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Abstract. This paper re-examines the assumption that the probability of winning the World Series, the NBA Finals, and the
Stanley Cup is constant across the series. This assumption is the primary basis for models that endeavor to explain the length
of a series, but we demonstrate that this model is inconsistent with historical data in all three sports. We adjust the model
to incorporate conditional probabilities and fit it with historical data. While one can always backfit historical frequencies to
conditional probabilities, doing so shows that the variation in conditional frequencies within and across sports is too wide to
support the constant probability model. We also define a new notion of the concept of two teams being evenly matched.
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Sports championships draw considerable interest
from the general public, the media, and statisti-
cians. Major League Baseball’s World Series, the
National Basketball Association’s Finals, and the
National Hockey League’s Stanley Cup are all best-
of-seven series that are watched and followed by
millions of people worldwide. Fans wait with great
anticipation for the outcomes of these events, not
knowing if a series will go four, five, six, or seven
games. Broadcasters pay millions of dollars for
the rights to televise these games, thereby making
substantial investments in an event with uncertain
length. Moreover, a considerable amount of money is
wagered on these games, some legal and a great deal
illegal.

An obvious question that arises from these best-
of-seven events is the number of games required
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to determine the winner. Only a modest amount of
research, however, and amounting to but four sci-
entific studies, has been done on this subject. All
of these studies have been based on the assump-
tion that the games represent a series of independent
events with each team having a constant probability of
winning a given game. Naturally, the naı̈ve assump-
tion is that this probability is 0.5, a condition often
referred to as the teams being “evenly matched.” Per-
haps this assumption is simply convenient, though
perhaps it is motivated by the fact that the series
is between the two best playing teams at the time,
and thus, they are likely to be similar in quality. As
we discuss later, an argument can be made that an
evenly-matched series is not the same notion as an
evenly-matched game. Nonetheless, this issue can be
set aside for the moment. The primary question of
this paper is whether the probability of victory is
constant throughout the series and if not, how we
can incorporate a non-constant probability of a given
team winning. In previous analyses, a model based
on constant probability and independence has always
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been assumed, and some researchers have attempted
to extract that probability from the data.

In this paper, we present evidence that these
assumptions are incorrect and lead to results that are
inconsistent with the history of these sports cham-
pionships. We develop an improved model for the
distribution of games by incorporating conditional
probability, the notion that a team is more or less
likely to win based on certain conditions that exist at a
given time. While one can always fit conditional prob-
abilities to historical data, in doing so we show that
the variation across and within sports is too great to
support the constant probability model. In particular,
a constant probability of 0.5 is a poor fit.

1. Previous research

Only a few studies addressing the issue of the dis-
tribution of games have appeared in the scholarly
literature. Mosteller (1952) examines the question of
whether a seven-game World Series is sufficient for
identifying the so-called “better” team. He derives a
maximum likelihood estimates of a constant proba-
bility of one team winning each game of p̂ = 0.65,
implying a corresponding probability of the other
team winning of 1 − p̂ = 0.35. This result would
seem to be inordinately high, implying that the aver-
age series is a mismatch. At first glance, his results
might seem to be dominated by the period covered by
his data of 1905–1951, in which perhaps a small num-
ber of powerful teams prevailed. As is well known, the
New York Yankees have been a World Series power-
house. In the 1905–1951 period covered in his study,
the Yankees won about 38% of American League
pennants. Nonetheless, in our sample, which covers
1923–2018, the Yankees have performed even better,
winning 42.7% of American League pennants. But in
later years, there are far more teams and, thus, there
could be greater balance in the data.1

Groeneveld and Meeden (1975) examine data from
the World Series (1903–1973), NBA (1950–1973),
and National Hockey League (1939–1967) with the
objective of obtaining a single best probability esti-
mate. They obtain maximum likelihood estimates of
a constant probability of p̂ = 0.58 for baseball, 0.654
for hockey, and 0.533 for basketball. While the result
for baseball seems slightly one-sided, the finding for

1This question is also explained quite well in Mlodinow (2008,
pp. 68-71), but he does not collect data and obtain an empirical
estimate.

hockey suggests that on average, the Stanley Cup is
an extraordinary mismatch.

Using World Series data from 1903–2005, Cas-
suto and Lowenthal (2007, 2011) examine the issue
from an economic perspective. They argue that those
with an economic interest in the event should be
concerned about the likelihood of the event lasting
four, five, six, or seven games. Their examination
is couched in the following manner. Consider the
multinomial X = (X4, X5, X6, X7) where Xi is the
number of games the series lasts, i = 4, . . . 7. Cas-
suto and Lowenthal use the chi-square test with three
degrees of freedom to examine the null hypothe-
sis that p̂ = 0.50 maximizes the likelihood of the
observed relative frequencies of Xi games. Using
data from 1903–2003 (their 2007 study) and updat-
ing it with data from 1903–2005 (their 2011 study),
they cannot reject the null hypothesis of p̂ = 0.50 at
the 0.05 level but are able to reject at the 0.10 level.
They then find that the probability that minimizes the
chi-square statistic is p̂ = 0.569. They acknowledge
that relative strength and home field advantage could
affect their conclusions, a point we take up later. Inter-
estingly, they find that while there is a home field
advantage in a given game, there is no home field
advantage in the series as a whole.2

The constant probability model has also been in
used in other studies directed at related but different
sports issues. For example, Ben-Naim et al. (2012)
employ a constant probability model to examine the
efficacy of single-elimination tournaments in con-
trast to each team playing each other team. The
blogosphere has also contained discussion about the
probabilities of the number of games.3 Although sev-
eral of these previous papers and discussions raise the
issue that the probabilities may not be constant, all
generally work with the independent constant prob-
ability assumption or leave the matter for others to
resolve. In short, the research on this question has

2They refer to that result as a paradox, but it can be easily seen.
Suppose the home team has a slight advantage in each game. If an
equivalent number of games are played in both cities, the home
field advantage would be neutralized. Of course, in some series
there are more games played in one city than in another, but if the
home field advantage is only slight, the additional game in one city
might not be enough to give that team a significant edge. We take
up the topic of home field advantage later in this paper.

3See Birnbaum (2007) who re-states the Cassuto-Lowenthal
results, Peterson (2003), who examines data from 1923-2002, and
Stein (2011), who examines data from 1905-2002. All observe that
the number of games played differs from the number that would
be expected under the naı̈ve assumption of a probability of 0.5.
Peterson and Stein note that there may be reasons such as strategy
and home field advantage that lead to this result.
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not proposed, what more examined, an alternative to
the model of constant probability and independence.

In an excellent treatment of the mathematics of
baseball, Ross (2007) shows how the ex ante distri-
bution of games is determined, and he acknowledges
that a probability of 0.5 does not fit the data very well.
He states, however, that it is difficult to determine
any other probability. He discusses the possibility of
a conditional probability model but only in the con-
text of a model in which one team is the favorite.
For example, a favorite would be defined as a team
having a probability of winning a game of more than
0.5. He then examines the formulas for the probabil-
ity of a series lasting a certain number of games given
that the favorite has already won or lost some games.
Our work extends the idea of conditional probability
by using historical data, but in our model any so-
called favorite, could, for example, be the favorite
after one or two games and the underdog later. We
let the historical data tell us when these probabilities
change.

In this study, we formalize the application of
conditional probability to the model of seven-game
championship series and thereby fill a much needed
space in the evolution of formal models of these
events.4

2. Specification of the problem

If we begin with the assumption that an arbitrary
team, say team A, has a probability p of winning
each game, it is a simple matter to determine the
probability that a series will last four, five, six, or
seven games.5 Denoting those probabilities as Pr(i),
the probability that a series will last i games where
i = 4, 5, 6, or 7, we have

Pr(4) = p4 + (1 − p)4

Pr(5) = 4(p4(1 − p) + p(1 − p)4)

4One more study has tangentially built such a model, but it
is used for a different purpose. Ferrall and Smith (1999) create a
game-theoretic sequential model of a championship series and use
it to determine if firms play differently in these series than during
the seasons. They find no evidence for any such effects.

