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Spatial modeling of shot conversion in
soccer to single out goalscoring ability
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Abstract. Goals are results of pin-point shots and it is a pivotal decision in soccer when, how and where to shoot. The main
contribution of this study is two-fold. First, we show that there exists high spatial correlation in the data of shots across games.
Then, we introduce a spatial process in the error structure to model the probability of conversion from a shot depending on
positional and situational covariates. The model is developed using a full Bayesian framework. Next, based on the proposed
model, we define two new measures that can appropriately quantify the impact of an individual in soccer, by evaluating the
positioning sense and shooting ability. As a practical application, the method is implemented on Major League Soccer data
from 2016/17 season.
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1. Introduction

Association football or Soccer is arguably the most
popular sport in the world. Along with the excitement
involved with the international fixtures, millions of
viewers across the world also watch the club foot-
ball on a regular basis. And with the ever-growing
competitive nature of the sport, the field of soccer ana-
lytics is becoming more important with every passing
day. The most interesting aspect about soccer is that it
is a dynamic game and a team’s success relies both on
team strategies and individual player contributions.
Hence, it is generally more difficult to develop sophis-
ticated statistical methods for soccer as compared to,
say baseball, where events are more discrete.

In soccer, the soccer-ball is certainly like the prin-
cipal atom in the game, around which the players on
the pitch trace their path. Here, a shot gives momen-
tum to the atom of the game, read soccer ball, to reach
its intended destination, the back of the net. In this
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aspect, shooting ability of a player has always been a
key factor in building team strategies, as the outcome
of a game is decided based on the number of goals
scored by the two teams. In this paper, we address
this particular problem in detail. Our primary objec-
tive is to develop a new and more efficient model
that can successfully capture the effect of different
positional and situational variables on how well a
player can convert a shot to a goal. On a related note,
it is also immensely important to identify players
who have great positioning sense and can success-
fully convert the chances to score more frequently
than others. Following the model we develop, we
further define a measure which captures the informa-
tion about a player’s positioning sense and shooting
efficiency appropriately.

A simple way of looking at this problem is to calcu-
late the proportion of shots one converts successfully,
which works around the assumption that probability
of scoring a goal is the same for all shots taken by a
certain player. While it gives some idea about the effi-
ciency of a striker, it has its shortcomings and would
fail to serve the purpose from many aspects. This

2215-020X/19/$35.00 © 2019 – IOS Press and the authors. All rights reserved
This article is published online with Open Access and distributed under the terms of the Creative Commons Attribution Non-Commercial License (CC BY-NC 4.0).

mailto:sdeb@uchicago.edu


282 S. Deb and D. Dey / Spatial modeling of shot conversion in soccer to single out goalscoring ability

crude measure only gives the percentage of shots con-
verted successfully, but it does not tell anything about
the players’ positioning senses. Besides, this measure
fails to identify difficulty of chances. For example, a
player scoring 2 goal from 4 shots, all from several
yards out of the box is considered equally efficient
as another who scores 1 from 2 shots from inside
the box, and that is definitely not the case. Naturally,
one should take into account many other factors -
location, time, type of play, how the shot was taken,
opponents etc - to investigate the conversion rates of
soccer players.

While the problem of predicting goals has not been
overwhelmingly explored in soccer, there are some
studies that have tried to predict the outcome of an
average shot of an average player from a particu-
lar position on the pitch in a particular situation.
Of course, there are limitations as we do not know
the shot speed, the position of defenders and the
exact goalkeeper position but it is worthy to check
how much variance we can explain from the existing
covariates which, at the first look, seem to be really
important. Current researchers in this field have taken
various routes to assign a goal-scoring probability to
a particular shot and finally, worked on to develop an
Expected Goals (ExpG) metric for a team or a player.

