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Abstract. In part driven by academic research, perception in the sports analytics community asserts that coaches in the
National Football League are too conservative on fourth down. Using 13 years of data, we confirm this premise and quantify
the unobserved benefit that teams have missed out on by not utilizing a better fourth down strategy. Formally, teams that went
for it are paired to those who did not go for it via a nearest neighbor matching algorithm. Within the matched cohort, we
estimate the additional number of wins that each NFL team would have added by implementing a basic but more aggressive
fourth down strategy. We find that, on average, a better strategy would have been worth roughly an extra 0.4 wins per year
for each team. Our results better inform decision-making in a high-stakes environment where standard statistical tools, while
informative, have possibly been confounded by extraneous factors.

“There’s so much more involved with the game than just sitting there, looking at the numbers and saying, ‘OK, these are my
percentages, then I’m going to do it this way,’ because that one time it doesn’t work could cost your team a football game,
and that’s the thing a head coach has to live with, not the professor." - Bill Cowher, former head coach of the Pittsburgh
Steelers (Garber, 2002)

1. Introduction

Past research has linked National Football League
(NFL) coaches and team personnel to suboptimal
decision-making (Romer, 2006; Kovash and Levitt,
2009; Massey and Thaler, 2013). For example,
Massey and Thaler (2013) assert that NFL coaches
are not among the group of elite managers who are
capable of complex analysis required to calculate
probabilities and act impartially.

One important aspect of football that requires the
frequent input of the head coach is what to do on
fourth down plays. Offensive teams on fourth downs
can either go for it (via a rush or a pass attempt) or
kick it (via a field goal or a punt). This decision is
typically made by the team’s head coach, who, from
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the sideline, makes the choice to go for it or kick
within a matter of seconds. Play selection is informed
by, among other factors, the distance needed to obtain
a first down, location of the ball on the field, each
team’s ability, the game’s score, and how much time
remains in the game.

In his seminal work, Romer (2006) suggested that
NFL coaches were too passive on fourth downs, and
instead were punting and kicking field goals too often.
This work received national attention (Lewis, 2006)
and inspired the development of a public-facing tool
from The New York Times to provide recommended
fourth down decisions in real-time (Burke et al., 2013;
Causey et al., 2015). However, it’s been more than a
decade since Romer’s work, and despite the publicity,
the rate of fourth down attempts has not increased
over time (see Section 2).

The primary goal of this manuscript is to esti-
mate the potential benefit that teams have missed out
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Fig. 1. Density curves showing the distributions of point differen-
tial (relative to the offensive team) among teams that went for it
on fourth down and teams that did not. Shown are all fourth down
plays from the 2004 through 2016 seasons (37,103 total plays) of
the National Football League, using regular season games only.

on by not being more aggressive on fourth downs.
Romer (2006), for example, proposed that a proper
fourth down strategy would be worth one extra win
every three years. However, this estimate was not the
primary objective of his work, and his findings are
estimated without the consideration of several factors
influencing fourth down success rates.

For our purposes, it will be critical to account for as
many of the game and play characteristics that weigh
on coaches’ minds as possible. As an example, Fig-
ure 1 shows density curves of point differential for all
fourth down plays between 2004 and 2016, relative
to the offensive team, and split for teams that did and
did not go for it. The curve for teams that did not go
for it is symmetric, centered at 0 (a tie game) with
various peaks to the left and right, including point
differentials of ±7 and ±14. Among teams that went
for it, the modal point differential is -7 points. The
curve has a greater density with negative point dif-
ferentials, implying that teams that went for it were
usually trailing. Given that trailing teams are, in gen-
eral, less talented, using the success rate of these
teams as representative of all teams would potentially
underestimate the chance of converting that more tal-
ented teams would have. Of course, there are several
additional components other than the games’ score
that likewise impact how coaches make fourth down
decisions.

We use matched methods with finite popula-
tion propensity scores (Imbens and Rubin, 2015) to
help account for point differential and other factors

impacting fourth down decisions. Formally, we link
plays where a team kicked on fourth down, defined as
our control, to a play where a team went for it, defined
as our treatment, using a sample of plays where,
according to a basic statistical model, teams should
have gone for it. Plays are matched based on their
yards to go for a first down, the play with the nearest
predicted probability of going for it, closest in-game
win probability, and most similar game time. Within
the matched cohort of plays, we estimate the observed
change in win probability after each fourth down play.
Using these outcomes, we aggregate across each fran-
chise to approximate the number of wins that each
team would have added over the past 13 seasons if it
had been more aggressive on fourth down. For nearly
all teams, there is evidence that a basic but aggressive
fourth down strategy would have increased the teams’
win total. On average, we estimate that the strategy
would have been worth about 0.4 wins per year, with
some evidence suggesting that certain teams would
benefit more than others.

Our paper is outlined as follows. Section 2 reviews
previous fourth down studies. Section 3 introduces
our notation, describes the data source and data clean-
ing, and reviews the components of our matching
algorithm. Section 4 implements the matching, with
results described in Section 5. Finally, we discuss
potential explanations for our findings in Section 6,
as well as possible future extensions.