5These formulas that follow are well known and have appeared
in Tang (1975), Groeneveld and Meeden (1975), Cassuto and
Lowenthal (2007), Mosteller (1952, and Ross (2007). We re-state
them here to lay a formal foundation for analysis and comparison
in this paper.

Table 1

The Probabilities that a Best-of-Seven
Series goes Four, Five, Six, or Seven
Games (Pr(i), i = 4, 5, 6, 7) under the
assumption that each team has a 50%

probability of winning each game

Number of Games (i) Pr(i)

4 12.50%
5 25.00%
6 31.25%
7 31.25%

100.00%

Pr(6) = 10(p4(1 − p)2 + p2(1 − p)4)

Pr(7) = 20(p4(1 − p)3 + p3(1 − p)4).

The general formula is

Pr(n) = (n − 1)!

3!(n − 4)!

(
p4(1 − p)n−4 + pn−4(1 − p)4

)
.

Under the naı̈ve assumption that p = 0.5, Table 1
shows these probabilities. They are, of course,
well-known and documented in the literature. The
expected number of games is as follows:

E(G) = 4(0.125) + 5(0.25) + 6(0.3125)

+7(0.3125) = 5.81

As we will show, however, these probabilities and
hence the constant probability assumption is a poor
match to the observed relative frequencies, especially
for certain sports.

3. The data

We collect data for baseball’s World Series, bas-
ketball’s NBA Finals, and hockey’s Stanley Cup
finals, the latter hereafter referred to simply as the
“Stanley Cup.” The World Series began in 1903
but followed an inconsistent format until 1923. In
some cases the Series was based on a best-of-
seven structure, in others a best-of-nine structure,
and in some years, tied games were permitted.
Since 1923 however, the series has been played
with a consistent best-of-seven format with tied
games extending into extra innings until a winner is
determined. Thus, we collect data starting in 1923
through 2018 from www.baseballreference.com.
There are 551 World Series games played during
that period.
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The National Basketball Association was founded
in 1949 as a successor to the Basketball Associa-
tion of America. Its 1949–1950 season was played
with 15 teams divided into three divisions. From
the 1950–1951 season forward, it has been divided
into Eastern and Western Divisions, which in some
years are called “Conferences,” and in later years
further broken into sub-divisions. We start with this
second season of the NBA’s history, 1950–1951,
and collect data through the 2017–2018 season
from www.basketballreference.com.6 There are 392
games played in the Championship finals during that
period.

The National Hockey League was founded in 1917,
and the league structure has changed many times. Not
until 1968 did the league divide itself into eastern
and western divisions. In 1975 it then realigned into
the Clarence Campbell and Prince of Wales Confer-
ences, each with three divisions. Nonetheless, these
divisions did not compete with each other in the play-
offs until 1982. In other words, until 1982, two teams
from the same conference could end up competing in
the finals for the Stanley Cup. In 1994 the structure
was changed again, this time into eastern and western
conferences, whereby the Stanley Cup finals would
match the playoff champions of the eastern and west-
ern conference. For the hockey data, we start with
1939, because that was the first year the Stanley Cup
followed a best-of-seven format that it has retained
since that time. The data sources are www.hockey-
reference.com and www.nhl.com and go through the
2017-2018 season. After accounting for the cancela-
tion of the 2005 NHL season, there are 403 Stanley
Cup finals games played during that period.

Table 2 provides descriptive statistics of the 95
World Series, 68 NBA Finals, and 79 Stanley Cup
Finals in the data set. Although not shown in the
table, a total of 36 teams have appeared in the World
Series, 30 in the NBA Finals, and 28 in the Stanley
Cup Finals.7 Of course, the New York Yankees have
been a dominant team in baseball, appearing in 38
series, winning 27. The second most successful team
has been the St. Louis Cardinals, who have appeared
in 19 series, winning 11. The Pittsburgh Pirates have

6Because a given basketball or hockey season is played in two
calendar years, a season is referred to in the format yyyy-(yyyy+1).
We will always refer to a season by the second year, as this is the
year the championship series is played.

7A given team with a given name is counted once. Thus, the
Philadelphia Warriors and the Golden State Warriors are counted
as separate teams. It should be noted that the data here cover cer-
tain periods as indicated in the discussion above, but they do not
necessarily span the entire history of a given team.

won four of five series, for the best winning percent-
age with four or more series. The most unsuccessful
team that has competed in at least one series would be
the Brooklyn Dodgers who appeared in seven series,
winning only one (1955).

The NBA has been dominated by the Boston
Celtics and Los Angeles Lakers. The Celtics have
appeared in 21 Finals, winning 17. The Los Angeles
Lakers have appeared in 25 Finals, winning 11, and
the Laker franchise also appeared in four other finals,
winning three, as the Minneapolis Lakers. Two other
very successful franchises are the Chicago Bulls, who
have won all six of their appearances, and the San
Antonio Spurs, who have won five of six. The worst
record for a team that has appeared at least four times
is the Cleveland Cavaliers who have won one of five
series.

The most successful hockey teams have been the
Montreal Canadians, Detroit Red Wings, Boston Bru-
ins, and Toronto Maple Leafs. Montreal has won 20
of 27 Stanley Cup finals, while Detroit has won 9 and
lost 12, and Boston has won five and lost 11. The
Toronto Maple Leafs have appeared 14 times, win-
ning 10, and the Chicago Black Hawks have won four
and lost six. Of course, these are the oldest teams in
the league, and thus, they have had more opportunities
and less competition.

The table also shows some data on the home-
away record. The home advantage can be interpreted
several ways. One is the obvious notion of a home
advantage for a given game. The team at home has
won 56.20% of World Series games, 61.73% of NBA
Finals games, and 60.56% of Stanley Cup Finals
games. An alternative notion of home advantage is
that the team that plays more home games in the
series has an advantage. Under this definition of home
advantage, the team with the edge has won 45.61% of
World Series championships, 66.67% of NBA Cham-
pionships, and 75.68% of Stanley Cups.8

Of the two competing teams, the one with the bet-
ter season record has won 50.57% of World Series,

8Yet, a third interpretation of home advantage might be an ex
ante advantage. A team that is expected to play more home games
might be considered as having a home advantage. For example,
consider a series in which two games are played in Team A’s city,
followed by three games in Team B’s city, followed by two games
in Team’s A city, Team A expects to play more home games in a
seven-game series, but in a five-game series, Team B expects to
play more home games. In four- and six-game series, neither team
would be expected to have an advantage. The problem with such
an interpretation is that it is nebulous, based as it is on expected
series length. It is not possible to determine the expectation. Even
if the series goes to seven games, it does not mean that both teams
expected it to go to seven games.

www.basketballreference.com
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Table 2

Descriptive Statistics of the World Series and NBA Finals

World Series (1923–2018) NBA Finals (1951–2018) Stanley Cup (1939–2018)

Number of Series 95 68 79
Team with most appearances New York Yankees (38) Los Angeles Lakers (25) Montreal Canadians (27)
Team with most championship wins New York Yankees (27) Boston Celtics (17) Montreal Canadians (20)
Team with most championship losses New York Yankees (11) Los Angeles Lakers (14) Detroit Red Wings (12)
Team with highest winning pct., four

or more series
Pittsburgh Pirates Chicago Bulls Pittsburgh Penguins

(80%, 5 series) (100%, 6 series) (83.33%, 6 series)
Team with lowest winning pct., four

or more series
Chicago Cubs Cleveland Cavaliers Philadelphia Flyers

(16.67% 6 series) (20%, 5 series) (25%, 8 series)
Home team wins game 56.20% 61.73% 60.56%
Team with most home games in

series wins series*
45.61% 66.67% 75.68%

Team with better season record wins
series

51.09% 73.44% 77.46%

Travel Formats
1-1-1-1-1-1-1 1 2 1
2-3-2 91 31 2
3-4 3 0 0
2-2-1-1-1 0 33 74
1-2-2-1-1 0 2 0
1-2-4 0 0 1
Indeterminate** 0 0 1

