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Forecasting serve performance
in professional tennis matches

Jacob Gollub∗
Department of Statistics, Harvard University, Cambridge, MA, USA

Abstract. Many research papers on tennis match prediction use a hierarchical Markov Model. To predict match outcomes,
this model requires input parameters for each player’s serving ability. While these parameters are often computed directly
from each player’s historical percentages of points won on serve and return, doing so fails to address bias due to limited
sample size and differences in strength of schedule. In this paper, we explore a handful of novel approaches to forecasting
serve performance that specifically address these limitations. By applying an Efron-Morris estimator, we provide a means
to robustly forecast outcomes when players have limited match data over the past year. Next, through tracking expected
serve and return performance in past matches, we account for strength of schedule across all points in a player’s match
history. Finally, we demonstrate a new way to synthesize historical serve data with the predictive power of Elo ratings. When
forecasting serve performance across 7,622 ATP tour-level matches from 2014-2016, all three of these proposed methods
outperformed Barnett and Clarke’s standard approach.
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1. Introduction

Statistical prediction models have been applied to
tennis for decades, often to predict the winner of a
match. Laying the groundwork for research on point-
based models, Klaassen and Magnus (2001) first
tested the assumption that points in a tennis match
are independent and identically distributed, or i.i.d.
While this was proven false, they concluded devi-
ations are small enough that the i.i.d. assumption
provides a reasonable approximation. By estimating
each player’s probability of winning a point on serve
and computing win probability from these parame-
ters, they demonstrated a new way to forecast matches
under this assumption (Klaassen and Magnus, 2003).

In the time since, we have seen a variety of ways
to forecast serve performance. Barnett and Clarke
(2005) estimated these parameters by adjusting his-
torical tournament statistics by the performance of
the server and returner, relative to the average player.
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Assuming that serve and return performances fol-
low a normal distribution on a match-by-match basis,
Newton and Aslam (2009) ran Monte Carlo simu-
lations to predict the winner of a match. Adapting
Barnett and Clarke’s approach, Spanias and Knotten-
belt (2012) predicted serve performance by modeling
the probabilities of specific point outcomes (e.g. ace,
rally win on first serve, etc.) within a service game.
In order to reduce bias from variations in strength
of schedule, Knottenbelt et al. (2012) then proposed
the Common-Opponent Model, which measures per-
formance relative to common adversaries in their
respective match histories. More recently, Kovalchik
and Reid (2018) demonstrated a way to calibrate
serve parameters to the win probability implied by
each player’s Elo rating.

Building upon previous work in serve performance
prediction, this exploration serves two purposes.
Following a previous assessment of 11 different pre-
match prediction models on 2014 ATP tour-level
matches (Kovalchik, 2016), we evaluate serve perfor-
mance prediction methods across the same dataset as
a benchmark for future work. We also introduce sev-
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eral new methods to more robustly compute expected
serve performance. When forecasting thousands of
matches, the previously stated methods tend to run
into problems with limited match data and differences
in strength of schedule.1 To avoid these pitfalls, we
explore variations of Barnett and Clarke’s approach
that specifically address these issues.

In section 2, we review the hierarchical Markov
Model and Elo ratings, two of the most often-cited
methods for predicting tennis match outcomes. In
section 3, we review Barnett and Clarke’s formula
and explore further approaches to serve performance
prediction. Section 3.1.1 introduces a Bayesian esti-
mator to more robustly predict serve performance
from limited match data. Section 3.1.2 demonstrates
an approach that tracks expected serve and return per-
formances in every match, allowing us to consider
strength of schedule over the course of a player’s
entire match history. Section 3.2 harnesses Elo rat-
ings’ predictive power to more accurately predict
serve performance while maintaining the overall
serve ability between two players. In section 4, we
present several case studies to examine how each
approach informs predictions for individual matches.
In section 5, we evaluate all proposed methods
alongside established prediction models. Section 6
summarizes findings and suggests future steps for
research with point-based models.

Effective serve performance prediction holds
strong implications for both player analytics and
in-match forecasting. With more effective forecasts,
coaches can better understand how their players
match up with opponents on serve and return,
and adjust their strategies accordingly. By using
the hierarchical Markov Model, we can also com-
pute win probability as a function of each player’s
expected serve performance from any score. There-
fore, improving existing methods will provide means
to more confidently predict match outcomes while
play is in progress, a problem with significant applica-
tion to betting markets and real-time sports analytics.