2. Fourth Down Decision Making in the NFL

We begin by reviewing past research into fourth
down decision-making in the NFL.

Carter and Machol (1978) were among the first to
use statistics to judge fourth down strategies, using
an expected points framework to compare going for
it to punting and kicking field goals. Albeit in a
substantially different time, the authors found that
teams kicked too many field goals. With more recent
data, Romer (2006) estimated a smooth function of
expected points for the offensive team on every yard
line of the field when teams had one yard to go for
a first down, and subtracted the expected points for
the defensive team based on where they would receive
the ball were the offensive team to have kicked. Using
dynamic programming, Romer found that teams were
generally not aggressive enough on fourth down.
Romer did not account for team ability, game situa-
tion, or other variables linked to fourth down success,
and only fourth down attempts with one yard to go



D.R. Yam and M.J. Lopez / What was lost? 155

Fig. 2. Proportion of times that teams with fourth down attempts
within the ‘go for it’ range of The New York Times’ 4th Down Bot
actually went for it, per season. There is no evidence that teams
have increased their rates of going for it over time.

were considered. Altogether, Romer estimated that a
more aggressive fourth down strategy would be worth
about a third of a win per year.

Burke and Quealy (2013) expanded Romer’s study
by testing not only one yard to go scenarios, but every
yards to go distance and line of scrimmage through-
out the field. Similar to Romer, most of Burke and
Quealy’s findings were driven by expected point cal-
culations. The authors used their findings to develop
a fourth down strategy, shown in the Appendix (Fig-
ure 8), which identifies when teams should ‘go for
it’, ‘punt’ or kick a ‘field goal,’ depending on yards
to go and field location (Burke and Quealy, 2013).
Not surprisingly, the fourth down strategy endorsed
by Burke and Quealy (2013) differed significantly
from the decisions that coaches most often made
(see Figure 8). These authors also helped create a
social media interface for The New York Times,
termed the ‘4th Down Bot,’ that identified recom-
mended choices for teams in real time. Most recently,
Causey et al. (2015) expanded this project prior to the
2015 season, assessing fourth down choices using
a cross-validated logistic regression model of win
probability.

Despite the attention, there is no known evidence
that coaches’ decisions were modified after Romer
(2006). Figure 2 shows the proportion of times that
offensive teams with fourth down attempts in the ‘go
for it’ range of the 4th Down Bot actually went for
it, using all regular season games from 2004 through
2016.
Since the 2004 season, the rate of fourth downs has
fluctuated between 12 percent and 17 percent, with
no obvious change over time.

There are a few explanations for the perceived
conservative behavior of NFL coaches. One oft-cited

justification is that coaches are risk-adverse (Urschel
and Zhuang, 2011). More often than not, going for it is
a riskier move, as the reward for a successful conver-
sion is offset by the setback that comes from a failed
attempt. In the quote prefacing this manuscript, for-
mer Pittsburgh Steelers Coach Bill Cowher mentions
“costing” a team a football game when a fourth down
attempt falls short. Such failures may be blamed on
the coach, whereas the choice to kick generally yields
no such ridicule from team personnel and fans. In
fact, for a coach, while kicking may not maximize his
teams’ chance of winning a given game, it could actu-
ally maximize his chance of keeping a job. Indeed, a
version of this theory was confirmed empirically by
Owens and Roach (2017) in college football, with the
authors finding that coaches grew more conservative
on fourth downs as they became more likely to be
fired.

A related explanation for coaches’ behavior is loss-
aversion (Tversky and Kahneman, 1991). Moskowitz
and Wertheim (2012), for example, attribute wrong
fourth down decisions to a fear of losing. The authors
quote former baseball manager Sparky Anderson:
“Losing hurts twice as bad as winning feels good."
In the case of NFL coaches, the fear of ridicule and
criticism after a loss could impair decision-making
under pressure. As a result, coaches may act in ways
that avoid obvious explanations for losing.

Apart from Romer’s estimate, we are unaware of
any attempt to quantify exactly how an aggressive
fourth down strategy could benefit a team. In the sec-
tions that follow, we use matched methods to estimate
this missed benefit.

3. Framework: the Rubin Causal Model

Ideally, prior to any fourth down decision, a coach
is aware of the play outcomes of both a conversion
attempt and a kick. Of course, this optimal scenario
is not possible, as we only get to observe the outcome
under one of the two paths (whichever one is chosen
by the coach). Statistically, this conundrum is known
as the fundamental problem of causal inference, as
we are missing the fourth down outcome that isn’t
observed (Rubin, 1974).

The best design for making inference about the
causal effects of aggressive fourth down decision-
making would be to use randomized experiments
(Cochran and Chambers, 1965). Randomized designs
are admired for many reasons: they are, in expec-
tation, unbiased in the distribution of covariates
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between treatment and control groups, and system-
atically favoring treatment or control is impossible
because the researcher does not have access to any
knowledge of the outcome (Rubin, 1974). How-
ever, in the high-stakes environment of the National
Football League, randomized designs that would
make some teams go for it and others not go for it
are infeasible. Fortunately, it is possible to mimic
some of the advantages of a randomized experiment
through causal inference and the Rubin Causal Model
(RCM).

