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Dynamically scheduling NFL games
to reduce strength of schedule variability
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Abstract. The National Football League (NFL) schedules regular season games so that some matchups are based on the
previous year’s results. Since team composition changes from year to year, this scheduling policy creates variation in teams’
strength of schedules and sometimes benefits teams unfairly, allowing some an easier path to the playoffs than others.
This paper proposes methods to produce an NFL schedule that combine some of its traditional elements with dynamically
scheduled games aimed at optimizing different objectives, such as reducing the variability of teams’ strength of schedule
or minimizing the number of pairwise comparisons needed to differentiate team quality so as to make each teams’ regular
season schedule as fair as possible.

1. Introduction

Many sports leagues, college and professional,
have tournaments or playoffs at the end of the season
to crown a champion. Ideally, to determine which
teams should make the playoffs, each team would
play every other team in a round-robin fashion so that
each team would have an equalized strength of sched-
ule. However, in sports where few games are played,
such as football, or where there are many more teams
than available games, such as college basketball and
baseball, the possibility of creating a round-robin sea-
son schedule is unrealistic. So, without head-to-head
information, the problem of choosing which teams
should make the playoffs creates debate about which
factors are most important in that selection.

Two important factors often mentioned in these
debates are a team’s strength of schedule and head-
to-head results (pairwise comparisons). Strength of
schedule is often an important consideration, espe-
cially when a team with a mediocre record played a
particularly tough schedule or when an undefeated
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team played a weaker schedule. Traditionally in col-
lege athletics, it has been left up to the individual
schools to schedule their non-conference opponents,
usually years in advance when an opponent’s quality
is not known with certainty. This gives each school
the ability to somewhat control its out-of-conference
schedule strength, but it allows for inequity in
schedule strengths if some teams prefer easier out-of-
conference schedules to bolster their win percentage.
Further, many college football conferences, such as
the Big Ten and the Southeastern Conference, have
two divisions where teams play a round-robin within
their division but only a couple of teams from the
other division. This cross-divisional scheduling is set
in the preseason before the quality of teams is known.
So, it is possible that the strongest team in one divi-
sion is scheduled to play the two weakest teams in the
other division. This type of scheduling is not helpful
in determining the quality of a strong team because
its strength of schedule is weakened by scheduling
those out of division games.

The last example also highlights that the opportu-
nity for information to be gained from a head-to-head
match-up with a good team from the cross division.
Pairwise comparisons are used in playoff debates,
especially when one team is selected for the playoffs,
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yet lost to another team under playoff considera-
tion in the regular season. Another scenario in which
pairwise comparisons are important occurs when
debating the merits of two teams, A and C, that did
not play during the regular season but did have a com-
mon opponent, B. If team A beat team B which beat
team C, then one can make an argument that team A

is better or more deserving of the playoff spot than
team C.

Dynamically scheduling a portion of a team’s
opponents could be used to help to combat these
issues. Nate Silver has discussed the use of dynamic
scheduling in debate tournaments in the form of
matching teams with similar standings/records to face
off in the next round and how that might apply to col-
lege football (Silver 2017). Beginning in the 2018
college basketball season, Conference USA dynam-
ically scheduled games within three tiers Landon
(2018). The top five schools in the conference (Tier
1) played a round robin schedule at the end of the
season and before the conference tournament. Like-
wise, the five teams within each of the other two
tiers played round-robin schedules. The benefits of
this type of “power pairing" scheduling allow the
top teams in the division to boost their strength of
schedules and the opportunity to get quality wins
so as to increase their chances of getting selected
for the college basketball tournament. Power pair-
ing works well in the debate world and there are
opportunities to see a similar method used to better
schedule college football and other sports. Inspired
by this desire, this work endeavors to alter the NFL’s
scheduling practices by dynamically scheduling a
few games based on current season standings with
the objective of producing fairer schedules and power
pairings.

2. The fairness of the NFL scheduling system

The National Football League consists of 32 teams
split among two conferences, the National Football
Conference (NFC) and the American Football Con-
ference (AFC). There are four four-team divisions
within each conference: North, South, East, and West.
An NFL team plays 16 regular season games, 14 of
which are set by the conference/division structure
while two games are scheduled based off the pre-
vious season’s standings (nfl.com 2018). A team’s
opponents for the 14 structured games are chosen by
the following conventions. Each team plays their divi-
sional opponents twice, once home and once away,

for a total of six games. Each team plays every
team in one division in their own conference and
every team in one division in the other conference.
This provides eight additional games. The divisional
matchups rotate among the three divisions within a
team’s conference and the four divisions in the other
conference so that this portion of a team’s season
opponent list will repeat every 12 years, assuming
no changes to teams or divisions. The remaining
two games, referred to as parity games, are sched-
uled against the teams that finished with the same
divisional rank in each of the two intraconference
divisions not played in the aforementioned assign-
ments. In summary, a team’s 16 game schedule
consists of 14 structured games and two parity games.
The order of the games does not match the order pre-
sented here and locations are assigned so that each
team has eight home and eight away games. In this
work, the list of a team’s opponents is determined and
not the timing or location of individual games.