Note: The data used here do not constitute the entire history of many teams. For series not lasting seven games, travel formats are estimates
based on patterns to that point and patterns used in nearby years. Performance is counted separately by team/city and not by franchise. *The
team with most home games refers to the team with most home games played in the series, not the team with the most home games scheduled.
**The indeterminate Stanley Cup series was in 1940 in which the first two games were played in New York, and the next four were played
in Toronto, with the series ending in six games. The pattern of 2-4, which occurred because of a circus booked in Madison Square Garden,
is not observed anywhere else in the hockey, baseball, or basketball data. It is difficult to estimate for certain where the seventh game would
have been played. It probably would have gone back to New York for a 2-4-1 pattern, which is unusual and not observed anywhere else, or
due to the circus, it may have been forced to remain in Toronto for a 2-5 pattern, which is also unusual and did not occur anywhere else.

72.88% of NBA Championships, and 77.46% of
Stanley Cups. These results shed some light on
whether many of these series have been mismatched,
meaning that there is simply a stronger team. That
could be the case in hockey as well as basketball, but
it does not appear to be the case in baseball.

The last section of the table shows the various
home-away formats used by the leagues. Baseball has
followed the 2-3-2 format for 91 of 95 series, with two
games in one city, the next three in the other city, and
the final two in the first city. Basketball has used four
different formats with 31 following the 2-3-2 format
and 33 following the 2-2-1-1-1 format in which the
last three games alternate cities. Hockey has used the
2-2-1-1-1 format for 74 of 79 series.9

9Interestingly, Rump (2006) finds that for basketball, switching
from the 2-2-1-1-1 format to the 2-3-2 format, which was done in
1985, would increase the average length of the series. Nonetheless,
the NBA went back to the 2-2-1-1-1 format in 2014. History does
indeed support that prediction. The average series length with the
2-3-2 format is indeed higher at 6.32 versus 5.94 with the 2-2-1-1-1
format.

4. Comparison of the Data with the p = 0.5
Model

Table 3 shows the observed frequencies of four-,
five-, six-, and seven-game series along with the
expected frequencies under on the naı̈ve assumption
of a 0.5 probability for each game. As can be seen,
there have been far more four- and seven-game World
Series, and correspondingly fewer five- and six-game
series that would be expected if in each game, each
team had a 50% chance of winning. The average num-
ber of games, however, at 5.80 is almost precisely
equal to the expected number of 5.81. This finding
immediately makes us believe that 0.5 is the appro-
priate parameter. But, we have fit only the mean of
the distribution. The assumption of a 0.5 probability
is not very accurate, as indicated by the fact that the
chi-square goodness of fit statistic,

χ2 =
∑
cells

(observed − expected)2

expected
,

rejects the constant probability null hypothesis with a
p-value of less than 4%. This result is not surprising.
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Table 3

Observed Relative and Expected Frequencies of Four-, Five-, Six-, and Seven-Game Series in the World Series, NBA Finals,
and Stanley Cup

Series ends in i games World Series NBA Finals Stanley Cup Expected Frequencies
Observed Frequencies of Games (p = 0.5)

4 18.95% 13.24% 25.32% 12.50%
5 21.05% 25.00% 22.78% 25.00%
6 21.05% 33.82% 31.65% 31.25%
7 38.95% 27.94% 20.25% 31.25%
Average # of games based on

observed or expected frequencies
5.80 5.76 5.47 5.81

Chi-square (p-value) 8.71 (0.0334) 0.41 (0.0622) 181.15 (0.0035)

Two distributions can certainly have the same or very
close means and yet be quite different.

Interestingly, the NBA data come much closer to
fitting the p = 0.5 model. The number of five-game
series is precisely the theoretical value and the other
observed and expected frequencies are somewhat
close to their theoretical values, and the average num-
ber of games, at 5.76, is close to the expected number
of 5.81. Nonetheless, the null is still rejected with a
Type I error of only 6.2%. In addition, as we will
show later, it is possible to obtain a better fit for NBA
data and plenty of reasons to prefer one.

For the Stanley Cup, the differences between the
observed and the expected frequencies are quite high.
The percentage of four-game series is more than twice
the expected number. This disproportionate result
comes mostly at the expense of seven-game series,
with about 20% of Stanley Cup finals going to seven
games, while the expected percentage is slightly more
than 31%. The average observed number of games of
5.47 is notably lower than the expected number under
the 0.5 hypothesis, and the chi-square test rejects the
null hypothesis at better than the 1% level. Thus, the
evidence suggests that a model with a constant prob-
ability of 0.5 does not fit hockey or baseball at all and
probably not even basketball.

5. Alternative Estimates of p

We may be able to salvage the constant probability
model if we can find a probability other than 0.5 that
fits the data reasonably well. Consider first the World
Series, in which we have too many seven-game series
in relation to the number we would expect if p = 0.5.
We first might wonder if we can alter the constant
probability model to better fit the data, but we show in
Appendix A that if a constant probability is assumed,
the probability of a seven-game series is maximized
at p = 0.5. Since the observed number of seven-game

series is more than the expected number at p = 0.5,
any other value of p will certainly take the expected
number of seven-game series even further away from
the observed number.

In spite of this impossibility, Mosteller (1952) sug-
gests two ways of fitting a single probability estimate
to the data. First, he suggests matching the expected
value with the average number of games played.10 We
do this for the World Series and obtain p̂ = 0.5333.
Unfortunately, this probability still results in rejec-
tion of the null hypothesis that the distributions are
the same under the chi-square goodness of fit test,
with a test statistic of 8.54 and a Type I error of 3.61%.
There may be hope for the NBA Finals and the Stanley
Cup, however, as the expected number of seven-game
series is a higher than the observed frequencies. Per-
haps we can arrive at a constant probability more than
0.5 that fits the data better.

For the NBA Finals, we obtain p̂ = 0.5671, which
does not result in rejection of the null hypothesis
using the chi-square test. Nonetheless, we find the
disconcerting result that that the naı̈ve assumption of
p = 0.5 and the optimized assumption of p = 0.5671
produce fairly close chi-square statistics, 0.41 vs.
0.32. The reason for this result will become clear
shortly. For the Stanley Cup, we obtain an estimate
of p̂ = 0.6760, a result that suggests that the average
Stanley Cup series is a mismatch.

Mosteller also suggests a maximum likelihood
approach to identifying a single constant probability.
In other words, given the observed data, which proba-
bility maximizes the likelihood that the sample would
have occurred? Following Mosteller’s approach, let
pL (j) = the probability that the team that loses the
series wins j games, where j = 0, 1, 2, or 3. The multi-
nomial probability of drawing the sample is

10Technically, Mosteller matches the number of games won
by the team losing the series, but this criterion is equivalent to
matching on the total length of the series, because the latter is
simply the former plus four.
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(
(N(4) + N(5) + N(6) + N(7))!

N(4)!N(5)!N(6)!N(7)!

)

pL(0)N(4)pL(1)N(5)pL(2)N(6)pL(3)N(7)

where N (i) = the number of four-, five-, six-,
and seven-game series that have occurred. Because
the term in the large parentheses is fixed for a
given sport, one can focus on the remaining term,
pL(0)N(4)pL(1)N(5)pL(2)N(6)pL(3)N(7), which is the
kernel of the multinomial probability. Maximization
of this value results in maximization of the likelihood
that the sample would have been drawn from a pop-
ulation in which the probability of a team winning a
game is constant across the series and, thus, provides a
maximum likelihood estimate. Figure 1 illustrates the
graph of this multinomial kernel for the three sports.