We start by identifying a group of fourth down
plays where it is reasonable to argue that teams should
go for it. For simplicity, we use recommendations
of the two-dimensional 4th Down Bot (see Figure
8 in the Appendix), which depend on both yards
to go for a first down and the offensive team’s dis-
tance from its own end zone. Let Y be our outcome,
defined as the change in offensive team’s win prob-
ability from before each play to after each play, and
let W be a treatment indicator for whether or not a
team went for it (defined as a rush or pass attempt)
in this range of plays. The potential outcome of each
play, Y (W), reflects the change in win probability that
would have been observed under each of the two treat-
ments, going for it, Y (W = 1) = Y (1), and not going
for it, Y (W = 0) = Y (0). The win probability models
that estimate these potential outcomes are described
in Section 3.4.

The RCM assumes two conditions, termed the sta-
ble unit treatment value assumption (SUTVA), with
respect to W . First, the potential outcome for one
observation does not vary based on the treatments
assigned to other subjects. In our example, changes in
win probability after one team’s fourth down attempt
are unlikely to be linked to another team’s fourth
down choice. A second assumption of SUTVA is
that there is no hidden variation of treatment. In
football, the decision to go for it is made prior to
any play and reflects a choice consistent between
all teams.

Under SUTVA, we next explain the assignment
mechanism of the RCM. For every play i there is an
observed outcome, Yobs

i , which is dependent on the
treatment decision for that observation, Wi. Each play
also has a missing outcome, Ymis

i = Yi(1 − Wi), one
that we will later impute using a matching algorithm
in Section 3.3.

Yobs
i = Yi(Wi) =

⎧⎨
⎩

Yi(0) if Wi = 0

Yi(1) if Wi = 1

Ymis
i = Yi(1 − Wi) =

⎧⎨
⎩

Yi(1) if Wi = 0

Yi(0) if Wi = 1

To date, the majority of 4th down literature has
focused on how, in certain game settings, E[Yi(Wi =
1) − Yi(Wi = 0)] > 0. That is, in expectation, going
for it is better than not going for it. Alternatively,
our primary interest lies in what would have hap-
pened to the control units – the teams that did not
go for it – had they instead gone for it. This esti-
mand is termed the average treatment effect on the
control (ATC). For each play, the unit level causal
estimand, ATCi, reflects the difference in potential
outcomes between going for it (outcome Ymis

i (1),
which is unobserved), and not going for it (out-
come Yobs

i (0), which is observed), and is noted as
follows:

ATCi = Ymis
i (1) − Yobs

i (0). (1)

More generally, Equation (2) reflects the overall
average difference in outcomes between our treat-
ment and control groups among all plays in the
control group where a team did not go for it. Here,

ATC = 1

Nc

∑
i:Wi=0

(Ymis
i (1) − Yobs

i (0)), (2)

and is generalizable to all Nc plays where teams
should have gone for it but did not.

To estimate franchise specific effects, consider
TTCf , the total treatment effect on the control for
franchise f , where

TTCf =
∑

i:Wi=0

(
Ymis

i (1) − Yobs
i (0)

)
I(Fi = f ),

f = 1, 2, . . . 32. (3)

This estimand represents the total increase in win
probability for franchise f were it to have gone for it
on all of its plays in the 4th Down Bot’s recommended
range. Here, I(Fi = f ) is an indicator for whether
or not the offensive team in question corresponds to
franchise f .

Two assumptions are required to estimate (1) - (3).
First, we assume positivity, that Pr(Wi = 0|Xi) > 0
and Pr(Wi = 1|Xi) > 0 for all i. This requires teams
to have a non-zero chance of both going for it and not
going for it on a given fourth down play. Given the
rules of football, as well as our matching implementa-
tion in Section 3.3, this assumption seems reasonable.
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Next, let X be a set of play and game characteris-
tics that are associated with W and Y . Our second
assumption is that of ignorability, which states that
Pr(W |X, Y (0), Y (1)) = Pr(W |X) for all W , X, Y (0),
and Y (1). In other words, there are no other vari-
ables besides those in X linking the choice to go
for it with fourth down potential outcomes. We note
that this assumption is not testable, and requires sub-
ject level expertise with respect to choosing variables
for X.

Under the assumptions above, the decision to go
for it is deemed strongly ignorable, implying that the
joint distribution of Y (0) and Y (1) is conditionally
independent of W , and solely on the covariate values,
X,

Pr({Y (0), Y (1)} | W, X) = Pr({Y (0), Y (1)} | X).

Under this assumption, Yi(1) − Yi(0) is an unbi-
ased estimate of the causal effect of going for it on
play i.