To give an example of the structure of an NFL
schedule, Fig. 1 shows the Tennessee Titans’ oppo-
nents for the 2016 season.

The Titans are in the AFC South, so they play each
of the other teams in the AFC South twice, once home
and once away. In 2016, the AFC South was matched
with the AFC West and the NFC North for the remain-
der of their structured games. For the parity games,
the Titans were matched with the Cleveland Browns
in the AFC North and the Miami Dolphins in the AFC
East. The Titans, Dolphins, and the Browns all fin-
ished in last place in their respective divisions in the
2015 season.

Several authors have explored aspects of the NFL
schedule. Dilkina and Havens used a constraint
programming approach to schedule NFL games to
national television broadcasts so that the assigned
games were the best possible (Dilkina and Havens
2004). Karwan, et al. were the first to study the NFL
scheduling practice from the standpoint of fairness
(Karwan et al. 2015). They used an integer program-
ming approach to craft a schedule that was more
equitable in terms of minimizing the maximum num-
ber of games that each team plays against more-rested
opponents. Here, more-rested opponents means play-
ing teams coming off bye weeks or teams having
an extra couple of days rest from playing a Thurs-
day night game. They also tried to equally distribute
games against divisional opponents for each team. A
study of Murray showed a negative impact on shorter
rest periods for games won and points scored giving
credence to the need for fairer scheduling practices
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Fig. 1. Tennessee Titans’ opponents in the 2016 NFL season with parity games shown in red.

Fig. 2. Season to season change in wins for all NFL teams from 2010–2018. Differences of at least ±4 wins account for 34% of teams and
are highlighted in blue.

(Murray 2018). Although this work uses a different
definition of fairness, it could be combined with the
work of (Karwan et al. 2015).

Here, we define fairness based on each team
achieving an equalized strength of schedule. Schedul-
ing games based on previous season’s results presents
some issues because the composition and quality of a

team can change dramatically from season to season.
The combination of a change in team composition
combined with a having to play a much harder or
much easier schedule based on the parity games can
dramatically change a team’s fortune. Figure 2 shows
the season to season change in win totals from the
2010 to 2018 seasons.
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The extremes are highlighted in blue, identifying
the teams that have a difference in win total of at
least four games in consecutive seasons. These teams
account for approximately 34% of all NFL teams
during this timeframe. When considering a change
of three or more wins from season to season, this
increases to 48% of all teams.

At times these discrepancies in team performance
have playoff implications. The 2017 Tennessee Titans
tripled their win output from the previous season,
begging the question as to whether the Titans were
three-times better or got the benefit of an easier sched-
ule. Table 1 shows the 2017 regular season results for
five teams that were in playoff contention. Results
in the table use a quality measure and a strength of
schedule for each team based on their Rating Percent-
age Index (RPI), which is defined in Section 3. Note
that Jacksonville and Tennessee made the playoffs
but did so by playing a noticeably weaker schedule
(strength of schedule (SOS) scores of 45.17 and 45.59
respectively) than teams with similar win-loss records
(Seattle, Detroit, and Dallas), highlighting that some
teams get an easier path than others to the playoffs.
However, the inequities in teams’ schedule quality
could be lessened by dynamically scheduling their
parity games based on the current year’s results rather
than basing them on the previous year’s results.

By removing each parity game from the data for
the last six seasons (2012 through 2017), comparative
statistics are computed for each team and there exists
an opportunity to schedule two new games at the end
of the season. The outcome of these games can be
simulated to measure the improvement of dynamic
schedules over those officially played. In this work,
parity games are scheduled to reduce the standard
deviation in the NFL’s strength of schedule in Sec-
tion 4.1; reduce the number of pairwise comparisons
between teams in Section 4.2; reduce the distance
traveled by away teams in Section 4.3; reduce the
difference in win counts between opponents in Sec-
tion 4.4; and explore combinations of these objectives
in Section 5.2.3.

Table 1

A Comparison of 2017 Playoff Contenders

Team Record Division SOS RPI Made
Record Playoffs?

Jacksonville 10-6 4-2 45.17 49.51 Yes
Tennessee 9-7 5-1 45.59 48.25 Yes
Seattle 9-7 4-2 50.00 51.56 No
Detroit 9-7 5-1 51.07 52.36 No
Dallas 9-7 5-1 50.82 52.18 No

3. Basic measures of team quality

Figure 1 shows a visualization of one team’s (Ten-
nessee Titans) schedule for an NFL season. This idea
is formalized for all teams by using a graph. A graph
G = (V, E) is a set of vertices (teams) V and a set
of edges (games) E ⊂ V × V . In a graph, unlike Fig.
1, game (i, j) ∈ E will be a directed edge from team
i to team j if team i beat team j in the season and
is denoted in the visual representation of a graph
by an arrow from team i to team j. Figure 3 again
shows the Titans’ schedule, but as a mathematical
graph reflecting win-loss information. For instance,
the red arrows indicate that the Titans won both of
their parity games against the Miami Dolphins and
the Cleveland Browns. For the analysis in this work,
graphs contain 32 vertices (one for each NFL team)
and one directed edge for each game played in the
season. The representation in Fig. 3 is a subgraph
of the full NFL graph in that Fig. 3 only shows the
Titans’ results against their opponents, not all results
of all NFL games.