In general, there are different types of discrete
regression models that people have used so far. God-
dard (2005) used bivariate Poisson and ordered probit
regression models to forecast number of goals scored
and conceded in soccer matches based on differ-
ent covariates. The author here analyzed data from
English football and learned that the number of goals
in a match depends mostly on the recent home per-
formances of the home side and the recent away
performances of the away side. In another match-
level study, Williams and Walters (2011) studied the
effects of altitude on the result of soccer matches in
South America. Taking a regression-based approach
for change in altitude of the away side, they showed
that the win probability decreases significantly for an
away team traveling up, while traveling down does
not have a significant impact on the results.

Player-related or shot-related approaches have
been studied by a few authors as well. One of the most
popular methods in this regard is a study in Amer-
ican Soccer Analysis (2016). Analyzing data from
the Major League Soccer (MLS), the authors showed
that the shot conversion rates significantly depend on
many factors, including the distance, angle and the
body part used when a shot is taken. Simple logistic
regression techniques were the main components of

this study. In an earlier paper, Moura et al. (2007)
dealt with data from Brazilian first division champi-
onship matches and analyzed shots to goal strategies
based on the field position from where the ball was
collected and the length of the passing sequence lead-
ing to a goal. Contrary to the popular belief, they
found that the ball possessions resulting in shots to
goal usually start in the defensive field of the scoring
teams. So far as the passing sequences are concerned,
this study showed that either short (2 to 5) or very long
(10 or more) sequences significantly improve the con-
version rates. This second finding corroborated what
Hughes and Franks (2005) found before.

Finally, we cite two works that used the situation in
a small time-window just preceding the event of inter-
est. First, Jordet et al. (2013) used English Premier
League data to investigate how visual exploratory
behaviors before receiving the ball affect the prob-
ability of completing the next pass. They found that
the players who show extensive visual exploratory
behaviors right before receiving a ball are more suc-
cessful in completing a pass. In another recent study,
Lucey et al. (2014) analyzed the spatiotemporal pat-
terns of the ten-second window of play before a shot
was fired. They extracted some strategic features from
the data and used them to present a method that esti-
mates the likelihood of a team scoring a goal. This
study showed that not only is the game phase (corner,
free-kick, open-play, counter attack etc.) important,
but the features such as defender proximity, interac-
tion of surrounding players and speed of play coupled
with the shot location also play an impact on deter-
mining the likelihood of a team scoring a goal. A few
more relevant discussions can be found in Leitner
et al. (2010), Clark et al. (2013), Lasek et al. (2013)
and Brooks et al. (2016).

In this study, we want to look at the problem of
modeling shot conversion rates from a slightly differ-
ent point of view. While each of the above models has
its advantages, there are some limitations too. In order
to perform the last two methods, one would need the
player tracking data from some reputable source and
that requires a considerable amount of money. On the
other hand, usual binary regression based approaches
often show a lack of fit and fail to have good pre-
dictive abilities. This has been discussed more in
Section 3.

Our primary goal here is to build a model that
fits the data well, identifies the factors significantly
affecting the shot conversion rate and provides an esti-
mate of the probability of scoring a goal if the location
and other details are given. In this regard, we use a
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Fig. 1. Heat map of the full data: Total number of attempts were 3957, among which 482 were goals and 3475 were misses. Each pixel
represents the proportion of goals scored from that position, color coded on a scale from 0% (white) to 100% (black).

spatially correlated error process in the binary regres-
sion model. Another key contribution of this paper is
to quantify the impact of an individual in soccer. In
particular, we define two new measures that evaluate
the positioning senses and the goal-scoring abilities
of the players. As a practical application, we would
implement our model, in conjunction with the mea-
sures we devise, to Major League Soccer (MLS) data
from 2016/17 season.

The paper is organized as follows. A brief descrip-
tion of the data and some exploratory analysis are
provided in the next section. In Section 3, we provide
motivations behind our idea of including a spatial
correlation term in a probit regression model. The
proposed method and the measures to evaluate shoot-
ers’ efficiency are presented in Section 4. Detailed
analysis of the data using the proposed model is car-
ried out in Section 5 while the final section includes
a discussion, along with some important concluding
remarks.