Because there are a number of covariates in X

that dictate a team’s choice to go for it, it would be
impossible to match observations with identical X’s.
Instead, the use of the propensity score, e(x), summa-
rized in Section 3.2, allows us to use a similar strongly
ignorable assumption, such that

Pr({Y (0), Y (1)} | W, e(X))=Pr({Y (0), Y (1)}|e(X)),

where e(x) is defined as the probability of going for
it conditional on X, e(x) = Pr(W = 1|X).1

3.1. Data

We obtained play and game level data from
ArmchairAnalysis.com (AA) for all NFL seasons
from 2004 through 2016.2 We match only within the
subgroup of regular season plays where the 4th Down
Bot recommends that a team should have gone for
it, leaving n = 13,172 fourth downs, on which teams
failed to go for it 9,348 times (71.0%).

AA’s data contain several play and game charac-
teristics that may be linked to fourth down decision
making. In addition, we obtained pass and rush team-
level ratings from FootballOutsiders.com for each
team’s offensive and defensive units in each season.

1See Rosenbaum and Rubin (1983); Stuart (2010); Lopez and
Gutman (2017) for more details regarding the use of matched
methods with propensity scores.

2Armchair Analysis also provides data for games between
2000 and 2003. However, data recording for those years was not
as proficient, lacking consistent recordings for, among other vari-
ables, game time, temperature, humidity and wind speed.

These ratings measure the team’s offensive and defen-
sive strengths as a percentage of the league average,
and are calculated using yards gained, points scored,
and other metrics.3

Our list of variables is shown in Table 1. Unless
otherwise noted, the variables come from AA.

As one data cleaning note, we removed all fourth
down plays on which a penalty occurred, as we were
unable to decipher the corresponding fourth down
decision (to go for it or to kick) in the AA data.
Additionally, wind speed, temperature and humidity
variables were not recorded for most games played
inside a dome. Where this information was missing,
we imputed the wind speed as 0 miles per hour, the
temperature as 70 degrees Fahrenheit, and humidity
as 60%.

Although we cannot share the data due to Arm-
chair Analysis restrictions,4 our entire analysis
plan is available on Github in a public repository,
found at https://github.com/statsbylopez/nfl-fourth-
down. This includes .RData files for both win
probability models, as well as code for each of (i)
data wrangling and win probability calibrations, (ii)
our matching algorithm and its analysis, and (iii)
results.

3.2. Propensity Score Model

Our propensity score model estimates e(X) =
P(W |X), the probability of a team going for it given
the play and game characteristics of each fourth down
attempt. As explained in Section 3, due to the large
number of covariates influencing the decision to go
for it, e(X) helps appease the strongly ignorable
assignment assumption. We used a multiple logistic
regression model with spline terms to estimate e(X),
using all covariates defined in Table 1. The ultimate
goal of estimating e(X) is to balance the variables in
X between the teams that went for it and the teams
that did not. Stuart (2010) favors more comprehensive
models at the expense of simpler ones, as the penalty
for including a variable with little association to W is,
generally, only a slight increase in variance. The full
list of interaction terms (chosen using the authors’
familiarity with football) and spline knots used in the
propensity score model can be found in Table 3 in the
Appendix.

3For more information, see http://www.footballoutsiders.com/
info/methods

4This data can be purchased from AA for a nominal fee, at
which point it is possible to replicate our work.

https://github.com/statsbylopez/nfl-fourth-down
http://www.footballoutsiders.com/info/methods
http://www.footballoutsiders.com/info/methods
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Table 1

Covariates and Descriptions. All variables were obtained from Armchair Analysis unless otherwise indicated

Covariate Description

yfog Yards from own goal
ytg Yards to go for a first down
pointdiff Difference in offensive and defensive teams’ scores:

M4 (-17 or less), M3 (-16 to -9), M2 (-8 to -4), M1 (-3 to -1), T (0),
P1 (1 to 3), P2 (4 to 8), P3 (9 to 16), P4 (17 or more)

time Elapsed time in minutes
condcat Weather category: Precipitation, Dry, or Dome
temp Temperature at kickoff (in degrees Fahrenheit)
humd Percent humidity
wspd Windspeed at kickoff (in miles per hour)
sprv Las Vegas point spread
ou Las Vegas over-under (total points)
wp Pre-snap win probability for the offensive team, averaged

between two win probability models
Home Factor variable for home or away
wk Week of the season
OR.pass Offensive team’s pass offense rating (from Football Outsiders)
OR.rush Offensive team’s rush offense rating (from Football Outsiders)
DR.pass Defensive team’s pass defense rating (from Football Outsiders)
DR.rush Defensive team’s rush offense rating (from Football Outsiders)

In order to ensure that we have equivalent cohorts,
we filter out all observations where the propensity
score distributions do not overlap, as extrapolating
to these plays would require making unjustifiable
assumptions. Less formally, there are fourth down
plays where a team would almost never go for it (i.e.
e(x) ≈ 0), and identifying a play where a team did
go for it in such a situation may be impossible. Sim-
ilarly, there may be situations where all teams would
go for it (i.e. e(x) ≈ 1). We filter this range by calcu-
lating the maximum and minimum values of e(x) for
each of the treatment and control groups, removing
all observations with e(x) greater than the maximum
in the control group and less than the minimum in
the treatment group. This range for e(x) represents a
common support interval (Dehejia and Wahba, 1999),
giving us a sample size of n = 12, 250 fourth down
plays (of which teams failed to go for it 8,812 times,
or 72%). The propensity score model is then refit on
this sample.