The degree d(v) of a vertex v is the number
of edges incident to v. The degree can be broken
down into the outdegree o(v) and indegree i(v) of v

representing, respectively, the number of games won
and games lost by the team. For example, in Fig. 3,
d(vTEN ) = 16, o(vTEN ) = 9, and i(vTEN ) = 7,
indicating that the Titans had nine wins and seven

Fig. 3. Partial NFL graph only showing the Tennessee Titans’
opponents in the 2016 NFL season with parity games shown in
red. Directed edges point from the winning team to the losing
team.
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losses in the 2016 NFL season. A directed path
P = [v0, e1, v1, e1, v2, . . . , ek, vk] in G is a sequence
of vertices {v0, v1, . . . , vk} and directed edges
{e1 = (v0, v1), e2 = (v1, v2), . . . , ek = (vk−1, vk)}.
A directed path in a game graph allows for a chain
of comparisons between teams v0 and vk since v0
beat v1 which beat v2 and so on. In Fig. 2, since
Indianapolis beat Tennessee (twice) and Tennessee
beat Cleveland, this path provides information to
infer that Indianapolis is a stronger team than both
Tennessee and Cleveland. In general, shorter paths
allow for stronger comparisons of teams’ quality
and longer comparison paths allow for weaker
comparisons.

A quality measure, or rating, can be associated
with each vertex (team). For example, the winning
percentage of team v is the ratio o(v)

d(v) . There are a
variety of rating and ranking methods used to evalu-
ate a team’s quality; see Langville and Meyer (2012)
for examples. Currently, the NFL uses winning per-
centage within divisions to decide which teams make
the playoffs. However, as mentioned before, winning
percentage does not incorporate a strength of sched-
ule for teams and can be a misleading indicator of
quality. The Rating Percentage Index (RPI) is a rating
system that measures a team’s quality by combining
a team’s win percentage with a strength of schedule
measure (rpiratings.com 2018). The RPI of team i is
defined as

ri = 100

4
WPi + 200

4
OWPi + 100

4
OOWPi, (1)

where WPi is team i’s winning percentage, OWPi is
team i’s opponents’ winning percentage, and OOWPi

is team i’s opponents’ opponents’ winning percent-
age. Note that ri is a weighted average of team i’s
winning percentage (25%) with the average of its
opponents’ winning percentage (50%) with the aver-
age of its opponents’ opponents’ winning percentage
excluding team i (25%). This rating method has been
used in college sports, especially college basketball,
to rate the quality of teams. Recently, the NCAA Eval-
uation Tool (NET) has been introduced into college
basketball as a replacement to RPI (ncaa.com 2018).
The RPI is used here because it is an uncomplicated
first step extension of winning percentage that incor-
porates strength of schedule. Note that the few ties
that occurred during the NFL seasons studied were
attributed to both teams as a win except for Seahawks-
Cardinals and Redskins-Bengals in 2016. These were
attributed to the Arizona Cardinals and the Cincinnati
Bengals, respectively.

4. Game utility

This work aims to remove the parity games and
add new games to the NFL schedule to improve cer-
tain metrics associated with that schedule. In effect,
this would have NFL teams play a traditional sched-
ule for the first 14 games and then play a two-game
home-and-away schedule that wouldn’t be set until
after the first 14 games are played. In this section sev-
eral scheduling metrics are investigated that could be
employed to produce desired schedules.

In testing the effectiveness of such a change, actual
games played are removed and hypothetical games
whose outcomes are not known are added. In adding
a game between team i and team j, define the proba-
bility that team i beats team j by

pij = 1 − pji = 1

1 + 10α(rj−ri)
, (2)

where ri and rj denote the RPI scores of teams i

and j, respectively, from Equation (1). This proba-
bility calculation is that one used in Elo Ratings and
is sometimes used to predict games (Langville and
Meyer 2012). The parameter α is set to 0.056 in this
work to analyze the 2012-2017 NFL seasons. A rea-
sonable value of α is determined as follows. When
used with typical Elo Ratings, α = 1

400 . Since RPI is
calculated differently from Elo, this constant needs
to be calibrated to provide consistent game outcome
results. This is done by setting pij equal to the calcula-
tion given by established Elo Ratings for some teams
i and j (see, for example, website fivethirtyeight.com
(fivethirtyeight.com 2017)). The highest and lowest
rated teams of 2017, the New England Patriots and the
Cleveland Browns, respectively, are compared for the
2017 season. The New England Patriots had a rating
of 1724 agaisnt the Browns rating of 1200. Therefore,
the winning probability of the New England Patriots
over the Cleveland Browns in 2017 is

PPatriots,Browns = 1

1 + 10
1

400 (1200−1724)
= 0.9533.