2. Data

Throughout this study, we use the data for the first
half of the MLS 2016/17 season. Since the focus is
on the shots to goal conversions, relevant informa-
tion for all shots (excluding penalties, own goals and
cases with some missing data) and their outcomes
- encoded as goal or miss - are recorded. But, we
choose to exclude cases when a shot was taken from
beyond the half line, for often these shots are simply
the results of some unusual mess-up of the oppo-
nent side or the result of a moment of some striker’s
presence of mind. In other words, a player will not

take a shot from beyond the center line unless he
is handed a golden opportunity and naturally, such
a shot has a higher probability of being converted.
So, including these instances are likely to affect our
conclusions. After removing these events, the data
comprised of 3957 attempts at goal, among which 482
were converted successfully (approximately 12.18%
of the total number of shots). A heat map is shown
in Fig. 1 to show the proportions of goal scored from
different locations in the field.

Then, in order to fit an appropriate model, it
is crucial to identify possible factors affecting the
conversion of a shot. For that, the first thing we con-
sidered are the distance and angle of the location from
where a shot is taken. The way we evaluated these two
covariates is displayed on the left panel of Fig. 2. It
should be noted that this definition of the angle and
the distance of a shot helps us consider them as uncor-
related covariates in this study. The right panel of the
same figure shows another important covariate in our
study, the keeper’s reach. It is evaluated as the short-
est distance the goalkeeper has to cover if he stands
at the best position corresponding to the location of
the shot.

Further, exploratory analysis suggested that a
transformation of variable is needed for the distance
and the angle of a shot. Similar to the study by Amer-
ican Soccer Analysis (2016), we found that it is more
appropriate to model the conversion rates as linear
function of the logarithm of distance and cosine of
angles instead of the usual values. The plots in Fig. 3
support this.

In addition to the distance, angle and keeper’s
reach, there are information on several other covari-
ates and five of them are considered in this study -
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Fig. 2. (Left) For location X, the distance is the Euclidean distance
between X and the center (O) of the goalline, while the angle (with
appropriate sign) is ∠XOY , OY being the line that bisects the
field horizontally. (Right) O is the ideal position of the goalkeeper
(bisector of the angle the location of the shot makes with the goal),
the line with small dots is the shot and OS is the keepreach, the
shortest distance between the ideal location and the path of the
shot.

if it is a home game, the half of play when the shot
is taken, body part used in the shot (header, left foot,
right foot or other), goal difference at the time of the
shot i.e. whether the shooter’s team is leading, level
or trailing, if the shot takes place during the stoppage
time and the proportion of shots converted against the
same opponent so far.

Note that the set of covariates we are using includes
several situational covariates (home or away, half of
the game, goal difference, and the stoppage time)
while the last covariate takes into account the strength
of the opposing teams and helps us to identify if it
significantly affects the rate of conversion.

A quick summary of the total number and the pro-
portions of shots converted for different levels of the

aforementioned five factored covariates in the study
are presented in Table 1. For example, the first row
says that 2232 (56.4% of the total of 3957) shots
were taken by the home side and 286 of them (which
amounts to 12.2% of the shots taken by the home
side) were converted successfully.

One can clearly see that the home factor shows
only a little change from one level to another. Same
is true for first half versus second half. Very few shots
were taken by other means than left or right foot or
headers and it should not show significant effect in the
analysis. For the three different types of body parts,
the header effect is slightly less than the other two.
As expected, the conversion rate of both the right-
footed and left-footed shots are almost same, at least
empirically, which accounts for the symmetry of the
play. Finally, the conversion rate seems to be slightly
higher when the shooter’s team is leading while for
the stoppage time shots, the conversion rate is 4%
more than the same for regulation time scenarios.