3.3. Matching

We used a 1:1 nearest neighbor matching algo-
rithm with replacement via the Matching package in
R (Sekhon, 2008), pairing teams that did not go for it
to those that did. One-to-one matching (as opposed to
one-to-two or one-to-k) appeared to be our only rea-
sonable option given the relative lack of number of
teams that went for it in certain situations. Matching

was done with respect to four play characteristics:
logit(e(X)) (the logit transform of the propensity
score), logit(wp) (the logit transform of the offen-
sive team’s pre-snap win probability), ytg (yards to
go), and time, the number of minutes remaining in the
game. For logit(e(X)) and logit(wp), we use a caliper
of .5, ensuring that all matches are within one half
of their respective standard deviations. Pre-snap win
probability is included as a matching variable given
that the range of possible changes in each play’s wp

are inherently linked to its’ pre-snap wp. We match
with caliper 0 on ytg (e.g., 4th-and-1 plays are only
matched to other 4th-and-1 plays, etc). Finally, we
use a caliper of 7.5 minutes for time to avoid match-
ing plays in the beginning of the game to plays at the
end of the game. Each team that did not go for it was
matched to exactly one team that did go for it.

One key to causal inference methods is to design
the study without access to the outcomes. This is in
an effort to mimic a randomized experiment, where
the observed outcomes are not known until the entire
study has been conducted. Thus, we conducted all
of the aforementioned methods without viewing our
outcomes.

5As an example, if there were two teams with e(X) = 0.5,
but one had a pre-snap wp = 10% and the other had a pre-
snap wp = 90%, then the first observation would have a potential
change in win probability that is substantially different than the sec-
ond observation, which would complicate an analysis that matches
on e(X) alone.
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Table 2

Descriptions of variables used in models of win probability (wp)

Variable Description

Down The current down (1st, 2nd, 3rd or 4th)
Score Difference in offensive and defensive teams’

score
Seconds Number of seconds remaining in game
ScoreLeverage Score/

√
Seconds + 1

sprv Las Vegas pre-game point spread
timo Time outs remaining for the offensive team
timd Time outs remaining for the defensive team
TotalPoints Total points scored in the game
yfog Yards from own goal
ytg Yards to go for a first down

3.4. Outcome

Our outcome is Y = �wp, the change in offen-
sive team’s win probability from before to after each
fourth down play. Win probabilities for each play
were averaged using two known, calibrated models.
The first win probability model is a replication of
the random forest algorithm constructed by Lock and
Nettleton (2014). The second is a generalized additive
model adapted from Horowitz (2016). Both models
are constructed using the predictor variables listed in
Table 2. For a more in depth description of the mod-
els, including a calibration test for each, see Appendix
A.1.

4. Matching Implementation

Our original data consisted of 37,103 4th down
plays between the 2004 and 2016 seasons. Filtering
plays within the ‘go for it’ range of the 4th Down Bot
yielded 13,172 plays, of which teams failed to go for it
9,348 times. Next, after dropping plays outside a com-
mon support interval, we retained 12,250 fourth down
plays (of which teams kicked 8,812 times). Finally,
after matching plays based on the methods described
in section 3.3, we retained 7,698 pairs of plays. Each
pair included one play where a team did not go for it,
as well as a corresponding match where a different
team did go for it.

We provide an example of the matching algo-
rithm for clarity. According to the 4th Down Bot, one
play where a team did not go for it but should have
occurred during week 14 of the 2013 season, where
the Atlanta Falcons had a 4th-and-2, 65 yards from
their own goal, 5 minutes into a tied game against
the Green Bay Packers. Atlanta chose to punt, giving
Green Bay the ball at its own 10-yard line. Overall,

Fig. 3. Density curves showing the distributions of point differen-
tial among teams that went for it on fourth down and teams that
did not. Shown are all 4th-down plays from the 2004 through 2016
seasons included in our matched analysis (7,698 pairs of plays).

the punt yielded a Y = �wp = −2.4% for Atlanta.
This Atlanta play was paired to a similar situation
where a team did go for it in a game between the
New England Patriots and New Orleans Saints dur-
ing week 11 of the 2005 season. New England faced
a 4th-and-2, 68 yards from its own goal, 10 min-
utes into a tied game, and successfully converted a
four-yard pass, resulting in a Y = �wp = 8.5%. Via
Equation (1), this play-level ATCi is an estimated
8.5 − (−2.4) = 10.9%.

Matching success across all plays in the matched
cohort is best measured by comparing the distribu-
tions of X between teams that went for it and those
that did not go for it. As an example, Figure 3 shows
density curves of point differential within this subset
of plays. In Figure 3, the point differential of teams
that went for it is a near perfect overlap with their
corresponding matches, standing in stark contrast to
Figure 1. At least with respect to point differential,
our matching algorithm has successfully found like
subgroups of plays.