Next, solve for α using Equation (2) and RPI values of
the teams: rPatriots = 56.6627 and rBrowns = 35.3113.

1

1 + 10α(rBrowns−rPatriots)
= 0.9533

α = 0.0614

Repeat the identification of α between New
Orleans (r = 56.9976) and Cleveland (r = 35.3113),
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representing the teams with the highest and lowest
RPI values in 2017, respectively.

PSaints,Browns = 1

1 + 10
1

400 (1200−1624)
= 0.9199

1

1 + 10α(rBrowns−rSaints)
= 0.9199

α = 0.0489

Averaging the two values of α above gives 0.056.
Accounting for the extremal RPI values of teams in
2017 serves as a resonable representative across all
team matchups during the 2012 - 2017 seasons exam-
ined in this work. The average winning probability
will come out to about 0.5 regardless of α.

Several different utilities are defined for scheduling
a game between team i and team j where team i wins.
Because the outcome of a newly scheduled game is
unknown, the predictive utility, ūij , is calculated by
averaging the two possible utilities weighted by the
probability of each outcome:

ūij = ūji = pijuij + pjiuji. (3)

Here, pij represents the probability that team i beats
team j in a hypothetical game that will contribute a
utility of uij .

4.1. Strength of schedule utility (SD)

Within the RPI calculation there are two strength of
schedule measures. The first,OWPi is weighted twice
as much as the second, OOWPi. Keeping this con-
vention, define a team’s strength of schedule (SOS)
as

si = 200

3
OWPi + 100

3
OOWPi. (4)

Given a set of games, generate a set S = {si|1 ≤
i ≤ 32} of strength of schedule scores. The proximity
of teams’ strength of schedules can be identified by
computing the standard deviation of the set S, σS . To
add games to the schedule, measure the SOS utility
of a game between team i and team j by measuring
how the set of SOS scores changes after a new game
is played, creating set Sij of 32 strength of schedule
scores after a game between teams i and j is added.
Lastly, define the utility of scheduling a game wherein
team i beats team j as the difference of the standard
deviations:

uSD
ij = σS − σSij . (5)

One goal in dynamically scheduling these last two
games is to reduce the standard deviation after adding
games, so games with large uij values are desirable.
Methods for finding the 16 games with the maximum
total predictive utility in each of the final two weeks
of the NFL season are explored in sections 5.1 and
5.2.

4.2. Comparison path utility (CP)

A second utility measure associated with adding
a game to a partial season would be to reduce the
maximum length of a comparison path within the
game graph. Each new game added reduces the short-
est path between the two teams playing but might
also reduce comparison paths between other teams
as well. The comparison path between teams i and j

is the shortest directed path in the graph G from i to
j or j to i. That is, the length cij of the comparison
path between teams i and j is defined as

cij = cji = min
(
dij, dji

)
, (6)

where dij and dji are the distances between nodes
i and j and nodes j and i, respectively. Using the
Titans’ 2016 season in Fig. 2 as an example, the
distance between Indianapolis and Cleveland is 2
because the shortest paths from Indianapolis to Cleve-
land all pass through Tennessee. In the full NFL
schedule (not shown), the distance between Indi-
anapolis and Cleveland is still 2 because they did not
play a game against each other. The distance between
Indianapolis and Chicago is 2 in the graph shown
in Fig. 2, but in the full NFL graph, the distance is
1 because every team in the AFC South is paired
with every team in the NFC North by the structure of
the NFL schedule. Here, each edge is of unit length
when computing distances, but could be weighted to
indicate the margin of victory in the game or other
measures.

As with SOS, comparison path utility of a game is
a measure of how the sum of comparison path lengths
over all teams changes after that game is added to the
schedule. The utility uCP

ij of scheduling a game where
team i beats team j is defined as

uCP
ij =

32∑
k=1

32∑
l=1

(
ckl − ckl

ij

2

)
, (7)

where ckl and ckl
ij are the lengths of the comparison

paths between teams k and l before and after, respec-
tively, the game where team i beats team j is added to
the graph. Again, the outcome of a scheduled game is
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unknown so predictive utility as defined by Equation
(3) is used. Sometimes the cyclic nature of the offi-
cial schedule creates disjoint graphs after the parity
games are removed; 2012 and 2015 have this prob-
lem. In these cases, initial comparison paths cannot
be computed. For these seasons, only one parity game
for each team is removed to find initial comparison
paths.

4.3. Travel distance reduction (TD)

Traveling comes with many costs with the brunt
of the expenses coming from airfare and lodg-
ing. It also adversely affects performance in sports
(Entine and Small 2008; Watanabe, Wicker, and
Yan 2012; Samuels 2012; Leatherwood and Dra-
goo 2012). Being the furthest from the majority of
teams, west coast teams such as the Seattle Sea-
hawks and Los Angeles Chargers are most affected
by this cost. If two possible schedules result in a
minimal difference of objective values, it would be
preferable to prioritize the schedule that reduces total
travel.