For baseball, Fig. 1A, we see that the probabil-
ity of observing 18 four-game series, 20 five-game
series, 20 six-game series, and 37 seven-game series
is maximized at roughly p̂ = 0.43 and the comple-
ment, p̂ = 0.57.11 Nonetheless, the variation over a
wide range is relatively small. Moreover, a constant
probability of 0.43 (0.57) also suggests that the aver-
age series is somewhat mismatched. In addition, to
the maximum likelihood estimator, we examine the
chi-square statistic over this range of probabilities.12

It is significant at a p-value of 4% or better for all
probabilities between roughly p̂ = 0.4 and p̂ = 0.6.
Thus, we know that we still do not have a good fit.

In Fig. 1B, for the NBA, we find yet another
disconcerting result. While the maximum occurs at
p̂ = 0.44 with the complement of 0.56, all probabil-
ities in the range of 0.43 to 0.57 have virtually the
same likelihood. In addition, the chi-square is not
significant over this entire range. Thus, we are led to
the rather disconcerting conclusion that almost any
probability over this range works about as well as
any other.

For the Stanley Cup, Fig. 1C, we have maxima
at around p̂ = 0.32 and p̂ = 0.68, the same result

11The fact that we have two maxima that add to 1 makes sense.
If an arbitrary team has a probability of wining each game of 0.43
and that probability maximizes the sample likelihood, the comple-
mentary probability applies to the other team. The teams can then
be reversed, and the same result must be obtained.

12Mosteller obtains the same result for both methods but
attributes it to the uniqueness of his data set. As it turns
out, for multinomial data minimizing the likelihood ratio
2�(observed)log(observed/expected) is a chi-square and is the
same as maximum likelihood and almost the same as a stan-
dard chi-square contingency table. Indeed we obtain essentially
the same results for this chi-square minimization approach as for
the maximum likelihood approach with our data.

Fig. 1. Maximum Likelihood Estimate of Constant Probability of
One Team Winning the World Series, NBA Finals, and Stanley
Cup. A. World Series. B. NBA Finals. C. Stanley Cup. The line
is the value pL(0)N(4)pL(1)N(5)pL(2)N(6)pL(3)N(7),,which is the
kernel of the multinomial likelihood function where pL (j) is the
probability that the team that loses the series wins j games (j = 0,
1, 2, or 3) and N(i) is the number of four-, five-, six-, and seven-
game series that have occurred. The observed maxima identify the
maximum likelihood estimates of a constant probability of one
team winning.

previously found. Again, such lop-sided odds seem
unrealistic.

Hence, for baseball, no single value of p seems
appropriate. For basketball multiple values of p seem
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to fit the data. For hockey, extreme values of p best
fit the data.

6. A Model using conditional probability

In this section we attempt to determine if we
can improve the model of the number of games
in best-of-seven championship series by incorpo-
rating conditional probability. Historical data can
be tabulated based on conditions that exist to that
point to provide estimates of conditional probabili-
ties. Naturally we can always fit a model to historical
conditional frequencies. The insight of this analysis
is to reveal the extent to which the conditional proba-
bilities vary across different conditions. If they do not
vary much, then a conditional probability model will
not be an improvement over a constant probability
model.

Table 4 takes this approach by showing the rela-
tive frequencies with which teams win, given their
previous wins in the series. The corresponding num-
bers in parentheses are the numbers of occurrences
of the condition. Thus, for example, in the second
line for the World Series one team has been ahead
two games-to-none 46 times, and it has won the third
game 43.48% of the time.

In baseball, we see that the team winning the first
game has won the second game a little less than 49%
of the time, and when it wins the second game, it wins
the third game about 47% of the time. Yet if it wins
the third game, it wins the fourth game and sweeps
the series 90% of the time. A team ahead two- games-
to-one wins the fourth game about 47% of the time,
while a team ahead three-games-to-one wins the fifth
game about 54% of the time. Perhaps most strikingly,
a team ahead three-games-to-two wins the sixth game
only about 35% of the time. In other words, the team
with its back to the wall, down three games-to-two,
wins almost two-thirds of the time to send the series
into the seventh game. This phenomenon explains
why the number of seven-game series is so large in
relation to what is implied by the p = 0.5 model. We
will explore this result in more detail later.

Turning to basketball, a team up one game-to-none
wins the second game about 47% of the time. Being
up two games-to-none, however, has been a much
more difficult situation, with the team ahead winning
only about 38% of the time. If the team is ahead two
games-to-one, it wins game four about 48% of the
time. As with baseball, a team ahead three games-to-
none has a very high chance (75%) of a four-game

sweep. Teams ahead three games-to-one and three
games-to-two have won the next game about 57%
and 55% of the time, respectively. In the latter case,
with a team behind three games-to-two and winning
the sixth game only about 45% of the time, we would
expect a somewhat smaller number of seven-game
series than would occur with the constant probability
and independence model. And indeed, that is the case,
as was shown in Table 3.

For the Stanley Cup, teams that win the first game
go on to win the second game about 65% of the time.
If a team is up two games-to-none, it wins the third
game about 52% of the time. If it is up three-games-
to-none it wins the fourth about 74% of the time.13

To summarize, if the constant probability and
independence model were correct, these conditional
frequencies would be approximately the same. Some
modest variation might be expected and indeed a
number of these frequencies are close to 50%. But
too many are far away from 50%. From this data, we
can easily see that baseball has too many seven-game
series and too few six-game series because teams
behind three-games-to-two tend to win at far better
than a 50% rate. It also has too many four-game series
because teams ahead three-games-to-none sweep the
series 90% of the time. Basketball fits the constant
probability rule more closely than the other two
sports, but it has a bit too few seven-game series
and slightly more six-game series because teams up
three-games-to-two win the sixth game at well more
than a 50% rate. Hockey has far too many four-game
series because teams up three-games-to-none win and
sweep 75% of the time. It has too few seven-game
series, because teams ahead three-games-to-two win
the sixth game 60% of the time. In addition, the
excessive number of four-game sweeps also reduces
the number of seven-game series. These results are
completely inconsistent with the constant probability
model.

13Taking a different approach using betting data to infer ex
ante win probabilities, Swartz et al (2011) find that basketball and
hockey teams that are in not-too-desperate situations, such as down
1-0 or 2-0, tend to play better, but they do not in extremely des-
perate situations, such as being down 3-0. Our results based on
the actual history of the championships are consistent with that
conclusion in basketball but not in hockey. In the latter, teams win
only about 35% of the time when down 1-0 and only 47% of the
time when down 2-0. The corresponding numbers in basketball are
53% and 63%. In both sports, teams down 3-0 do poorly winning
only 25% and 26% of the time when down 3-0 in basketball and
hockey, respectively. Differences between those results and ours
can potentially be explained by the fact that those tests include the
playoffs and cover only nine years for the NBA and six for the
NHL.
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Table 4

Relative Frequencies of Various Conditioning Events in the World Series and NBA Finals

Condition World Series NBA Finals Stanley Cup

Team ahead 1-game-to-0 wins game 2 48.42% (95) 47.06% (68) 64.56% (79)
Team ahead 2-games-to-0 wins game 3 43.48% (46) 37.50% (32) 52.94% (51)
Team ahead 2-games-to-1 wins game 4 46.67% (75) 48.21% (56) 51.92% (52)
Team ahead 3-games-to-0 wins game 4 90.00% (20) 75.00% (12) 74.07% (27)
Team ahead 3-games-to-1 wins game 5 54.05% (37) 56.67% (60) 55.88% (34)
Team ahead 3-games-to-2 wins game 6 35.09% (57) 54.76% (42) 60.00% (40)

Note: The numbers in parentheses equal the number of possible events. Thus, in baseball, of the 95 times
in which one team was ahead one-game-to-none, 46 (≈ 48.42% × 90) times, the team won and went ahead
two-games-to-none. In the remaining 49 times, the team behind won and tied the series at one game apiece.