To simplify the assessment of covariates’ balance
for all X in Table 1, we use standardized bias, SBx,
where for any variable x ∈ X,

SBx = x̄t − x̄c

σc

.

The distribution of x is considered balanced if
|SBx| < 0.2 (Stuart, 2010). We visualize the reduc-
tion in standardized bias after matching for the ATC
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Fig. 4. ‘Love’ plot of standardized bias before and after matching for the ATC. In general, the standardized bias among the matched cohort
is closer to 0 than among the pre-matched cohort. For descriptions of the covariates listed, please see Table 1. Vertical dashed lines at ±0.2
are provided to reflect recommended thresholds for covariate balance.

using the ‘Love’ plot in Figure 4 (Ahmed et al., 2006).
Prior to matching, there were seven variables outside
the 0.2 threshold with respect to SBx. After matching,
all variables in X fall below this threshold, suggest-
ing our matching algorithm has effectively reduced
the bias in the distributions of X.

5. Results

Density curves showing Y = �wp in each of our
matched treatment and control groups are shown in
Figure 5. This figure highlights several important
aspects of the fourth down decision making process.
First, the change in win probability for teams that
did not go for it is centered at around -1%, with a
relatively smaller variance. Alternatively, the curve
among teams that went for it is bimodal, with pos-
itive and negative peaks reflecting successful and
failed conversions, respectively. This distribution has

a noticeably larger variance than the control distri-
bution. These findings tie into the perception that
coaches are risk adverse (see Section 2), as going
for it comes with greater variability in the change in
win probability than not going for it.

Overall, plays where teams that went for it had an
average change in win probability 1.9% greater than
plays where teams kicked. As judged by the Wilcoxen
rank-sum test, is is unlikely that these two distribu-
tions are equivalent (p − value < .0001), signaling,
across all matched plays, an added benefit to going for
it on fourth down. This is unsurprising given previ-
ous findings of Romer (2006) and Burke and Quealy
(2013), but reassuring given that our approach helps
to correct for the multitude of differences between
teams that went for it and those that did not.

Given non-normality in the distributions of
changes in win probability, we use the bootstrap
to estimate the distribution of each team’s TTCf .
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Fig. 5. Density curves for the changes in win probability on all
matched fourth down plays. The average change in win probability
for teams that went for it is about 1.9% higher than for teams that
did not go for it (See Equation (2)). However, going for it also
involves a larger variance in win probability changes, relative to
not going for it.

First, for each f , we identify all plays where Wi =
0, as well as the corresponding matches for those
plays. We next bootstrapped 10,000 random sam-
ples of pairs with replacement, using a sample size
equal to the number of matched controls for each
team. The differences in Y between pairs were then
summed for each f for each bootstrap sample. These
aggregated changes represent estimated increases or
decreases in the number of wins added between the
2004 and 2016 seasons, had f actually gone for it,
instead of kicking, based on the 4th Down Bot’s
recommendation.6

Figure 6 shows the distributions of TTCf for all
f using overlaid density curves. Due to chance, we
would expect about one or two teams to boast signif-
icantly positive results when using 32 comparisons
at the 5% level. However, for 29 of the 32 teams,
density curves in Figure 6 show a negligible over-
lap with 0, indicating that these franchises would
have most likely added wins over the last 13 years
by always going for it on fourth down in the 4th
Down Bot recommended range. The mean number
of wins added is roughly 4.7 wins, with a low of
1.5 wins for New Orleans and a high of 6.7 wins

6As we discuss in Section 6, TTCf more closely reflects the
increased wins if only team f had adopted the aggressive fourth
down strategy. If several teams were to have adopted the more
aggressive approach, the marginal benefit for each team would be
lower.

for Cleveland. New England, Indianapolis, and New
Orleans are the only three franchises, where, among
the bootstrap distributions of TTCf , it is feasible that
the more aggressive strategy would not have yielded
an increased win total. Anecdotally, this matches the
perception that these franchises make better decisions
on fourth downs (Schatz, 2015).

Results for each wp model are visualized sepa-
rately in Figure 9 in the Appendix. The center for
the random forest win probability model is approx-
imately 3.6 additional wins, and the center for the
generalized additive model of win probability model
is approximately 5.9 additional wins. Although the
magnitude of wins added differs to a certain extent,
we see similarity in the team ranks based on the
number of wins added under each individual win
probability model.

6. Discussion

In this study, we utilized methods from the Rubin
Causal Method and data from 13 National Football
League seasons to assess the claim that teams are too
conservative in attempting fourth downs. Through the
construction of a propensity score model, nearest-
neighbor matching, and replications of the win
probability models constructed by Lock and Nettle-
ton (2014) and Horowitz (2016), we find that the
majority of teams in the NFL would have improved
their record by attempting more fourth downs, aver-
aging a roughly 4.7 win increase over the last 13
seasons. These results broaden the scope of the fourth
down analysis conducted by Romer (2006), although
our final estimate of the benefit to going for it is quite
similar.