The utility of a game under this objective is
straightforward. Let dij be the distance from the sta-
dium of team i to that of team j so that dij = dji.
The travel utility of a game between teams i and j is
defined as

uTD
ij = uTD

ji = dij. (8)

Unlike the previous utilities, this is a minimization
oriented metric. A game is more desirable if it has
less travel utility than other games. Further, the dis-
tance teams travel for a game does not depend on
the outcome of the game so no predictive utility is
necessary.

4.4. Win differential reduction (WD)

Another indication of the quality of a team is its
number of wins (o(v)). Often, as with the Conference
USA example in Section 1, it is attractive to the league
to bolster teams’ arguments for the playoffs by hav-
ing more head-to-head matchups between top teams
at the end of the season. From a fan’s perspective, this
is exciting and illustrates the uncertainty of outcome
hypothesis (Rottenberg 1956; Neale 1964). This type
of strategy is known as a power pairing strategy and
has been used in debate tournaments (Silver 2017).
To accomplish a power pairing strategy schedule the
remaining games between teams with similar num-

ber of wins. Let wi be the number of wins that team
i accrues before the scheduling of new games. The
utility or win differential of a game between teams i

and j is defined as

uWD
ij = uWD

ji = ∣∣wi − wj

∣∣ .
Like reducing travel distance above, this utility also
favors lower scores and does not depend on the out-
come of the game. In this work, scheduling games to
reduce win differential amongst teams is explored as
an objective and a constraint.

5. Solution approaches

This section introduces two methods to dynami-
cally schedule NFL games. First, a greedy heuristic is
presented to quickly identify good games to schedule.
Next an optimization-based approach is introduced to
maximize the utility of scheduled games.

5.1. Greedy approach

The first step to a greedy approach is to sort the list
of every possible new game from highest to lowest
SOS predictive utilities using Equation (3). Then fill
out a schedule in each of the remaining two weeks
of games by selecting a game provided both of the
teams involved were not previously scheduled in that
week. Repeat this process for the next week, disre-
garding games that were scheduled in the previous
week. Sometimes, depending on the order of the
list, this algorithm will not be able to find a com-
plete schedule in the second week because it will
try to match two teams that were already matched
in the previous week. To solve this problem, execute
a swap under the following guidelines. If team i and
team j still need to be scheduled, find a scheduled
game in the last week between teams k and l so that
a game pairing between these four teams provides
the largest possible utility. The results of the greedy
approach are reported in Table 4 within Section 6 and
offer a considerable improvement over the NFL’s offi-
cial schedule in terms of equalizing teams’ strengths
of schedules. An optimization approach is presented
next.

5.2. Mathematical programming approach

In this section a binary linear programming model
is presented to dynamically schedule two games at
the end of the NFL season for each team. The binary
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decision variable xijk is defined to be 1 if team i is
home against team j during week k and 0 otherwise.
As presented earlier, the predictive utilitiy uSD

ij is the
expected reduction in the standard deviation of the
NFL schedule when team i and team j are scheduled
to play each other. Let T represent the set of all NFL
teams.

maximize
∑
i,j∈T

2∑
k=1

uSD
ij xijk

subject to
∑
j∈T

xijk + xjik = 1, ∀i ∈ T, k = 1, 2

∑
j∈T

2∑
k=1

xijk = 1, ∀i ∈ T

∑
i∈T

2∑
k=1

xijk = 1, ∀j ∈ T

2∑
k=1

xijk + xjik ≤ 1, ∀i, j ∈ T

∑
j∈divisioni

2∑
k=1

xijk + xjik = 0, ∀i ∈ T

xijk ∈ {0, 1}, ∀i, j ∈ T, k = 1, 2

The objective function maximizes the expected
reduction in league-wide team strengths of sched-
ule. The first constraint enforces each team plays
one game per week. The second and third con-
straints assign one home and one away game for
each team during the two week dynamic sched-
ule. The fourth constraint confirms that a matchup
between two teams occurs no more than once during
the dynamic schedule. The fifth constraint elimi-
nates intra-divisional games (including self games)
and the last constraint identifies binary decision
variables. The results of the mathematical program-
ming approach are also reported in Table 4 within
Section 6 and compared favorably to the NFL official
schedule.

5.2.1. Other objectives
The binary linear programming model introduced

above can also be used to dynamically schedule
games with additional objectives, such as a reduc-
tion in the comparison path across all teams. The
comparison path utility described in Section 4.2 is
calculated one game at a time rather than in batches
of 16 or 32 games, and thus the utility of one
edge often overrides part of the utility of another
edge. The dependence of one score on the inclu-

sion of another makes it difficult to guarantee any
kind of optimal solution by this metric. Even so, it is
effecient to formulate a mathematical programming
model with the following comparison path objective
function to accompany the constraints developed in
Section 5.2:

maximize
∑
i,j∈T

2∑
k=1

uCP
ij xijk.