2. Models for match win prediction

Newly proposed methods will require the context
of two popular match prediction models. The hier-
archical Markov Model computes win probability

1Knottenbelt’s Common-Opponent model addresses strength
of schedule at the cost of reducing the amount of available match
data. Kovalchik and Reid’s approach indirectly addresses both of
these issues through the use of Elo ratings.

directly from point-level probabilities, while Elo rat-
ings infer player ability solely from match outcomes.

2.1. Hierarchical markov model

Consider a tennis match between player i and
player j, where fij estimates the probability that
player i wins a point on serve against player j in a
given match. Given serve parameters fij, fji we can
calculate the probability that player i wins the match,
πij , from any score. To do so, consider how scores
are composed of points, games, and sets. With player
i serving to player j, let ai, aj represent each player’s
within-game score. Then we compute the probabil-
ity of player i winning the current game from score
ai − aj as follows:

Pg(ai, aj) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if ai = 4, aj ≤ 2

0, if aj = 4, ai ≤ 2

(fij)2

(fij)2 + (1− fij)2
, if ai = aj = 3

fij ∗ Pg(ai + 1, aj) +

(1− fij)Pg(ai, aj + 1), otherwise.

Following this approach, one may calculate player
i’s probability of winning the current set, Ps(gi, gj),
and then the match, Pm(si, sj), through similar recur-
sive relationships. Barnett et al. (2002) describe the
recursion in full detail.

2.2. Elo ratings

Elo was originally developed as a head-to-head rat-
ing system for chess players (Elo, 1978). Recently,
FiveThirtyEight’s Elo variant has gained prominence
in the media (Bialik et al., 2016). For a match at
time t between player i and player j with Elo rat-
ings Ei(t) and Ej(t), player i is forecasted to win
with probability:

π̂ij(t) =
(

1+ 10
Ej(t)−Ei(t)

400

)−1

.

For the following match, player i’s rating is then
updated accordingly:

Ei(t + 1) = Ei(t)+Kit ∗ (Wi(t)− π̂ij(t)).
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Wi(t) is an indicator for whether player i won the
given match at time t, while Kit is the learning rate
for player i at time t.

According to FiveThirtyEight’s analysts, Elo rat-
ings perform optimally when allowing Kit to decay
slowly over time (Bialik et al., 2016). With mi(t) rep-
resenting the number of player i’s career matches at
time t, we update the learning rate as follows2:

Kit = 250

(5+mi(t)).4
.

This variant updates a player’s Elo rating most
quickly when we have no information about them
and makes smaller changes as mi(t) accumulates.
To apply this rating system to all ATP tour-level
matches, we initalize each player’s Elo rating at
Ei(0) = 1500 and match history mi(0) = 0. Then,
we iterate through all tour-level matches from 1968-
present in chronological order, storing Ei(t), Ej(t)
for each match and updating each player’s Elo rating
accordingly.3

3. Predicting serve performance

A significant portion of research in tennis match
prediction concerns estimating each player’s proba-
bility of winning a point on serve. We present several
variations to Barnett and Clarke’s approach in Sec-
tion 3.1 and a way to reconcile Elo ratings with these
point-based methods in Section 3.2.

3.1. Barnett-Clarke formula

Given players’ historical serve/return perfor-
mance, Barnett and Clarke (2005) demonstrated a
method to calculate fij, fji.

fij = ft + (fi − fav)− (gj − gav)

fji = ft + (fj − fav)− (gi − gav)

In a match between player i and player j, each param-
eter estimates one player’s probability of winning a
point on serve against the other. fi represents player
i’s historical percentage of points won on serve, while
gi corresponds to their percentage of points won on

2The constants in this equation are parameter values that
FiveThirtyEight’s team chose after fitting this model on decades
of tour-level match data.

3Tennis’ Open Era began in 1968, when professionals were
allowed to enter grand slam tournaments.

return. ft denotes the percentage of points won on
serve at the match’s given tournament and fav, gav

represent tour-level averages for the percentages of
points won on serve and return, respectively.

While Barnett and Clarke’s dataset was limited to
year-to-date statistics, we may calculate fi, gi with
the past twelve months of match data for any given
match. Where Mi

(y,m) represents the set of player i’s
matches in year y, month m, we obtain the following
statistics4:

fi(y, m) =
∑12

t=1
∑

k∈Mi
(y−1,m+t)

wik∑12
t=1

∑
k∈Mi

(y−1,m+t)
nik

gi(y, m) =
∑12

t=1
∑

k∈Mi
(y−1,m+t)

njk − wjk∑12
t=1

∑
k∈Mi

(y−1,m+t)
njk

.

wik denotes the number of service points won by
player i in match k and nik the total number of service
points played by player i in match k.