In addition, by using historical data we can fit the
distribution exactly, without having to know the odds
of one team winning when the series is tied. In fact,
the probabilities when the series is tied are irrele-
vant as there is no pre-condition that favors one team.
Hence, we can assume p0,0 = p1,1 = p2,2 = p3,3 =
0.5 Letpk, m be the probability that a team will win
the (k + m+1)th game, having previously won k games
and lost m games. We first determine the probability
that the series will last four games. The probability of
an arbitrary team A winning the series in four games
is

p0,0p1,0p2,0p3,0 = 0.5p1,0p2,0p3,0

The series could also end in four games if team A
loses the first four games. If the conditional probabil-
ities apply equally to each team, then the probability
of team A losing all four games is14

(1 − p0,0)p1,0p2,0p3,0 = 0.5p1,0p2,0p3,0

Thus, the probability that the series ends in four
games is the sum of these probabilities,

Pr(4) = p1,0p2,0p3,0.

Now consider the probability that the series will
end in five games, Pr(5). By definition, Pr(5) is the
probability that after four games, one team is up three-
games-to-one and that team wins the fifth game.15

There are eight possible ways that teams A and B can

14Remember that p0,0 is the probability that team A wins game
one, and the remaining probabilities are the probabilities that either
team wins, conditional on its previous record. These probabilities
are conditional only on the cumulative record to that point, not on
whether that record applies to a particular team. Thus, if team A
loses the first game, which has probability 1 – p0,0, its probability
of losing the next game is p1,0, because team B, which won the
first game, has a record of one win and no losses and thus has a
probability of winning the next game of p1,0. Continuing in this
manner gives the above result.

15If, after four games, the teams are tied two games apiece, the
series will go to six games for certain.

play four games and have one team win three and the
other win one. Denoting the series-winning team as
either A or B, the eight possible sequences of winners
are AAAB, AABA, BAAA, ABAA, BBBA, BBAB,
ABBB, and BABB. For the series to end on the fifth
game, we must append to these eight sequences either
A or B such that A or B has four wins. For team
A to win, the outcomes would have to be AAABA,
AABAA, BAAAA, and ABAAA. For team B to win,
the outcomes would be BBBAB, BBABB, ABBBB,
and BABBB. Appendix B shows that the probabilities
of these events combine to

Pr(5) = p3,1
(
p1,0p2,0(1 − p3,0)

+p1,0(1 − p2,0)p2,1 + (1 − p1,0)p2,1
)
. (1)

Now consider the probability that the series ends in
six games. Given what we already know, this result is
easy to obtain. First consider that the probability that
the series lasts at least six games is 1 – Pr(4) – Pr(5).
The probability that the series lasts exactly six games
is the probability that it lasts at least six games times
the probability that the team ahead three-games-to-
two wins the sixth game.16 Thus,

Pr(6) = (1 − Pr(4) − Pr(5))p3,2.

And finally, the probability that the series lasts
seven games is simply the complement of the proba-
bilities we have obtained to this point,

Pr(7) = 1 − Pr(4) − Pr(5) − Pr(6).

Using this information and estimates of the con-
ditional probabilities from the historical frequencies,
we can match the distribution of games precisely. The

16If the series goes into its sixth game, one team must be ahead
three-games-to-two. It is not necessary to double this probability,
accounting for both teams, because the probability that the series
goes at least six games already covers all states in which either
team is ahead three-games-to-two.
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results are obtained by building a binomial tree for the
70 sequences, inserting the probabilities of each path,
and doing the appropriate multiplications. Results are
verified using the equations above for Pr(4), Pr(5),
Pr(6), and Pr(7). Table 5 presents these results.17

The NBA results are particularly interesting in that
an assumption of p = 0.5 throughout the series gave
a reasonably good fit. But to make such an assump-
tion is to believe that a team has a 50–50 chance of
winning even when it is down three games-to-none,
when the actual frequency of winning is only 25%,
and two-games-to-none, when the actual frequency
of winning is, 62.5%). While the remaining cases
do not deviate notably from 50%, we see here that
even incorporating conditional probabilities that are
far away from 0.5 produces not only a good fit but a
better fit. And in baseball, advocates for use of a prob-
ability slightly different from 0.5 fail to recognize that
the frequency of winning when down three games-
to-none is 10%, and when down three-games-to-two,
the frequency of winning is 64.9%. In hockey, the
conditions of being up one-game-to-none and three-
games-to-none require probabilities far above 50%,
specifically, 64.6% and 74.1%, respectively.

It is important to note that the relative frequen-
cies do not do not constitute the only set of estimates
of probabilities that will fit the distribution. We are
fitting a multinomial X = (X4, X5, X6, X7) where
Xi the number of series ending in i games, but there
are six parameters, p1,0, p2,0, p3,0, p3,1, p3,2, and
p2, 1. With more parameters than constraints, there
are clearly multiple combinations of the conditional
probabilities that fit the data. Based on the fact that we
are interested in explaining the empirical history of
these three sports, we are fitting a distribution based
on the ex post frequency of series ending in i games,
and we have no further information on the ex ante
probabilities, our statistical estimates are based on

p̂m,k = numer of wins for team ahead m - to - k

number of m - to - k situations
.

It has been said that probability theory and the
World Series do not agree, but such a statement is
based on attempting to force the constant probability
and independence model to fit the data.18 As we show

17A spreadsheet showing these computations is available on
request.

18See Stein (2011), who states that “But our national pastime
is more than math: The mismatch between baseball history and
elementary probability illustrates the game’s richness and subtlety
– as well as the limitless potential of statistics to provide insight into
the nuances of the game.” The second part of Stein’s comment may

here, conditional probability provides a richer frame-
work that better fits the data. With the large number
of parameters in the model, agreement is guaranteed.

We have shown that we can fit the entire tree to
the conditional probability model. But there remains
the question of whether we can make the constant
probability model work by evolving through time and
resolving uncertainty as we get closer to the end of the
series. To answer this question, we identify that there
are 47 nodes in a best-of-seven series at which there
is conditioning information, meaning the number of
games won by each team to that point. We also require
that at that point the series will continue at least one
game. These requirements eliminate the time 0 node,
as no previous games have been played. They also
eliminate all nodes at which the series ends and the
subsequent nodes that would otherwise evolve. And,
they also eliminate game 6 nodes, because if we are at
game 6 and the series is not over, there will definitely
be a game 7 so there is no uncertainty over how many
games the series will require..

At each of these conditioning nodes, we can com-
pute the expected distribution of the series length.
Because we use conditional frequencies as proxies
for the conditional probabilities, the probabilities of
four-, five-, six-, and seven-game series viewed
from any node will equal the true frequencies from
that point in time. Alternatively, we can also apply
the constant probability model and determine the
expected number of games at each node. As we evolve
through the tree, picking up information that resolves
uncertainty, we could find that the constant proba-
bility model begins to work better. In this manner,
we are updating the constant probability model for
the conditions that occurred throughout the tree. As
noted, we can do this at each node, thereby obtaining
updated distributions of the length of the series, which
we can compare with the distributions based on the
conditional probabilities, which fit the data perfectly.
In this manner, we could find that the constant prob-
ability model improves as we roll through the tree.
The results of this test are in Table 6, which sum-
marizes the prob values of the chi-square test of the
null hypothesis that the updated distributions from
the constant probability model fit the data as of each
time point from after game 1 to after game 5. If the

well allude to these conditional frequencies and how they produce
a more accurate model. But in any case, there is no disconnect
between the math and the game. Two-team competition is always
a binomial process, but the distribution could be non-stationary, as
it is when the conditional probabilities do not equal the marginal
probabilities.
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Table 5

Relative Frequencies of Four, Five, Six, and Seven Games in the World Series,
NBA Finals, and Stanley Cup using historical frequencies of conditioning events

as conditional probabilities

Number of games (i)
A. World Series Observed Frequency Expected Frequency using

Conditional Probabilities

4 18.95% 18.95%
5 21.05% 21.05%
6 21.05% 21.05%
7 38.95% 38.95%

B. NBA Finals
4 13.24% 13.24%
5 25.00% 25.00%
6 33.82% 33.82%
7 27.94% 27.94%

C. Stanley Cup
4 25.32% 25.32%
5 24.05% 24.05%
6 30.38% 30.38%
7 20.25% 20.25%

Note: Results are obtained by building a binomial tree diagram of all possible out-
comes (70 sequences), inserting the appropriate conditional frequencies as proxies
for the conditional probabilities and tallying the results across all four-, five-, six-,
and seven-game outcomes. Results are verified using the equations in the text for
Pr(4), Pr(5), Pr(6), and Pr(7), which incorporate the conditional probabilities.