To examine solution methods for travel distance
and win differential models in a similar manner,
update the objective orientation and substitute in the
corresponding utility parameters. Unlike the previous
two objectives (strength of schedule and comparison
path), the results of travel distance and win differen-
tial models do not depend on the uncertain outcome
of the games. For this reason, the results from the
deterministic models are reported at face value in
Section 6, while the results linked to predictive
utilities are simulated and presented with summary
statistics.

5.2.2. Additional constraints
Another solution technique variant is to convert

an optimization objective function into a constraint.
For example, the win differential objective introduced
previously can be translated into a constraint on the
maximum win differential m between teams sched-
uled to play and added to the optimization framework.
Table 4 within Section 6 contains the results when
dynamically scheduling to maximize the reduction
in the standard deviation of league wide strengths of
schedule while the win differential among teams is
constrained to be no more than m = 3 and m = 4 for
the 2015–2017 NFL seasons.

5.2.3. Multi-objective optimization
In previous sections the motivation is presented

for maximizing the reduction of the standard devi-
ation of strengths of schedules and the comparison
paths among teams, as well as the minimization of
travel distances and win balancing deviations. It is
of interest to consider the optimization of a multi-
objective function to simultaneously consider each
objective. Each of the utilities, e.g., uSD

ij , is expressed
in different magnitudes and must normalized by
dividing by its maximum value. After normalization,
the multi-objective function is constructed as a linear
combination of weights and game utilities, with atten-
tion paid to subtracting the minimization objectives.
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The multi-objective utility of a game between teams
i and j with weights (wSD, wCP, wTD, wWD) is
defined as

uMO,ij = uMO,ji = wSDuSD
ij + wCPuCP

ij

−wTDuTD
ij − wWDuWD

ij .

Results of four example multi-objective weightings
are included in Table 4.

6. Testing and results

This section presents the simulation to evaluate
the scheduling methods of the previous sec-
tion. Additionally, the comparative results between
dynamically scheduled games and the official NFL
schedule are discussed. While the winner for each
game played in previous official NFL schedules is
known, the final outcomes of our scheduled games
are indeterminate. Therefore, a simulation of the
scheduled game and identification of the winner is
based on the probability defined by Equation (2) in
Section 4.1. For each of the 16 new games, generate a
random number n ∈ [0, 1] and if n < pij , team i wins
the game; otherwise, team j is the winner. Ties are
not considered. Because margin of victory and other
complicated statistics are not represented in any of
the necessary calculations, this simple simulation is
sufficient for this study. The simulation is repeated
for 10,000 iterations and the results are averaged and
compared to the official schedule below.

Figure 4 shows the comparison of strength of
schedule for teams playing the official 2017 NFL
schedule (gray) versus playing the optimized sched-
ule (red) found via mathematical programming. As
seen, the dynamically-scheduled season exhibits a
reduction in the variation in strength of schedules
for the league. The reduction requires some teams
to play a harder schedule while others are offered
an easier schedule. Figure 5 highlights the trade-
off in schedule difficulty amongst Jacksonville and
Tennessee (harder) and Detroit and Dallas (easier).
Seattle, which was closer to a median strength of
schedule of 50 initially experiences only a slight
change to its schedule difficulty.

Next, Table 2 shows average strength of schedule
of each of the eight divisions of the NFL without
the parity games, as well as the average RPI of
the teams that were scheduled in the parity games
to better balance the strengths of schedules. The
NFC East, NFC South, and NFC West divisions had
the toughest schedules that season on average. The
toughest divisions received the weakest opponents
based on average RPI statistics in the new schedule.
In a similar manner, the divisions with the easiest
schedules (the AFC North and AFC South) get much
harder opponents on average in the parity games. The
results presented above in Table 2, Fig. 4, and Fig. 5
present the balancing and trade-offs when scheduling
NFL parity games to reduce variation in strength of
schedule.

Another interesting scenario in the 2017 season
involves the Philadelphia Eagles, who won the Super

Fig. 4. Comparison of the official (gray) and dynamic (red) schedules for the 2017 NFL season.
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Fig. 5. Simulated change in SOS for selected teams in 2017.