Further taking a deeper look into the covariate cor-
responding to body-parts, we noticed that the headers
were usually taken from a close range, mostly from
inside the box. In fact, the median distance from
where the headers were taken was 11.2 yards, starkly
different from the overall median of 17.6 yards. Table
2 shows a summary of the distances and angles (in
radian) for headers and other shots. The angles are
similar for both cases, but the headers are always
taken from a closer range. Naturally, the dependence
on the covariates might be totally different for headers
and other shots, and so, we suggest separate analysis
for the two cases. It is worth mention that this has
been overlooked in earlier studies.

Fig. 3. Conversion rates corresponding to different distances (in yards) and angles (in degrees).
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Table 1

Conversion rates for different levels of the factored covariates: For goal or miss, proportions given
in brackets are conversion rates for that level while the proportion in the last column is the proportion

of shots taken for that level

Factor Goal Miss Total

Home 286 (12.2%) 1946 (87.8%) 2232 (56.4%)
Away 196 (11.4%) 1529 (88.6%) 1725 (43.6%)
First half 209 (12.0%) 1536 (88.0%) 1745 (44.1%)
Second half 273 (12.3%) 1939 (87.7%) 2212 (55.9%)
Header 106 (11.0%) 855 (89.0%) 961 (24.3%)
Left Foot 130 (12.5%) 911 (87.5%) 1041 (26.3%)
Right Foot 242 (12.5%) 1698 (87.5%) 1940 (49.0%)
Other 4 (26.7%) 11 (73.3%) 15 (0.4%)
Leading 127 (13.9%) 784 (86.1%) 911 (23.0%)
Scores level 218 (11.4%) 1687 (88.6%) 1905 (48.1%)
Trailing 137 (12.0%) 1004 (88.0%) 1141 (28.8%)
Regulation time 447 (11.9%) 3290 (88.1%) 3737 (94.4%)
Stoppage time 35 (15.9%) 185 (84.1%) 220 (5.6%)

Table 2

Comparison of shot locations (mean, median and standard deviation) for headers and other shots

Summary of distance (in yards) Summary of angle (in radian)
Mean Median St. Dev. Median Mean St. Dev.

Header 11.3 11.2 3.92 −0.007 0.005 0.53
Other shots 22.0 20.8 8.77 0.004 0.019 0.62

3. Motivation of spatially correlated error
process

In most of the works discussed before, the usual
practice is to fit a logistic regression with appropri-
ate covariates. However, for these models, what we
have commonly observed is a lack of goodness-of-fit
checks, a moderately high average error rate and the
use of wrong resorts to validate a model (e.g. usual
R-squared in case of logistic regression). Even for
the study by Lucey et al. (2014) - one of the most
sophisticated techniques in our opinion - where con-
ditional random field was used to take into account
defender position and attacking context to model the
probability of scoring a goal, we found the error rate
to be 14.3%, only 2% less than what would have
been for the usual logistic regression model without
even considering defender attributes. And thus, there
is a dire need to investigate these models in detail,
so as to identify why they fail in practice. In this
regard, the reader is instructed to read the Deadspin
article by Bertin (2015), who discussed the inefficien-
cies of common statistical models in practice in this
regard.

We start our analysis with typical binary regression
model with probit links for the MLS data we have.
For compactness of the paper, we will discuss only the

summary of what we observed with the typical model.
First of all, for other shots (not headers), only the
distance and angle, transformed to logarithmic and
cosine scales, respectively, appeared to be significant.
It was found that a smaller distance and a bigger angle
significantly (both p-values very close to 0) improve
the conversion rates. The estimate for the keepreach
variable was estimated to be negative with a p-value
of 0.067 while the same was positive with a p-value
of 0.097 for the parameter corresponding to the factor
when the shooter’s team is leading. This shows that
the conversion rate somewhat significantly increases
when keepreach is less and when the shooter’s team
has a positive goal difference. The other covariates in
the study showed no significant effect at all.