Table 6

Distribution of Prob Values in Chi-Square Test over all Condition-
ing Nodes of the Hypothesis that the Updated Distribution of the
Length of the Series is the Same as the Updated Distribution based

on the Conditional Frequencies

Prpb value 1 2 3 4 5

A. World Series
0.00 – 0.05 0 2 2 7 20
0.05 – 0.10 2 2 5 0 0
0.10 – 0.15 0 0 0 7 0
0.15 – 0.20 0 0 0 0 0
>0.15 0 0 0 0 0

B. NBA Championship
0.00 – 0.05 0 0 2 0 0
0.05 – 0.10 0 0 0 0 0
0.10 – 0.15 0 0 0 0 0
0.15 – 0.20 0 0 0 0 0
>0.15 2 4 5 14 20

C. Stanley Cup
0.00 – 0.05 2 2 2 0 0
0.05 – 0.10 0 0 0 0 0
0.10 – 0.15 0 0 0 0 0
0.15 – 0.20 0 0 0 0 0
>0.15 0 2 5 14 20

Note: The numbers across the top row (1. 2. 3. 4. 5) are the number
of games played to that point.

constant probability model fits the data we should see
few rejections and the propensity to reject decreasing
as we move forward in time.

For baseball (Panel A), we do see some improve-
ment in that after the fourth game, half of the nodes
fail to reject but this trend does not carry over to the
fifth game. With basketball (Panel B), we see a defi-
nite propensity to not reject as we evolve. Recall from
Table 3, that the constant probability model did pro-
vide a somewhat reasonable fit to the data, but the
problem with the NBA data was that a wide range of
probabilities seemed to fit. In the Stanley Cup results
(Panel C), the updating process also shows a tendency
to improve the constant probability mod as we tend
to not reject as we evolve.

These results are not surprising. They show that
as uncertainty is resolved, simpler models often do
improve. But if one uses the simpler model, little
would be gained and considerable information would
be ignored. And obviously, the model does not help
us much at all before the first game.

7. Two related issues: Momentum and home
advantage

In this section we address the issues of momentum
and home advantage as well as the interpretation of
the concept of being evenly matched. We attempt to
determine if these factors can explain the variation in
the conditional probabilities.
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7.1. Momentum

Let us consider those cases in which the conditional
probabilities either exceed 60% or are less than 40%.
They are restated here:

World Series NBA Finals Stanley Cup
p̂3,0 = 0.90 p̂2,0 = 0.3750 p̂1,0 = 0.6456
p̂3,2 = 0.3509 p̂3,0 = 0.7500 p̂ 3, 0 = 0.7407

Two factors could be responsible for this wide vari-
ation, one being momentum and the other being the
home advantage. Momentum, however, is a difficult
notion to conceptualize in a short series. Momentum
is generally viewed as a team on a streak. Yet, the
notion that streaks exist as in the form of a signifi-
cantly greater probability than average of winning is
questionable, not only based on probability theory but
also based on empirical evidence. Research by Albert
(2004) and Reifman (2012) among others argues that
the small number of long winning streaks observed
in sports are not unusual at all, given the rather large
number of opportunities in which such streaks could
have occurred in the entire history of sports.

If streaks do not occur, the existence of the phe-
nomenon called momentum is questionable. In a
best-of-seven series, the notion of a streak is an espe-
cially tenuous concept. Nonetheless, it behooves us
to take a look at multiple consecutive wins in these
series and attempt to determine if a win or series of
wins increases the likelihood of a win in the next
game. Whether that concept would be called, momen-
tum, a streak, or something else, is probably beside
the point.19

For momentum to exist in a short series, it would
seem that a team would need to win at least two games
in a row and then be extremely likely to win the next
game. There are a number of possible combinations
of games in which a team might win two in a row,
but many of these combinations overlap. For exam-
ple, we could examine a team having won games one
and two and facing game three or we could consider
a team winning games two and three and facing game
four. There is a point of intersection, game two, that
results in double-counting the information. To avoid
this problem, we examine only the frequency of win-
ning game three after having won games one and two
and the frequency of winning game six after having

19The aforementioned difficulty of conceptualizing momen-
tum in a short series and in light of the problem of whether streaks
even exist renders the interpretations in this section subject to a
caveat. We offer these results as conjecture and possible stimuli
for other studies.

won games four and five. Thus, there are no winning
games in common. Thus, the frequency of winning
game three after having won games one and two plus
the frequency of winning game six after having won
games four and five is 43.48% in baseball, 37.5%
in basketball, and 54.17% in hockey. After winning
games four and five, the frequency of winning game
six is 30.77% in baseball, 41.67% in basketball, and
66.67% in hockey. There is clearly no momentum in
baseball and basketball but perhaps some in hockey.

If we extend the analysis further we find that if
a team has won the first three games, the relative
frequency of winning the fourth game is extremely
high in all sports, 90% in baseball, 75% in basketball,
and 74.07% in hockey, numbers we have previously
reported. One might argue that this evidence strongly
supports the notion of momentum, but it would be
very short-term momentum for baseball and basket-
ball, given no evidence of such high percentages for
previous wins.20 Hence, as we have noted, teams that
have lost the first three games seem to be essentially
finished.

So clearly the World Series and NBA Finals are
not driven by momentum, but the Stanley Cup might
be. The team winning the first game wins the second
at a rate of 64.56%. Upon winning the first and sec-
ond games, a team wins the third at a rate of 52.94%.
Upon winning the first three, a team wins the fourth
at a rate of 74.07%. Nonetheless, we cannot reject the
possibility that the Stanley Cup finals are affected by
momentum, at least short-term momentum, or what-
ever one might call it.

An alternative interpretation of a so-called momen-
tum effect, however, is simply that many series are
mismatches. It is difficult, particularly in hockey, to
reject that notion. Recall from Table 2 that the team
with the better season record wins more than three-
fourths of the Stanley Cups and that there are more
than twice as many sweeps as would be expected
with a constant probability and independence model.
That model, albeit rejected, fits hockey only with
the assumption of a highly skewed probability of
one team winning. It is unclear why hockey is this
way, and indeed, this might be a rich topic for further
research. In basketball, the team with the better sea-
son record wins more than 73% of the championship
series, and yet there is little evidence of momentum

20Baseball teams win the second game after winning the first
at only about a 48% rate and basketball teams do so only at about
a 47% rate. As noted above, the rates of winning game three after
winning games one and two are only about 43% in baseball and
38% in basketball.
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or mismatching during the series. In baseball, the
team with the better season record wins only about
51% of the time and indeed there is no evidence for
momentum or mismatching.