Table 2

Parity games by division

Division Avg SOS Parity Games Avg RPI

AFC East 50.34 50.69
AFC North 45.77 55.80
AFC South 47.80 54.78
AFC West 49.20 54.16
NFC East 52.14 46.69
NFC North 49.82 50.41
NFC South 52.62 43.54
NFC West 52.29 43.91

Bowl after finishing last in the NFC East in the pre-
vious 2016 season. The Dallas Cowboys, with a 9-7
record, challenged the Eagles, with a record of 13-3,
for the division title, but because the Cowboys had
finished in first place in the NFC East in the previous
season, the Cowboys played a tougher schedule than
the Eagles. In the parity games the Eagles played the
Chicago Bears (RPI 45.47, six fewer wins) and Car-
olina Panthers (RPI 54.46, one fewer win) while the
Cowboys played Green Bay (RPI 50.35, two fewer
wins) and Atlanta (RPI 54.04, one more win). Dal-
las lost both of its parity games while the Eagles won
both of its parity games, accounting for the four game
difference in team records. Table 3 shows the games
that each of dynamic scheduling methods would have

scheduled for the Eagles and the Cowboys. In con-
trast to the strength of schedule method, because
the NFC East was strong in 2017 both Philadelphia
and Dallas receive lower RPI opponents, the meth-
ods that assign opponents based on win differential
or some balance of win difference and strength of
schedule give the Eagles and the Cowboys more com-
petitive games. Table 3 shows the results of binary
linear programming to minimize the win differential
amongst all parity games (IPWDmin) and a multi-
objective approach that weighs strength of schedule
and win differential equally (MultiObj). In two of
the three methods, the Eagles play a tougher parity-
game schedule than the Cowboys as indicated by the
average RPI of the opponents, and the potential out-
comes of such games could have made a difference
in the selection and seeding of the playoffs.

A similar phenomenon happened in the 2016 sea-
son where Detroit (9-7) made the playoffs over two
other teams, Washington (8-7-1) and Tampa Bay
(9-7). Detroit won its two parity games against the
Los Angeles Rams (4-12) and New Orleans (7-9).
Washington lost both of its parity games against Car-
olina (6-10) and Arizona (7-8-1). Tampa Bay split its
games, winning against Chicago (3-13) but losing to
Dallas (13-3). Under the dynamic schedule to equal-
ize strength of schedule amongst teams, Detroit plays
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Table 3

Eagles and Cowboys parity games

Philadelphia Dallas

Opponent RPI Win Diff Opponent RPI Win Diff

Chicago 45.47 –6 Green Bay 50.35 –2
Official Carolina 54.46 –1 Atlanta 54.04 +1

Average 50.07 –3.5 Average 52.20 –0.5
Baltimore 46.64 -4 Indianapolis 42.3 –5

SOS Cincinnati 45.27 –6 Oakland 47.59 –3
Average 45.96 –5 Average 44.95 –4
Minnesota 57.88 0 Kansas City 53.33 +1

IPWDmin New England 58.08 0 New Orleans 59.28 +2
Average 57.98 0 Average 56.31 +1.5
Kansas City 53.33 –3 Carolina 54.46 +2

MultiObj New England 58.08 0 New Orleans 59.28 +2
Average 55.71 –1.5 Average 56.78 +2

Fig. 6. Games assigned by the comparison path method and official schedule for the 2016 NFL season.

Washington (8-7-1) and Houston (9-7); Washington
plays Detroit (9-7) and Minnesota (8-8); Tampa Bay
plays Jacksonville (3-13) and the Los Angeles Rams
(4-12). Tampa’s easier schedule makes it more likely
for them to reach a 10-6 record and make the playoffs.
Under a simultaneous consideration of strength of
schedule and win differential through multi-objective
optimization, Detroit plays Indianapolis (8-8) and
Washington (8-7-1); Washington plays Detroit (9-
7) and Pittsburgh (11-5); Tampa Bay plays Houston
(9-7) and Tennessee (9-7). Both optimization-based
methods dynamically schedule a Washington versus
Detroit matchup, thereby making that game a pre-
playoff playoff game to see who is worthy for the
post-season. For four of the five years tested, the com-
parison path method of dynamic scheduling assigning
teams in one division to play teams in another division
in which those teams did not play during the non-
parity games schedule. For example, Fig. 6 shows

the parity games assigned by the comparison path
method for the 2016 NFL season. The gray dotted
lines represent the division matchups that were sched-
uled that year by the official NFL schedule and the red
lines represent the parity games assigned by the opti-
mization technique. For this year, each division was
at most two steps away from another division in the
network after the non-parity game schedule is played.
Since the comparison path method is trying to gain
comparison information by reducing the path lengths
needed to compare any two teams, it seems reason-
able that assigning parity games to matchup teams
in one division with a division it did not play during
the non-parity game schedule would accomplish this
goal. Interestingly, this method seems to be assigning
these intra-divisional games to pair divisions who did
not play each other with similar divisional RPI scores.
Using the official NFL scheduling approach, the net-
work created from the non-parity games will naturally
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Table 4

Percent improvements of dynamic scheduling over the official NFL
schedule

Percent Improvement

Model SOS CP TD WD

SOS Greedy 38.6% –11.3% 2.1% 0.7%

SOS IP 41.2% –10.8% 3.0% 0.8%

CP Reduced 5.0% 2.2% 0.6% 3.0%

TD Minimized 6.4% –6.5% 11.4% 0.1%

WD Minimized –2.5% –2.3% 0.7% 9.5%

WB* m = 4 28.8% –9.2% 2.8% 3.5%
WB* m = 3 19.4% –11.6% 2.2% 5.1%

MO (3,2,1,2) 20.4% 1.2% 4.5% 4.5%
MO (2,2,1,3) 7.6% 1.3% 3.8% 6.1%
MO (2,3,1,2) 8.3% 2.3% 2.2% 5.5%
MO (1,0,0,1) 24.4% –10.4% 1.0% 6.4%

have short comparison paths, so this method may
not be able to drastically improve on the information
gained from adding these parity games. However, it
is believed that the comparison path method will have
great benefit in determining the quality of teams when
applied to a sparser network, such as the network
created from a typical college football season.