In one respect, it is possible that we may be
underestimating the impact of a proper fourth
down strategy. The recommendations of the two-
dimensional 4th Down Bot in Figure 8 are somewhat
naive, and do not account for time remaining and
point differential. Thus, the Bot’s model alone is
likely imperfect for each NFL decision, and iden-
tifying the best decision based on variables besides
yards to go and field position would likely increase
the benefit of aggressive fourth down behavior.

Alternatively, by using change in win probability
as our outcome, it is possible that we overestimated
the number of wins that teams could have gained.
For instance, going for it early in one game may
result in the lack of a necessity to go for it later in
that same game (if that team converted, perhaps it
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Fig. 6. Bootstrapped results for the estimated number of wins added per team (TTCf ) from 2004 to 2016, were each team to have adopted
an aggressive fourth down strategy.

would not need to go for it on future fourth downs).
However, in our analysis, multiple fourth down plays
could be included from the same offensive unit in the
same game. Altogether, an offensive unit in a given
game appeared as a control an average of 1.16 times.7

Therefore, we do not expect that this summation of
win probability changes within a game had a drastic
impact on our final TTCf estimates.

We gave further consideration to franchise-level
differences in the number of wins added. As an exam-
ple, there is no obvious link between the estimated
number of wins added and the rate of times that teams

7Our matched cohort included 7,698 controls. With 13 regular
seasons of games, where each of 32 teams played 16 games apiece,
there were potentially 3,328 games and 6,656 offensive units that
could have appeared.

went for it in the 4th Down Bot ‘go for it’ range (corre-
lation coefficient -0.11, p − value = 0.30). However,
there was strong evidence of a link between wins
added and the strength of a franchise, defined as each
team’s winning percentage over the last 13 seasons
(correlation coefficient -0.46, p − value = 0.01). Of
course, teams with a higher winning percentage tend
to also have larger within-game win probabilities, and
thus have less of an absolute win percentage to add.

We considered if results varied based on certain
types of 4th down attempts. In terms of yards to go
for a first down, the greatest missed benefit came on
4th and 2 plays. On average, going for it on 4th-and-2
would have yielded an average increase in win prob-
ability of 0.7%. We also found that for 4th-and-long
scenarios (yards to go greater than 4), the average
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change in win probability would have been 0.08%
lower for teams that went for it. In terms of field
position, the greatest opportunities were lost on plays
closer to the offensive team’s own goal line. Within
60 yards of a team’s own end zone (which, roughly,
corresponds to being out of field goal range), the
missed chance to go for it corresponded with a 0.5%
increase in average win probability than the actual
observed kick. Alternatively, beyond that cutoff, a
missed chance to go for it yielded, on average, a 0.3%
decrease in average win probability. Although this
highlights the areas where teams have had perhaps
the most to gain by going for it on 4th down, provid-
ing a more specific strategy is beyond the scope of this
paper and could require slightly different methodol-
ogy.

Next, we assessed the assertion that coaches’ abil-
ity to make unbiased decisions was impaired by
loss-aversion, described in Section 2. We looked at
the average change in win probability in the matched
cohort based on whether or not an offensive team
was winning, trailing or tied. We saw no significant
difference between the score categories, implying
that, at some level, the benefit to adapting an aggres-
sive fourth down strategy holds no matter the game’s
score.

As referenced in Section 3.1, any fourth down play
with a penalty was dropped, a necessary step in data
cleaning. For example, if a team threw a pass on fourth
down and drew an interference penalty that resulted
in a first down, that would be a positive and notable
increase in the offensive team’s wp. Our intuition is
that, on average, these positive changes would be nul-
lified by penalties against the offense that would lead
to a change in possession or push it outside of the
range to attempt a fourth down.

One note that also deserves mention is that the
4th-down bot recommendation (to go for it or not,
a decision based on expected points) and our out-
comes (change in wp) are calculated using different
statistical frameworks. As a result, we are not wor-
ried that our finding that teams should have gone
for it was, by nature, the result of us using the ‘go
for it’ range of plays. Another perceived limitation
could be that in using the change in win probability
as an outcome, we risk our estimates being unduly
impacted by large jumps or drops in the final min-
utes of a game. However, we performed a robustness
check to see if plays within the last four minutes of
a game were skewing results. Stripping these plays
and reviewing results, we observe nearly identical
findings.

As a reminder, our results are team specific over
the past 13 seasons. The estimated number of wins
added reflect the number of wins that teams could
have gained if it were the only team in the NFL to
have followed the 4th Down Bot. If several teams
were to have adopted the same strategy, the benefit
for any individual team would be smaller. That said, if
teams maintain their past tendencies moving forward,
it is also reasonable to suggest that these findings will
continue to hold.

There is some evidence that coaches can respond
to academic research. In a mostly unrelated study on
inefficiencies in the NFL, Kovash and Levitt (2009)
identified that teams should pass more often, relative
to rushing attempts. Testing the minimax theorem, the
authors found that correcting this inefficiency would
be worth about half a win per season. Indeed, in recent
years, coaches have worked to correct this deficiency,
and the 2015 season was labeled the “greatest passing
season in league history" by The New York Times
(Stuart, 2016).