On the other hand, for headers, it was found that
a smaller distance, smaller keepreach and a higher
angle increase the conversion chance significantly (all
p-values less than 0.05), while the other covariates are
not significant.

However, standard model diagnostics techniques
revealed that the above models suffer from high
deviance and high classification errors, when exposed
to cross-validation. And so, we felt that there is a need
to improve upon these models to build a feasible one.
In this regard, our initial guess was that two shots
may not at all be spatially independent and hence,
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Fig. 4. Ripley’s K-function K(a) is plotted against a for both headed and non-headed goals considering goals as spatial point processes.
Under spatial homogeneity and independence, K(a) = πa2. Expected values under this hypothesis and confidence intervals are constructed
for reference.

we cannot take independence assumptions for model
fitting.

Recall that we can consider the occurrence of
goals to be a spatial point process with the field
being the location set. Plotting Ripley’s K-function
(Dixon (2002)) is a standard technique to check
whether there exists any spatial clustering or not. It
is defined as K(a) = λ−1Ea where λ is the density
(number per unit area) of events (here goals), and
Ea is the expected number of extra events within
distance a of a randomly chosen event. In Fig. 4,
Ktheo(a), K̂high(a) and K̂low(a) give us the expected
values and confidence intervals of K(a) under the
assumption of spatial homogeneity and indepen-
dence. We can clearly observe that the K(a) values
diverge from the expected values indicating possible
spatial correlation and more spatial clustering as a

increases.
Now that we have a hint that there might be a spa-

tial dependency involved, we test whether there exists
spatial autocorrelation or not. We have a binary vari-
able with 1 denoting a goal and 0 otherwise. We create
a graph of the shot locations based on k-nearest neigh-
bor criteria using Euclidean distance (taking k = 63
as it has been accepted as a thumb rule to take k ≈ √

n

where n is the number of observations). We join edges
between two points if a point belongs to the set of 63
nearest neighbours of another point and vice-versa.
Thus, joining the neighbours, we can get the join-
count statistics (Cliff and Ord (1981)) to test for
spatial autocorrelation. We perform join-count test

against the alternative that the number of like joins
are more than expected from random under 5% sig-
nificance level and found clear evidence for positive
spatial auto-correlation as the number of 0 − 1 join-
counts were significantly lower than the expected
values and both 1 − 1 and 0 − 0 counts were sig-
nificantly higher than the expected (p-value nearly 0
for all the cases).

Note that positive autocorrelation indicates cluster-
ing of similar values and hence we conclude that there
is sufficient spatial correlation to account for with
the correlation between probabilities of shot con-
versions from two locations on the field decreasing
with increasing distance between the locations. Thus,
one cannot perform the analysis considering spatial
independence of the shots. Driven by the exploratory
findings above, our assumption is that the shots are
dependent even if they are from different matches
and different players. This can be envisioned as a big
shooting experiment in soccer which has been done
on the same hypothetical field under different cir-
cumstances. We further emphasize that, to the best
of our knowledge, this interesting and very impor-
tant phenomena of spatial dependence has never been
accounted for before in soccer. To tackle this, we
introduce a spatially correlated error process in the
standard probit model with the spatial covariance
following an exponential decay law.

On the other hand, in most of the real circum-
stances, the outcome of a shot significantly depends
on the ability of the shooter, and hence this should be
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incorporated in the model. In order to quantify this,
we include a random effect component, the posterior
mean of which will evaluate the effect of human inter-
vention in a shot, and that is what we term as ‘shooting
prowess’ or ‘heading prowess’ in later sections.

A detailed description of the model is provided in
the next section. We use complete Bayesian frame-
work to estimate the parameters and variances in the
model. This idea, in form of spatial autoregressive
models, is close to what has been used in spatial
econometrics before, cf. Elhorst et al. (2017) and
Baltagi et al. (2016).