Next, we calculate ft for a given tournament and
year, where M(v,y) represents the set of all matches
played at tournament v in year y:

ft(v, y) =
∑

k∈M(v,y−1)
wk∑

k∈M(v,y−1)
nk

.

wk and nk represent the number of service points won
and played in match k, respectively.

Finally, we calculate fav, gav where M(y,m) repre-
sents the set of tour-level matches played in year y,
month m:

fav(y, m) =
∑12

t=1
∑

k∈M(y−1,m+t)
wk∑12

t=1
∑

k∈M(y−1,m+t)
nk

gav(y, m) = 1− fav(y, m).

Overall, Barnett and Clarke’s formula assumes that
differences between player serve and return abil-
ity are additive. Next, we explore variations to this
approach.

3.1.1. Efron-Morris estimator
In the case of players who do not regularly compete

in tour-level events, fi, gi must be calculated from
limited sample sizes. Consequently, match probabili-
ties based on these estimates can be skewed by noise.

4For current month m, we only collect month-to-date matches.
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To address this, we turn to the Efron-Morris estimator
to provide alternative parameters of the form:

f ′ij = ft + (f ′i − fav)− (g′j − gav)

f ′ji = ft + (f ′j − fav)− (g′i − gav).

Rather than directly apply the estimator to fij, fji, we
normalize the serve/return parameters fi, gi which
constitute Barnett and Clarke’s equations.

Decades ago, Efron and Morris (1977) described
a method to estimate a group of sample means
with unequal variances. The Efron-Morris estima-
tor shrinks sample means toward the overall mean
by a magnitude proportional to each sample mean’s
uncertainty, producing a mean-squared error favor-
able in expectation to that of Maximum-Likelihood
Estimation. While Barnett and Clarke use raw histor-
ical averages of serve and return points won, we can
instead use this estimator to feed more reliable param-
eters into their equations. Just as Efron and Morris
estimated toxoplasmosis rates across hospitals with
uneven populations, we will apply this method to
serve performance prediction.

Consider our match dataset M, consisting of
all tour-level matches from 1968-present. For each
match k between players i and j, we calculate each
player’s historical percentage of points won fik, fjk

as outlined in section 3.1. Then, F contains each
player’s historical serve performance before every
match:

F = ⋃
k∈M Fk

Fk = {fik, fjk}.

To model serve performance according to a Bayesian
distribution, we consider each fi ∈ F to be a ran-
dom variable that approximates a player’s true service
ability θi as follows:

fi|θi ∼ N(θi, σ
2
i )

θi ∼ N(μ, τ2).

Put together, the above statements imply the follow-
ing (Efron and Morris, 1975):

θi|fi ∼ N(fi + Bi(μ− fi), σ2
i (1− Bi))

Bi = σi
2

τ2 + σi
2 .

Normalization coefficient Bi depends on both τ2, the
variance of true service ability, and σ2

i , the variance
of fi given true service ability θi. With f̂i denoting
the observed value of fi across ni points, we first
estimate mean and variance of true service ability
from all matches in our dataset:

fav =
∑

fi∈F f̂i

|F |

τ̂2 =
∑

fi∈F (f̂i − fav)2

|F | − 1
.

Then, using maximum likelihood estimation, we esti-
mate Bi and σ2

i in order to produce the Efron-Morris
estimator:

B̂i = σ̂i
2

τ̂2 + σ̂i
2

σ̂i
2 = f̂i(1− f̂i)

ni

f ′i = f̂i + B̂i(fav − f̂i).

When ni is large, our uncertainty in fi decreases
and shrinkage coefficient B̂i approaches zero. As ni

gets smaller, B̂i approaches one and f ′i more closely
resembles the average serving ability. By repeating
the same calculations with g′i in place of f ′i , we can
obtain Efron-Morris estimators for return ability and
then compute f ′ij, f ′ji from these serve and return
estimators.

While Barnett and Clarke’s original paper
computed fi, gi with sample means, using an Efron-
Morris estimator will produce more robust forecasts
across large datasets, where the amount of available
data for a given match varies significantly. In addi-
tion, this estimator can be applied to other variations
of Barnett and Clarke’s approach, as we will observe
when evaluating methods in Section 5.