Although our study used an outside source for a
fourth down decisions (the 4th Down Bot), one ben-
efit is that a similar methodology can be replicated
with alternate strategies. This presents the possibil-
ity for future work to identify the most effective game
plan. The methodology used in this paper controls for
the time remaining, point differential and offensive
and defensive team’s relative strengths, variables that
have often been ignored, in order to produce mean-
ingful statistical inference on fourth down attempts
throughout an entire game. It is our hope that these
results will help inform NFL coaches, management,
and fans to the benefits of improved fourth down
decision making.
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A. Appendix

A.1. Outcome

In this section we explore the two win probability
models that we used to impute our outcomes.

First, we used a near-identical random forest model
to that proposed and calibrated by Lock and Nettleton
(2014). Random forests (Breiman, 2001; D´ýaz-
Uriarte and De Andres, 2006; Genuer et al., 2008;
Liaw and Wiener, 2002; Cutler et al., 2007) grow
several classification trees to learn about the relation-
ship between predictor variables and an outcome (in
our case, winning a football game). Random forests
boast well-documented predictive ability, can com-
bine unknown variable interactions in a non-linear
way, assess variable importance naturally and effec-
tively, and make minimal assumptions.

Our only deviation from Lock and Nettleton (2014)
came in how we trained the model. Whereas Lock
and Nettleton (2014) used a testing data set of one
full year only, we randomly sampled two games from
each week of each NFL season between 2004 and
2016 to be our test data (68,009 plays). All remaining
plays were used for the training data (444,069 plays).
Our model used all predictor variables in Table 2 and
the randomForest package in R (Liaw and Wiener,
2002). As in Lock and Nettleton (2014), we used 500
regression trees, sampled two predictor variables at
each split in the regression tree, and used a maximum
terminal node size of 200.

Our second win probability framework stems from
the ‘nflscrapR’ package in R (Horowitz, 2016), which
uses a generalized additive model (GAM) to estimate
the probability of the offensive team winning. GAMs
can account for non-linear associations between pre-
dictors and an outcome and make fewer assumptions
than ordinary least squares. We implemented a GAM
using the variables in Table 2, fit via the ‘mgcv’
package in R (Wood, 2001), using a penalized like-
lihood approach that helps prevent overfitting. To
explore the accuracy of the GAM on out-of-sample
plays, we used the identical training and test data sets
implemented with the random forest model described
above.

We next assess the accuracy of both the random for-
est and GAM win probability models using the test
data. For each model, predictions are grouped into
20 equal-sized bins, where each bin contains sim-
ilar predictions with respect to the offensive team’s
win probability on each play. The average predictions
within each bin are then compared to the observed win

Fig. 7. Scatter plot showing the accuracy of two win probability
models, ‘Lock’ and ‘nflscrapR’, obtained from Lock and Nettleton
(2014) and Horowitz (2016), respectively. Each dot compares the
observed (using each model’s predictions) and expected (using
game outcomes) win rate within 20 equal-sized bins. There are
no noticeable deviations between the predicted and observed win
rates for either model.

Fig. 8. Recommended play calls from The New York Times’
Fourth Down Bot, via Burke et al. (2013)

percentage in that bin. For the models to be accurate,
the observed and expected rates of the offensive team
winning should be roughly the same within each bin.

Figure 7 shows a scatter plot of the observed
and expected win rates within each bin for each
model. Although there exist small fluctuations above
and below the line where the true win rate equals
the predicted win rate, there are no obvious sys-
tematic patterns that would signal a flaw in either
model.
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Fig. 9. Bootstrapped results for the estimated number of wins added per team from 2004 to 2016. Confidence intervals are shown for each
of the two win probability models, with the overall average shown in red.
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Table 3

Descriptions of variables and interaction terms used in the propensity score model

Covariate Description Spline knots

yfog Yards from own goal 10
ytg Yards to go for a first down 5
pointdiff Score difference, split into nine categories (see manuscript) NA
time Elapsed time in minutes 4
condcat Weather condition category: Precipitation, Dry, Dome NA
temp Temperature at kickoff (in degrees Fahrenheit) 5
humd % Humidity 5
wspd Wind speed at kickoff (in miles per hour) 5
sprv Las Vegas Points Spread 5
ou Las Vegas total points over-under 5
wp pre-play win probability for the offensive team 10
Home Factor variable for home or away NA
wk Week of the season 4
OR.pass Offensive team’s pass offense rating from Football Outsiders 5
OR.rush Offensive team’s rush offense rating from Football Outsiders 5
DR.pass Defensive team’s pass defense rating from Football Outsiders 5
DR.rush Defensive team’s rush offense rating from Football Outsiders 5
yfog ∗ ytg Interaction term between yards from own goal and yards to go 10 & 5
yfog ∗ time Interaction term between yards from own goal and time remaining 10 & 4
ytg ∗ time Interaction term between yards to go and time remaining 5 & 4
time ∗ pointdiff Interaction term between time remaining and point differential 4 & NA
yfog ∗ time Interaction term between yards to go and time remaining 10 & 4