7.2. Home advantage

Now let us look at the home advantage. First we
need to define what we mean by a home advantage.
We noted earlier in Table 2 that home teams have won
about 56% of World Series games, about 62% of NBA
finals games, and about 61% of Stanley Cup finals
games. Jamieson (2010) estimates that in general the
home team wins 55.6% of the time in baseball, 59.5%
in the NBA, and 62.9% in the NHL. Moskowitz and
Wertheim (2012) estimate these figures at 53.9% in
baseball, 55.7% in the NBA, and 60.5% in the NHL.21

These figures are extremely close to the figures we
obtained for best-of-seven series games. Thus, with-
out conditioning, it appears that the home advantage
estimated elsewhere during regular season play is rel-
atively consistent with the home winning percentage
in these best-of-seven championships.

If a home-field advantage explains certain relative
winning frequencies such as those reported for cer-
tain critical games in best-of-seven series, it would
be because the team plays that critical game at home
far more often. If it is, however, and teams win at an
extraordinary rate, far more than the normal rate for
home teams, then it is not a mere home field advan-
tage. Moreover, if teams win critical games at a very
high rate and play unusually well when they are on
the road for that game, it is clearly not a home field
advantage. Let us see what the data say.

Perhaps the most startling conditional result we
find is the frequency of winning in all three sports
when ahead three-games-to-none. In baseball we
found that teams ahead three-games-to-none win
game four 90% of the time (18 of 20) with rates
of 75% (9 of 12) and 74.07% (20 of 27) in basket-
ball and hockey, respectively. These percentages far
exceed the normal home winning percentage. Thus,
we should immediately doubt that home advantage
explains these results. Moreover, Table 7 shows that
in baseball, teams that are ahead three-games-to-none
have played the fourth game at home only seven times
and been on the road 13 times with respective winning
percentages of 85.71% and 92.31% at home and on

21Koehler and Ridpath (1982) find some modest evidence of
a home court advantage in basketball, but they do not test the
other two sports. Their tests, however, are conducted only over
one season.

the road. Thus, the team ahead three-games-to-none
has been on the road almost twice as often for game
four. Its winning percentages for game four at home
and on the road are also quite high. Similar results are
seen in Table 7 for basketball and hockey. In basket-
ball the team ahead three-games-to-none has played
the fourth game at home only once and been on the
road eleven times with winning percentages of 100%
and 73.73%, respectively. Hockey teams in that sit-
uation have played 12 of those games at home and
14 on the road with winning percentages of 75.00%
and 78.57% respectively. Clearly the home advantage
cannot explain four game sweeps. The team ahead
plays exceptionally well in that fourth game at home
as well as on the road in all sports and even plays
more of those games on the road.

One of the more interesting findings we reported
is that baseball teams that are ahead three-games- to-
two win the sixth game only about 35.09% of the time
(20 of 57). Thus, we might wonder if the team behind
is at home in game six far more often. If that is the
case, however, the team behind would have to win at
home at a percentage that is the complement, at least
64%. In baseball the home advantage in general is
about 55%. Table 7 shows that the team ahead three-
games-to-two is at home 24 times and on the road
33 times. Thus, the team behind is at home 33 times
and on the road 24 times. Hence, it does have the
advantage of playing that game at home more often,
but it clearly performs at better than the normal rate in
this crucial sixth game. In game six, the team behind
has won about 50% of its road games and over 75%
of its home games.

It is particularly interesting to note that in basket-
ball and hockey, we do not see the same result found
in baseball for this critical game six whereby the team
behind plays exceptionally well and catches up quite
frequently, forcing game seven. In basketball the team
ahead three-games-to-two wins game six about 55%
of the time, while in hockey the team ahead three-
games-to-two wins game six about 60% of the time.
With their backs to the wall basketball and hockey
teams simply do not play as well as baseball teams.
The reason could relate to pitching. Basketball and
hockey teams play virtually the same players each
game, while baseball teams rotate pitchers, some-
times switch batters due to whether a left-hander or
right-hander is pitching, and in some cases, have had
use of the designated hitter. It could be the case that
baseball teams that anticipate being in that situation
position themselves to be able to use their best pitcher
in game six. Interestingly, while the team behind wins
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Table 7

Frequency of Winning the Next Game at Home given the Stated Condition

Condition World Series NBA Finals Stanley Cup

Frequency of winning game one at home
Tied 0-0 62.11% (95) 76.47% (68) 73.42% (79)

Frequency of winning game two at home
Ahead 1-0 56.67% (60) 58.00% (50) 69.09% (55)
Behind 1-0 65.71% (35) 83.33% (18) 45.83% (24)

Frequency of winning game three at home
Ahead 2-0 58.33% (12) 75.00% (4) 83.33% (12)
Behind 2-0 55.88% (34) 67.86% (28) 56.41% (39)
Tied 1-1 52.03% (49) 40.54% (37) 53.57% (28)

Frequency of winning game four at home
Ahead 3-0 85.71% (7) 100.00% (1) 75.00% (12)
Behind 3-0 7.69% (13) 27.27% (11) 21.43% (14)
Ahead 2-1 45.16% (31) 47.06% (17) 52.94% (17)
Behind 2-1 52.27% (44) 51.28% (39) 48.57% (35)

Frequency of winning game five at home
Ahead 3-1 46.67% (15) 60.00% (15) 62.50% (24)
Behind 3-1 36.36% (22) 46.67% (15) 60.00% (10)
Tied 2-2 60.00% (40) 68.97% (29) 72.00% (25)

Frequency of winning game six at home
Ahead 3-2 50.00% (24) 68.75% (16) 54.55% (11)
Behind 3-2 75.76% (33) 53.85% (26) 37.93% (29)

Frequency of winning game seven at home
Tied 3-3 52.94% (34) 84.21% (19) 75.00% (12)

Note: Number in parenthesis is the number of opportunities. For example, in the World Series a team ahead 2-1,
played game four at home 31 times, winning 45.16% (14) of those games.

game six about 63% of the time, it wins game seven
only about 35% of the time. It may well have used up
its best pitcher just getting to game seven.

Another outlier in the conditional probabilities is
that in basketball, the team ahead two-games-to-none
wins game three only 37.50% of the time (12 of
32).22 Thus, we need to know if the team behind
two-games-to-none plays game three predominately
at home. As Table 7 shows, that is indeed the case.
Teams ahead two-games-to-none played game three
at home only four times, winning three, while teams
behind played game three at home 28 times, winning
67.86% (19 victories). Again, this percentage is much
higher than the normal home court advantage. Thus,
while teams behind two-games-to-none do play game
three at home far more often than on the road, they
win at a much higher rate than normal for a home
team. In hockey, we see that teams ahead one game
to none win the second game 64.56% of the time. In
Table 7 we see that the team ahead one game to none
played the second game at home 55 times and has
won 69.09% of the time. With 79 games total, it has
played on the road 24 times, and with an overall win
total of 51 wins, it has won 13 on the road, for a road
winning rate of 54.17%. Thus, teams ahead one game

22The corresponding percentages in baseball and hockey are
43.48% and 52.94%, respectively.

to none played the next game at home almost 65% of
the time, but won those home games about 69% of
the time. They played about 35% of those games on
the road and won about 54% of the time. This overall
rate of winning is far beyond a home ice advantage.

To recap, there are some situations in which teams
have a predominately home advantage, but they seem
to win at a much greater rate than that of a normal
home advantage. Moreover, they also tend to play
better on the road. Thus, the conditional probabilities
do not vary because of simply having the critical game
played more often at home.23 Perhaps there is some
type of super-home advantage, whereby teams play
extraordinarily well at home in certain situations, but
these teams also seem to play unusually well on the
road in those situations. The situation itself appears
to be the dominating factor, not where the game is
played.

7.3. On the interpretation of even matching

As we discussed, much of the previously published
scientific research on the question of the distribution

23This finding is consistent with that of Basset and Hurley
(1998) who find that home-away sequencing has little effect on
the expected length of a series even in a binomial model with
constant probability.
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of games in a best-of-seven series has been centered
on the notion of a single probability of a team win-
ning each game. The preference for this approach
has been mainly one of convenience: it is the sim-
plest model. Secondarily, a constant probability and
independence model would hold out hope that the
best fitting probability is ½, a seemingly intuitive if
not desirable finding, at least to some.24 If that were
indeed the case, one might reasonably argue that the
teams are evenly matched. Perhaps it is intuition that
suggests that a probability of 0.5 for each team in each
game is the definition of evenly-matched teams. This
notion may not, however, be the best interpretation of
the condition of even matching.