4. Methods

4.1. Proposed model

We start with a probit regression model equipped
with a spatially correlated error process, in light of
the discussion in the previous section. For shots i =
1, . . . , N, suppose Yi is the binary outcome (which
takes the value 1 if the ith shot was converted to
a goal), si denotes the location of the shot and Xi

denotes the column vector with the values of the
covariates.

Our proposed model starts with the assumption
that we have a latent variable ri, such that Yi ∼
Bernoulli (pi), pi = P(ri > 0). ri depends on the
values of the covariates following a simple linear
regression model, and zm(i) is an additive random
effect that quantifies the player’s ability. Here, m(i)
corresponds to the player who took the ith shot. In
order to avoid the issue of over-fitting, we sepa-
rately consider the players whose number of shots
is more than a minimum cutoff, say sm. Throughout
this study, we use sm = 10. For all other players, m(i)
is considered to be same. If we use Pl1, . . . , PlM−1 to
denote the players whose number of shots is greater
than sm, and we associate zj to Plj , then

m(i) =
{

j if ith shot is taken by Plj

M if ith shot is not taken by Pl1, . . . , PlM−1.
(4.1)

We further assume that, given the values of the
covariates, the outcomes will be dependent of each
other through the shot locations and this dependence
would decrease with distance. These assumptions
support our findings while exploring the data in the
previous section.

We are going to consider a hierarchical structure.
First of all, Yi = I(ri > 0) and

ri = X′
iθ + zm(i) + εi, (4.2)

where θ is a parameter vector of appropriate order
corresponding to the covariates, zm(i) is the player-
effect on the shot, and εi is the error process. The
term X′

iθ is considered to be an additive combination
of the effects of some continuous and some discrete
covariates. zm(i)’s are considered to be independent
and identically distributed (iid) random effects, com-
ing from N(0, σ2

p) distribution. Note that there will
be M different random effects, if there are M − 1 dif-
ferent players whose number of shots is greater than
sm. We further assume that the error process has the
following structure:

εi = wi + ei. (4.3)

Here wi denotes a zero-mean spatially correlated
process and ei stands for a zero-mean independent
and identically distributed (iid) white noise process.
We assume that ei’s are iid N(0, σ2) while for wi’s, we
take a correlation structure that decays exponentially.
In particular, the covariance between wi and wj (i.e.
for locations si and sj) is

Cov(wi, wj) = σ2
w exp(−φ

∥∥si − sj
∥∥), (4.4)

where the distance function
∥∥si − sj

∥∥ is taken as the
Euclidean distance of the two locations.

Now, let us use Y to denote the vector of all out-
comes, r and p to denote the vector of ri’s and
pi’s, respectively. X is the design matrix such that
X′ = [X1 : . . . : XN ]. We will denote the covariance
matrix of w by σ2

w�w. Finally, let z be a vector of
length M, corresponding to the player-effects. Then,
the vector of zm(i)’s can be written in the form Az,
where each row of A (a N × M matrix) denotes the
index of the player effect. Thus, we can write the full
model in the following form:

Yi = I(ri > 0), (4.5)

r = Xθ + Az + w + e,

such that z ∼ N(0, σ2
pIM×M),

w ∼ N(0, σ2
w�w),

and e ∼ N(0, σ2IN×N ).

We are going to use a Bayesian framework to get
estimates for the parameters in the model. For each
of the components in the parameter vector θ, we
will consider improper Jeffrey’s prior distribution.
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On the other hand, we will assume the two variance
components σ2, σ2

w to be equal. While we acknowl-
edge the simplicity associated with this assumption,
it is worth mentioning that we have performed some
simulation studies and found that the performance
is approximately the same with the assumption.
The computational complexity becomes cumber-
some already with complicated priors in Gibbs
sampling and the computational burden decreases
manifold if we consider the variances equal. Also,
we achieve satisfactory prediction power with this
parsimonious assumption and hence, don’t want to
increase our number of parameters. Further discus-
sion on this assumption is provided at the end of
Section 4.2.