3.1.2. Opponent-adjusted ratings
While Barnett and Clarke’s equation considers the

opponent’s serve and return ability, it does not track
strength of schedule throughout each player’s match
history. This is important, as a player’s win per-
centages on serve/return may become inflated from
playing weaker opponents or vice versa. In this sec-
tion, we propose a variation to Barnett and Clarke’s
equation which replaces fav, gav with opponent-
adjusted averages 1− g′i, 1− f ′i . The equations then
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become:

f ′ij = ft + (fi − (1− g′i))− (gj − (1− f ′j))

f ′ji = ft + (fj − (1− g′j))− (gi − (1− f ′i )).

f ′i , g′i represent the average serve and return abil-
ities of player i’s opponents in the last twelve
months. To calculate this, we weight each opponent’s
serve/return ability by the number of points played
throughout player i’s match history:

f ′i (y, m) =
∑12

t=1
∑

k∈Mi
(y−1,m+t)

njk ∗ (1− g′ijk)∑12
t=1

∑
k∈Mi

(y−1,m+t)
njk

g′i(y, m) =
∑12

t=1
∑

k∈Mi
(y−1,m+t)

nik ∗ (1− f ′ijk)∑12
t=1

∑
k∈Mi

(y−1,m+t)
nik

.

Once again, nik denotes the number of service points
played by player i in match k. In calculating f ′i , we
use njk to denote the number of return points played
by player i in match k.5 Calculated from historical
data at the time each match, f ′ijk, g

′
ijk represent the

opponent-adjusted likelihood of player i winning a
point against player j in match k on serve and return,
respectively.

Since the formula considers each player’s
opponent-adjusted ratings at the time of each match,
we must compute ratings in chronological order.
Similarly to Elo, we initialize all players’ opponent-
adjusted ratings to fav, gav before iterating through
all tour-level matches 1968-present and calculating
player ratings for each match accordingly.

3.2. Klaassen-Magnus elo ratings

Before Barnett and Clarke’s approach, Klaassen
and Magnus (2001) suggested a method to infer
serving probabilities from a pre-match win forecast
πij . As b = fij + fji represents the overall serve
ability between two players, they impose the con-
straint that any new serve parameters f ′ij, f ′ji must
satisfy f ′ij + f ′ji = b. Using this, we may create a
one-to-one function S : (πij, b)→ (f ′ij, f ′ji), which
generates serving probabilities f ′ij, f ′ji for both play-
ers such that Pm(0, 0) = πij .

As this paper was published in 2002, Klaassen and
Magnus produced serve parameters from ATP rank-

5The number of player j’s service points in match k is equal
to the number of player i’s return points in match k.

based forecasts. However, given that Elo has since
been demonstrated to outperform ATP rank in pre-
dicting match outcomes, we apply this method with
Elo forecasts.

Even when we impose the constraint fij + fji = b,
our hierarchical Markov Model’s match probability
equation has no analytical solution to its inverse.
Therefore, we turn to the following approximation
algorithm to generate serving percentages that
correspond to a win probability within ε of our Elo
forecast:

Algorithm 1 Klaassen-Magnus Elo Serve Parameters

procedure EloServeProbabilities(π, b, ε)
f ← b/2
diff← b/4
currentProb← .5
while |currentProb - π| > ε do:

If currentProb < π then
f += diff

else
f -= diff

diff = diff/2
currentProb← matchProb(f , b - f )

return f, b,−f

To generate serve probabilities for a given match,
we first compute πij as player i’s chance of victory
against player j given their Elo ratings and fij, fji

as specified by any Barnett-Clarke variation in sec-
tion 3.1. Then we run the above algorithm with π

= πij , b = fij + fji, and ε set to a desired preci-
sion level.6 At each step, we call matchProb() to
compute the win probability from the start of the
match if player i and player j had serve parameters
fij = f, fji = b− f , respectively. Then we compare
currentProb to prob and increment f by diff, which
halves at every iteration. This process continues until
the serve parameters f, b− f correspond to a win
probability within ε of πij , taking O(log 1

ε
) calls to

matchProb().
Given any pre-match forecast πij , we can produce

f ′ij, f ′ji consistent with πij , according to our hier-
archical Markov Model. While Kovalchik and Reid
(2018) recently outlined a similar method for infer-
ring these parameters from Elo ratings subject to
difference in serve ability, fij − fji = δ, we set the
constraint f ′ij + f ′ji = b to ensure that overall serve
ability agrees with historical data. As Klaassen and
Magnus (2003) demonstrated, b encodes important
information regarding likely trajectories of a match
score and the relative importance of service breaks.