It seems reasonable to describe a game as being
evenly matched if each team has a 50% chance of
winning. But even if all games in a series are that
way, it may not be the case that the series itself is
evenly-matched. We suggest a distinction between an
evenly-matched game and an evenly-matched series.
An evenly-matched series, we argue, is likely to last
longer. Thus, its chance of a seven-game series is
much greater than one in which each team has an
equal chance of winning each game. Incorporating
conditional probability into the interpretation, we
suggest that an evenly-matched series is one in which
a team that is behind has a greater chance of catching
up.

For illustrative purposes, let us consider a best-
of-three series, which has sometimes been used in
playoffs, though never in the finals. With teams A
and B, there are six possible outcomes. Two of the
outcomes are that A wins the first two games or B
wins the first two games and the series ends. The other
outcomes are the sequences A wins-B wins-A wins,
A wins-B wins-B wins, B wins-A wins-A wins, and
B wins-A wins-B wins, with the series lasting three
games. With a constant probability of p = 0.5, the first
and eighth outcomes have probabilities of 0.25, and
the remaining outcomes have probabilities of 0.125.
Thus, the probability of a two-game series is 0.50,
and the probability of a three-game series is 0.5.

But one could reasonably argue that a more evenly-
matched series should have a greater probability of
going to three games. Suppose, for example, we spec-
ify that if a team loses the first game, its probability
of winning the second game is 0.6. Clearly, we would
then have a 60% chance of there being a three-game

24Perhaps what may appear to be desirable is mostly from
the perspective of the leagues. They would probably want evenly
matched teams, which maximizes the uncertainty and produces the
greatest chance of a seven-game series.

series and a 40% chance of there being a two-game
series. The maximum probability of a three-game
series would be 100% if we specified that the team
behind one game to none has a 100% chance of win-
ning game two. Obviously, that is too extreme. All
we really need to do to increase the probability of the
series going three games is to make this conditional
probability more than 0.5. Indeed, in this simple best-
of-three setting, the probability of the series going to
three games is the conditional probability. In any case,
it would seem that the notion of an evenly-matched
series would be one in which if teams fall behind, they
exert the extra effort or have some kind of a home
field advantage that increases their chance of get-
ting back to a tie situation. Thus, even if the constant
probability and independence model were correct, a
series of seven evenly-matched games would not be
representative of an evenly-matched series.

Therefore, a game can be evenly matched, but a
series of all evenly matched games does not produce
an evenly matched series, as it does not maximize the
probability of a seven-game series. Only by incor-
porating conditional probability can we make the
distinction between an evenly-matched series and
a series of evenly-matched games. We emphasize,
however, that the issue here is in the semantics of
the expression evenly-matched. Nonetheless, seman-
tics do play a key role in the interpretation of sports
statistics.

8. Conclusions

Attempts to assign a single probability of victory
to a best-of-seven series suffer from the problem that
no particular probability is satisfactory in explaining
the World Series, a wide range of probabilities seem
to provide similar results for basketball, and a rel-
atively lop-sided probability works best for hockey.
The games in these championships series are simply
not independent experiments. Yet, the research on this
subject has never formalized the next step of show-
ing how we can build a better model. In this paper,
we propose that the use of conditional probabilities
provides a better fit in explaining the distribution of
games. We show that using the probabilities of victory
conditioned on the number of games won to that point
enables us to fit the distribution perfectly. Of course,
it is tautological that we can fit empirical frequencies
and fully explain outcomes, but the insight of these
results is in the fact that these conditional probabil-
ities vary widely within a sport, across sports, and
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deviate substantially from the constant probability
model.

There are multiple solutions for the estimates of the
conditional probabilities, including ex ante estimates.
As with any probability distribution, one can esti-
mate based on ex ante values, use historical estimates,
or employ a combination of the two. The interest in
sports statistics is largely focused on explaining the
past. Hence, the use of historical relative frequen-
cies is an appropriate way to estimate the conditional
probabilities. In doing so, we are able to examine
the effects of momentum and home advantage, nei-
ther of which is shown to have much of an impact
on these conditional probabilities. Certainly there
is a home advantage in all sports, but the unusu-
ally high winning percentages in certain games in
championship series are not explained by a nor-
mal home field advantage. Moreover, momentum,
while possibly existing in hockey, is still a ques-
tionable notion in an event that amounts to but a
short series. And based on the research of others, the
whole notion of momentum and streaks in sports has
been highly discredited in a number of studies. In
all likelihood, any resemblance between consistently
strong performance and momentum is likely just
a mismatch.

Left without momentum or home advantage, the
variation in conditional probabilities is probably best
explained by the mere fact that the odds tilt toward one
team in certain situations. One in particular is worth
repeating. Baseball teams behind three-games-to-two
rally to win about 65% of the time in game six. Behind
three-games-to-none, however, they win only 10% of
the time. These statistics vary widely across the three
sports. Further research may shed some light on why
such results are observed.
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Appendix A

Proof that with a Constant Probability Model, the
Probability of a Seven-Game Series is Maximized at
p = 0.5

There are twenty ways in which a seven-game
series can occur each with the probability that one
team wins four and the other three. The overall prob-
ability of a seven-game series is

Pr(7) = 20
[
p4(1 − p)3 + p3(1 − p)4

]

Differentiating with respect to p, we obtain

Pr(7)′ = 20
[
p4(1 − p)3 + p3(1 − p)4

]

= 20
[
−p43(1 − p)2 + (1 − p)34p3

]

= 20
[
−3p4(1 − p)2 + 3p2(1 − p)4

]

Setting this equation to zero and solving for p gives
p = 0.5. The second derivative is

Pr(7)′′ = 60
[
2p4(1 − p) + −4p3(1 − p)2

−4p2(1 − p)3 + 2p(1 − p)4
]

(2)

At p = 0.5, the second derivative is

Pr(7)′′p=0 = 60

(
2

32
− 4

32
− 4

32
+ 2

32

)

= −3.75(< 0) (3)

This verifies that p = 0.5 is a maximum.

Appendix B

Probability that a Series Ends in Five Games
Using teams A and B, there are eight possibilities.

After four games, one team must be up three-games-
to- one and must win the fifth game. The possibilities
with associated probabilities are as follows:

(a) AAABA : p0,0p1,0p2,0(1 − p3,0)p3,1

(b) AABAA : p0,0p1,0(1 − p2,0)p2,1p3,1

(c) BAAAA : (1 − p0,0)(1 − p1,0)p1,1p2,1p3,1

(d) ABAAA : p0,0(1 − p1,0)p1,1p2,1p3,1

(e) BBBAB : (1 − p0,0)p1,0p2,0(1 − p3,0)p3,1

(f ) BBABB : (1 − p0,0)p1,0(1 − p2,0)p2,1p3,1

(g) ABBBB : p0,0(1 − p1,0)(1 − p1,1)p2,1p3,1

(h) BABBB : (1 − p0,0)(1 − p1,0)(1 − p1,1)p2,1p3,1.

Combining (a) and (e), we obtain

p1,0p2,0(1 − p3,0)p3,1.

Combining (b) and (f), we obtain

p1,0(1 − p2,0)p2,1p3,1.

Combining (c) and (d), we obtain

(1 − p1,0)p1,1p2,1p3,1.

And combining (g) and (h), we obtain

(1 − p1,0)(1 − p1,1)p2,1p3,1.

Combining all of these simplifies to

p3,1
(
p1,0p2,0(1 − p3,0) + p1,0(1 − p2,0)p2,1

+(1 − p1,0)p2,1
)
.