The priors we associate with σ2 (same as σ2
w) and

σ2
p are independent inverse gamma (IG) distribution

with parameters a, b. We would take a > 1 to avoid
improper posterior distributions.

And finally, the parameter φ (refer to Equation
(4.4)) will be kept fixed throughout the analysis. In
order to find out the best possible value for φ, we
would consider a cross-validation scheme. The possi-
ble choices for φ used in the study were between 0.05
and 1. Based on the relationship e−φd ≈ 0.05, we
chose the above range, which corresponds to actual
distances in the field ranging from 3 yards to 60 yards.
The validation scheme would consider prediction for
20% of all the shots after estimating the parameters
from the other 80% and would find out the mean
squared error for those predictions. For shots consid-
ered for the validation purpose (let us denote them by
i ∈ V = {v1, . . . , vm}), we would predict the prob-
ability of them being converted to goals and let the
predicted probabilities be denoted by p̂i while Yi’s
are the actual outcomes. Then, for each φ, we calcu-
late the mean squared error of the predictions using
the following formula:

MSEφ = 1

m

∑
i∈V

(Yi − p̂i)
2. (4.6)

The value of φ with the least mean squared valida-
tion error will be our optimal choice for the analysis.
The prediction procedure is discussed in detail in
Section 4.3.

4.2. Posterior distribution and Gibbs sampling

Throughout the discussion below, K will always
indicate a constant term, that may vary from time
to time. Using the full model described in Section

4.1 and the prior distributions described in the para-
graph following that equation, we can write the joint
posterior distribution as:

log π(r, θ, σ2, w, z | Y )

= K +
N∑

i=1

{Yi log(P(ri > 0))

+(1 − Yi) log(P(ri ≤ 0))} − w′�−1
w w

2σ2

−‖r − Xθ − Az − w‖2

2σ2 −(a + N + 1) log σ2

− b

σ2 − ‖z‖2

2σ2
p

−
(

a + M

2
+ 1

)
log σ2

p − b

σ2
p

.

(4.7)

Since simulating directly from the joint posterior
distribution is difficult, we would use the principles
of Gibbs sampling, which sequentially updates every
parameter in an iterative way until convergence. For
σ2, we can get the full conditional distribution as:

log π(σ2 | Y, r, θ, w, z)

= K − (a + N + 1) log σ2 − 1

σ2

[
b + 1

2
‖r − Xθ

−Az − w‖2 + 1

2
w′�−1

w w

]

and thus,

(σ2 | Y, r, θ, w, z) ∼ IG

(
a + N, b + 1

2
‖r − Xθ

−Az − w‖2 + 1

2
w′�−1

w w

)
.

(4.8)

Similarly, we get that

(σ2
p | Y, r, θ, w, z) ∼ IG

(
a + M

2
, b + 1

2

m∑
k=1

z2
k

)
.

(4.9)
For θ, we get that

log π(θ | Y, r, σ2, w, z) = K − 1

2
θ′
(

X′X
σ2

)
θ

+1

2
· 2θ′ · X′(r − Az − w)

σ2
.
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Straightforward calculations then tell us that the con-
ditional posterior of θ is

(θ | Y, r, σ2, w, z) ∼ N
(

(X′X)−1X′(r − Az − w),

σ2(X′X)−1
)

. (4.10)

On the other hand, using similar techniques, we
can get the posterior distribution for w as:

(w | Y, r, θ, σ2, z) ∼ N
(

(I + �−1
w )−1(r − Xθ − Az),

σ2(I + �−1
w )−1

)
. (4.11)

Further, if we define
∑N

i=1 I{m(i) = k} = nk, we
can get the posterior distribution for zk as:

(zk | Y, r, θ, σ2, w)