6For this project, we set ε = .001.
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Therefore, keeping f ′ij, f ′ji consistent with b more
naturally lends itself to in-match prediction, a clear
future application of methods explored here.

Most importantly, this approach allows us to gen-
erate serve parameters from forecasts that are not
point-based. While Kovalchik (2016) explored a vari-
ety of point-based methods specific to tennis’ scoring
system, none outperformed Elo ratings in predicting
match outcomes. However, Elo ratings alone lack suf-
ficient context to predict outcomes at a point level.
Using the above approach, we significantly expand
the possibilities when producing serve parameters for
a given match. Should methods superior to Elo arise
in the future, we may similarly intuit f ′ij, f ′ji from
their match forecasts.

4. Case studies

The following examples illustrate applications of
newly proposed methods in several ATP tour-level
matches.

4.1. Efron-Morris estimator

To see how the Efron-Morris estimator makes our
model robust to small sample sizes, consider the fol-
lowing match. When Daniel Elahi (COL) and Ivo
Karlovic (CRO) faced off at ATP Bogota 2015, Elahi
had played only one tour-level match in the past
year. From a previous one-sided victory, his year-long
percentage of service points won, fi = .7969, was
abnormally high compared to the year-long tour-level
average of fav = .6423.

player name Daniel Elahi Ivo Karlovic
service points won 51 3516

service points 64 4654
fi .7969 .7555

return points won 22 1409
return points 67 4903

gi .3284 .2874
Elo rating 1585.93 1952.86

Following Barnett and Clarke’s method, we pre-
dict Elahi to win 89.25% of points on serve, which
eclipses Karlovic’s forecast of 81.01%.

fij = ft + (fi − fav)− (gj − gav) = .8925

fji = ft + (fj − fav)− (gi − gav) = .8101

Given that Karlovic is one of the most effective
servers in the history of the game, this estimate seems

unrealistic. From the serving stats, our hierarchical
Markov Model computes Elahi’s win probability as
πij = .8095, mainly in consequence of only having
collected his player statistics for one match. On the
other hand, Karlovic becomes a strong favorite when
we calculate Elahi’s win probability via Elo ratings:

d = Ej(t)− Ei(t)

400
= 1952.86− 1585.93

400
= .9173

π̂ij(t) = (1+ 10d)−1 = .1079.

This leads us to further question validity of this
approach when using limited historical data. Thus, we
turn to the Efron-Morris estimator to shrink Elahi’s
serve and return parameters toward fav, gav.

f ′i = fi + Bi(fav − fi) = .6599

f ′j = fj + Bj(fav − fj) = .7480

g′i = gi + Bi(gav − gi) = .3648

g′j = gj + Bj(gav − gj) = .2935

f ′ij = ft + (f ′i − fav)− (g′j − gav) = .7495

f ′ji = ft + (f ′j − fav)− (g′i − gav) = .7663

Above, we can see that the Efron-Morris estimator
shrinks Elahi’s stats far more than Karlovic’s, since
Karlovic has played many more tour-level matches in
the past year. Given f ′i , f ′j , we compute πij = .4277.
By shrinking the serve and return parameters, our
model normalizes Elahi’s inflated fi and demon-
strates robustness to small sample sizes.

Figure 1 illustrates how normalization coefficient
Bi varies with n throughout our dataset. When n is
small, as in Elahi’s case, the Efron-Morris estimator

Fig. 1. Strength of Bi against number of points played with fi =
.64, τ̂2=.00176.
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strongly shrinks estimates toward the mean. Over the
first one thousand points of play, however, Bi sharply
declines in strength, approaching zero as match his-
tory accumulates further.