Lastly, Table 4 shows the percent improvement of
each model over the statistics of the official schedule
averaged over the six years studied. Note that the win
balancing (WB) models are only averaged over the
three years from 2015 to 2017 for m = 3 and 4. Con-
sider the second column of the table labeled “SOS".
The greedy heuristic reduces the standard deviation
of the strengths of schedule by 38.6% and the math-
ematical programming approach further tightens the
deviation to a 41.2% reduction. In a similar manner,
the comparison path reduced model has the largest
(2.2%) impact on the percent improvement of the
comparison path of the official schedule, albeit not
significant. The travel distance and win differential
models also result in 11.4% and 9.5% improvements
over the travel distance and win balancing metrics of
the official NFL schedule, respectively. The reduction
in quality of solution can be seen by balancing win
differential in the row labeled “WB* m = 4". Finally,
the multi-objective model results are presented with
weights recorded for each of the four objectives under
consideration. The multi-objective model that weighs
a reduction in standard deviation of strength of sched-
ule three times as important as minimizing travel

distance, and weighs comparison path and win differ-
ential reduction twice as important as travel distance
(MO (3,2,1,2)) shows improvement across all metrics
compared to the official NFL schedule. In summary,
the results in Table 4 come from rescheduling only
two games per team. By dynamically rescheduling
more games, it is reasonable to expect improvement
to increase.

7. Conclusion

Creating a fair schedule is important to all stake-
holders of a sports league, mostly due to the financial
implications of postseason participation and success.
Schedule-making is a complex process requiring
numerous variables and objectives to be articulated
and balanced each season. The approach to schedul-
ing traditionally used by the NFL is a static heuristic
that is executed before the season and is dependent
on stale information. However, as highlighted in this
work, scheduling before the season based on the pre-
vious year’s results does not take into account the
change in team performance due to roster and coach-
ing changes, injuries, or many others factors. Since
the schedule dictates the matchups of the season and
therefore affects the composition of the postseason,
it is an important problem to study how to dynami-
cally schedule games based on the current season to
more confidently identify the best teams and league
champion.

This paper introduces an approach to dynamically
schedule a season of NFL games to improve the fair-
ness of the league schedule. To calculate the fairness
of a schedule the quality measures among opposing
teams such as Rating Percentage Index and winning
percentage must be compared. Since there are many
possible combinations of games to consider adding
to the schedule, the utility of a potential game is used
to identify better, or more fair, matchups. Several
different objectives can be derived to build sched-
ules in a systematic way to promote fairness. For
example, this work examines methods to reduce the
variability of teams’ strength of schedules and reduce
the length of the comparison path among teams.
Additionally, schedules that reduce travel distance
and better balance win totals amongst opponents are
presented. A simple greedy heuristic as well as math-
ematical programming are used to efficiently identify
the best parity games to schedule each season. As
shown here, scheduling based on these objectives,
and combinations thereof, promote more fair and
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competitive schedules comparatively to recent offi-
cial NFL schedules. There are further issues that
need to be considered in expanding this work. First,
weighting games week-to-week would reflect the tra-
jectory of teams during the season and account for
personnel changes and key injuries. Stadium avail-
ability is another concern for scheduling the unknown
parity games. The feasibility of reserving a multi-
purpose venue for two consecutive weeks but using
only one at the end of the season could present prob-
lems, and teams, such as the New York Giants and the
New York Jets who share time at the same stadium,
would require additional constraints to model. Fur-
ther, broadcast television contracts contribute heavily
to the revenue of the NFL. Currently, considerations
are made when creating the official schedule to ensure
that marquee matchups occur each week. While the
Win Differential objective would frequently ensure
quality matchups, the other objectives would not
always achieve this criteria. Preferences provided by
the different television broadcasters or quality mea-
sures for potential matchups could be added to the
model either in the objective function or constraints
to take these preferences into consideration. Lastly,
the results are tied to the optimization framework
introduced in Section 5.2. It is important to acknowl-
edge that additional constraints would most likely be
needed to use dynamic scheduling in a real setting.
For example, two additional realistic constraints on
dynamically scheduled games are 1) opponents need
to be in the same conference due to current playoff
rules pointing to winning percentage amongst confer-
ence teams as a tie breaker for wild card selection and
2) teams need to have not played against one another
in the previous 14 games of the schedule. However,
the results of this study are promising and encourage
future work to examine the effects of dynamically
scheduling a portion of a league’s season.
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