop the match in this way adding to the global duration of the match a random time from FRT1 between
two consecutive points, a random time from FRT.co at each changeover and a random time from FRT.es at
each end of set.

7. Let T0j be the partial duration of the simulated match after the j-th point has been played. To account for
any other interruption, compute the time ATj = β · log(T0j). In our simulation we used β = 0.28 for best
of 5 matches and β = 0.82 for best of 3 matches.

8. If N points are played in the match, the final simulated duration is given by T0N + ∑n
j=1 ATj .