4.2. Opponent-adjusted ratings

To illustrate the effect of tracking opponent-
adjusted statistics, we consider the 2014 US Open
first-round match between Mikhail Youzhny (RUS)
and Nick Kyrgios (AUS).

player name Mikhail Youzhny Nick Kyrgios
service points won 1828 900

service points 2960 1370
fi .6176 .6569

return points won 1145 424
return points 2947 1323

gi .3885 .3205
Elo rating 1941.65 1931.07

From the standard approach, with ft = .6583, we
compute fij = .6446, fji = .6159. To then calculate
opponent-adjusted statistics, we must consider each
player’s expected performance given their past oppo-
nents. As we observe, Kyrgios has faced slightly
stronger opponents than Youzhny over the past twelve
months.

player name Mikhail Youzhny Nick Kyrgios
g′i .4332 .4486

(1− g′i) ∗
∑

nik 1677.62 755.44
fi − (1− g′i) .0508 .1055

f ′i .6982 .7237
(1− f ′i ) ∗

∑
nik 889.32 365.59

gi − (1− f ′i ) .0868 .0441

In the above table, g′i represents overall return abil-
ity of player i’s opponents in the past twelve months.
(1− g′i) ∗

∑
nik then represents the expected num-

ber of points won on serve given player i’s match
history and fi − (1− g′i) the performance relative to
this baseline. Opponent-adjusted serve probabilities
f ′ij, f ′ji are calculated as follows:

f ′ij = ft + (fi − (1− g′i))− (gj − (1− f ′j)) =
.6280

f ′ji = ft + (fj − (1− g′j))− (gi − (1− f ′i )) =
.6413.

Using regular serve parameters, Youzhny is
favored to win with πij = .6410. With opponent-
adjusted serving percentages, we factor in the
stronger opponents in Kyrgios’ match history and

Youzhny’s win probability drops to πij = .4334. As
we see, opponent-adjusted ratings can turn around
forecasts when one player has faced tougher oppo-
nents over the past twelve months.

4.3. Klaassen-Magnus elo ratings

Finally, we demonstrate the use of Klaassen-
Magnus Elo ratings. In the quarterfinals of the 2016
Olympics at Rio de Janeiro, Kei Nishikori (JP) faced
off against Gael Monfils (FRA).

player name Kei Nishikori Gael Monfils
service points won 3309 2345

service points 5069 3533
fi .6528 .6637

return points won 2103 1433
return points 5229 3608

gi .4021 .3972
Elo rating 2295.56 2140.56

Though Elo ratings clearly favored Nishikori,
serve/return statistics over the past twelve months put
Monfils at a slight advantage.

fij = ft + (fi − fav)− (gj − gav) = .6204

fji = ft + (fj − fav)− (gi − gav) = .6263

To produce serve parameters that reflect Nishikori’s
Elo advantage and the pair’s overall serve ability, we
implement the approach from Section 3.3 with πij =
.7094, fij = .6204, fji = .6263.

f ′ij, f ′ji = S(πij, fij + fji) = .6451, .6016

Now we can forecast match outcomes with the hier-
archical Markov Model, using serve parameters that
respect each player’s Elo rating.

5. Results

We evaluated methods across three years of
tour-level matches, including Barnett and Clarke’s
standard approach and Knottenbelt’s Common-
Opponent Model, outlined in Appendix A, as
benchmarks. Across the board, Klaassen-Magnus Elo
ratings fared the best, while Efron-Morris estimators
improved performance to a varying degree.
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5.1. Dataset

This project drew from a publicly available match
dataset (Sackmann, 2018). Match summary statistics
cover over 150,000 ATP tour-level matches dating
back to 1968. Relevant features included:

� match date, tournament, surface type, player
names

� match serve/return statistics

The matches in this repository comprised dataset
M, from which we determined players’ historical
serve/return performance and Elo ratings. While
all methods generated serve parameters from his-
torical data, none required a training set for tuning
hyper-parameters. Excluding Davis Cup matches,7

we designated all matches from 2014-16 as test set
Mt and produced serve parameters for each match
in Mt based only on prior matches. Implementa-
tions of all methods in this paper may be found at
https://github.com/jgollub1/tennis match prediction.

5.2. Evaluation

All methods produced parameters fij, fji to esti-
mate each player’s probability of winning a point on
serve in a given match. We evaluated methods by
predicting both the winner of every match and each
player’s percentage of points won on serve. To eval-
uate serve performance prediction, we considered
the RMSE (root-mean-square-error) between each
method’s parameters and observed performance. By
observing the proportion of points won on serve by
each player for a single match k, we obtained sik, sjk
and realized error terms eik, ejk:

sik = wik

nik

, sjk = wjk

njk

eik = |sik − fij|, ejk = |sjk − fji|.

Over test set Mt , a method’s RMSE computed to:

r =
√∑

k∈Mt
e2
ik + e2

jk

2|Mt| .

To produce match win forecasts, we returned to
the hierarchical Markov Model. As a function of a
method’s parameters fij, fji we calculated match win
probability πij recursively from the probabilities of

7Davis cup matches frequently involve lower-ranked players.

winning sets and games, as described in Section 2.1.
Then we computed accuracy and log loss by compar-
ing these forecasts with observed wins or losses for
each match in Mt . In measuring accuracy, we clas-
sified πij as a predicted win when πij ≥ .5 and a loss
otherwise.

5.3. Discussion

We evaluated methods across 7,622 ATP tour-level
matches from 2014-16. To compute Klaassen-
Magnus Elo ratings, we set the constraint b = fij +
fji, where fij, fji were computed with the Efron-
Morris Estimator, as described in Section 3.1.1.
Because a player’s performance can vary signifi-
cantly across surfaces, we included a Barnett and
Clarke variation which only considers performance
on the given match’s surface.8 In Table 1 and Table 2,
“EM” denotes a variation that used the Efron-Morris
estimator to compute fi, gi in Barnett and Clarke’s
equation.

Table 1 displays each method’s RMSE in predict-
ing the proportion of points won on serve. Of all
Barnett-Clarke variations, the surface-based estima-
tor fared worst. This was likely due to decreased
sample sizes, as filtering matches by surface limited
the amount of available data. Its Efron-Morris variant
performed significantly better in all years, suggest-
ing there may be value in a surface-specific approach
when bias from limited data is offset. However, this
variant only came close to reaching parity with the
standard Barnett-Clarke model in the year 2014.

While it was intended to address issues with vary-
ing strength of schedule, the Common-Opponent
Model underperformed all other methods in predict-
ing serve performance. When two players shared few
opponents across their match histories, this approach
proved fairly susceptible to bias. Furthermore, while
Barnett-Clarke variants considered the past twelve
months of data, this approach considered all histor-
ical matches, curbing its ability to express recent
trends as players’ match histories accumulated. On
the other hand, opponent-adjusted ratings demon-
strated an improvement to both Barnett-Clarke and
the Common-Opponent Model. By estimating serve
and return ability on a continuous scale, opponent-
adjusted ratings allowed us to consider all matches
within the last twelve months and avoid a major short-
coming of the Common-Opponent Model.

8All matches occurred on hard, clay, or grass courts.

https://github.com/jgollub1/tennis_match_prediction
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Table 1

Serve performance prediction of 2014-16 ATP matches

Variation 2014 2015 2016
n=(2,488) (n=2,540) (n=2,594)

RMSE RMSE RMSE

Barnett-Clarke .0846 .0916 .0845
Barnett-Clarke EM .0823 .0909 .0823
Barnett-Clarke surface .0883 .0968 .0904
Barnett-Clarke surface EM .0850 .0944 .0872
Barnett-Clarke opponent-adjusted .0829 .0898 .0825
Barnett-Clarke opponent-adjusted EM .0821 .0894 .0818
Klaassen-Magnus Elo .0804 .0890 .0798
Common-Opponent .0957 .1046 .0943

Table 2

Match win prediction of 2014-16 ATP matches

Variation 2014 2015 2016
n=(2,488) (n=2,540) (n=2,594)
Accuracy Log Loss Accuracy Log Loss Accuracy Log Loss

Barnett-Clarke 64.8 .648 65.0 .634 64.6 .663
Barnett-Clarke EM 65.6 .613 65.2 .609 64.7 .628
Barnett-Clarke surface 63.3 .705 63.2 .712 62.0 .742
Barnett-Clarke surface EM 63.5 .628 62.9 .628 62.5 .645
Barnett-Clarke opponent-adjusted 67.8 .637 68.0 .613 67.4 .641
Barnett-Clarke opponent-adjusted EM 67.8 .625 68.1 .605 67.6 .632
Klaassen-Magnus Elo 69.1 .589 69.3 .579 69.7 .594
Common-Opponent 63.6 .628 64.5 .627 63.4 .650

Overall, Klaassen-Magnus Elo ratings proved most
effective in forecasting serve performance. As Elo
ratings were already known to estimate player ability
more effectively than point-based models, it follows
that adjusting serve parameters in accordance with
these ratings would significantly improve forecasts.
In contrast, Barnett-Clarke variations still appear to
leave out important information by ignoring match
outcomes and forecasting strictly from point-level
data. While point-based models have often proven
necessary for predicting more granular outcomes
(Barnett et al., 2006), Klaassen-Magnus Elo ratings
reconciled point-based models’ expressivity with Elo
ratings’ predictive power. Following the recent work
of Kovalchik and Reid (2018), this further demon-
strated the effectiveness of synthesizing Elo ratings
with point-level models specific to tennis’ scoring
system.

When applied to Barnett-Clarke variants, the
Efron-Morris estimator improved performance to
varying degrees. Presumably, this stemmed from
robustness with respect to small sample sizes. To bet-
ter understand its application to our tour-level match
dataset, we consider the distribution of points within
player match histories.

Figure 2 illustrates the distribution of sample
sizes when computing fi, fj with an Efron-Morris

Fig. 2. Number of points played on serve by players i, j in the past
twelve months before every match in Mt .

estimator.9 Following Barnett and Clarke’s original
approach, estimates produced with sample sizes from
the leftmost range of the distribution were particularly
susceptible to bias. However, recalling normalization
strength from Figure 1, we know the Efron-Morris
estimator reduced bias by shrinking these estimates
furthest toward the mean. Since players accumulate
return points over time at approximately the same

9For given match k with serve parameters fik = wik

nik

, fjk =
wjk

njk

, we considered nik, njk .
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rate, we can assume the estimator normalized gi, gj

in a similar manner. If only by reducing errant pre-
dictions in this range, the Efron-Morris estimator
succeeded in helping all Barnett-Clarke variants more
effectively predict serve performance.

Table 2 details each method’s performance in pre-
dicting match winners, where many of the same
trends surfaced. Once again, variations with an Efron-
Morris estimator outperformed their counterparts. In
most cases, the improvement in log loss was greater
than that of accuracy, supporting the notion that
this estimator mitigates extreme results when faced
with limited data. The opponent-adjusted model per-
formed several percentage points better than Barnett
and Clarke’s original approach across all years,
establishing itself as the most effective point-based
method surveyed in this exploration. Once again,
Klaassen-Magnus Elo ratings predicted outcomes
most effectively. However, it is worth noting that its
output produced win probabilities identical to those
of the Elo ratings fed into the model. In that regard, its
relative performance confirmed results from previous
studies noting Elo’s dominance in match prediction
(Kovalchik, 2016).

6. Conclusion

Although Barnett and Clarke’s approach has long
been established in tennis match prediction, there are
many ways to forecast serve performance. In order
to extract more information from historical match
data, we outlined a handful of novel approaches to
generating the parameters in their equation. Using
an Efron-Morris estimator improved performance
across the board, emphasizing the need to address
scenarios with limited match data. The opponent-
adjusted model demonstrated a new way to quantify
strength of schedule through point-level data, result-
ing in significantly improved performance over
Barnett-Clarke and the Common-Opponent Model.
Finally, Klaassen-Magnus Elo ratings synthesized
historical serve data with the predictive power of Elo
ratings while maintaining the overall serve ability
between two players.

A clear next step to this exploration would involve
applying these methods to in-match prediction. With
point-by-point datasets available today, we can use
these same methods to forecast match outcomes
while play is in progress and set similar benchmarks
with tour-level match data.
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Appendix A: Common-Opponent Model

Consider a match between players i and j, who
share N common opponents throughout their entire
match histories. To quantify their relative perfor-
mance against opponent Ck, let spw(i, Ck) denote the
percentage of service points won by player i against
opponent Ck and rpw(i, Ck) the corresponding per-
centage of return points won. We may quantify player
i’s advantage over player j with respect to opponent
Ck as follows:

�
ij
k = (spw(i, Ck)− (1− rpw(i, Ck))−

(spw(j, Ck)− (1− rpw(j, Ck)).

Then we approximate match win probability in terms
of this relative advantage.

P(i beats j via Ck) =
M3(.6+�

ij
k , .4)+M3(.6, .4+�

ij
k )

2

In the above equation, M3(f, g) denotes player i’s
win probability in a best-of-three match with f, g

representing their probability of winning a point on
serve and return, respectively. To compute πij via
the Common-Opponent Model, we average the win
probability over all N common opponents shared:

πij =
∑N

k=1 P(i beats j via Ck)

N
.

While Knottenbelt did not originally use this model
to predict serve performance, we inferred parameters
fij, fji from the model’s win probability equation as
followed:

�ij =
∑N

k=1 �
ij
k

N

fij = .6+�ij/2

fji = .6−�ij/2.

Following the above steps, we may predict the win-
ner and serve performance of any match using the
Common-Opponent Model.