∼ N

⎛
⎝(nk + σ2

σp
2

)−1 ∑
i:m(i)=k

(ri − X′
iθ − wi),

(
nk

σ2 + 1

σp
2

)−1
)

. (4.12)

Note that the means of the conditional distribu-
tions of both θ and w require the computation of the
products of a matrix and a vector, but the dispersion
matrices of the same are updated at every step only
through the value of σ and so, one needs to com-
pute the inverses of three big matrices, namely X′X,
�w and (I + �−1

w ), only once throughout the MCMC
analysis. Hence, directly using the above conditional
distributions at every step will not suffer from huge
computational burden. However, one can always use
component-wise conditional posterior distributions
to further increase the efficiency.

Finally, we find the conditional distribution of r.
The joint posterior distributions above clearly show
that conditional on data and other parameters, each
component of r is independent of others and simple
calculations would reveal that the conditional distri-
butions are truncated normal as follows.

(ri | Y, θ, w, σ2, z) ∼
{

TN(αi, σ
2; 0, ∞) if Yi = 1

TN(αi, σ
2; −∞, 0) if Yi = 0

(4.13)
In the above, αi is ith component of α = Xθ + w +
Az and TN(μ, τ2; a, b) denotes a normal distribution
with mean μ and variance τ2, truncated in the interval
[a, b].

Now to note that, if we assume σ2
w /= σ2, then the

posterior distribution of w (see Equation (4.11)) will
become

(w | Y, r, θ, σ2, σ2
w, z)

∼ N

(
σ2(I + σ2

σ2
w

�−1
w )−1(r − Xθ − Az),

σ2(I + σ2

σ2
w

�−1
w )−1

)
. (4.14)

This implies that at each step of Gibbs sampling,

we will have to invert a n × n matrix (I + σ2

σ2
w
�−1

w ),

which requires O(n3) time. Naturally, it is com-
putationally not feasible to do it for thousands of
iterations when n is large (in our case n = 3957).
Whereas, if we follow Equation (4.11), we will have
to invert the matrix (I + �−1

w ) only once and we can
use that in subsequent iterations. Hence, this par-
simonious assumption leads to a huge decrease in
computational complexity and we do not lose much in
prediction.

4.3. Future prediction

In order to make a new prediction for a shot from
location s′, we will take resort to the posterior esti-
mates obtained from the Gibbs sampler. Let us denote
the outcome of the shot from s′ by Y (s′) (X(s′), r(s′),
z(s′) and w(s′) are defined accordingly). Note that
the posterior predictive distribution f (Y (s′) | Y ) can
be written using an integral for the product of the den-
sity functions, where the integral is taken with respect
to all the parameter vectors. However, instead of solv-
ing that integral, a better and more convenient idea
is to use the Gibbs sampler estimates to draw obser-
vations from the posterior predictive distribution and
one can do it sequentially.

At first, we draw samples for r, w, θ, σ2 using the
conditional posterior distributions described in Sec-
tion 4.2. Also, if it comes from kth player used
in our training data, we define z(s′) as the pos-
terior mean of zk, else, we simulate z(s′) from
N(0, σ2

p). After that, we draw samples for w(s′)
using the conditional distribution of (w(s′) | w, σ2)
as discussed below. Using the generated observa-
tions, an estimate for r(s′) can be obtained by taking
a realization from a normal distribution with mean
X(s′)′θ + w(s′) + z(s′) and variance σ2. Finally, we
set Y (s′) = I(r(s′) > 0). Alternately, one can also use
Y (s′) ∼ Bernoulli (p(s′)), where p(s′) = P(r(s′) >

0) can be computed using the sampled values of θ,
σ2, z(s′) and w(s′).
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To compute the conditional distribution of
(w(s′) | w, σ2), we start with the fact that(

w(s′)
w

)
∼ N

(
0, σ2

[
1 �′

s−s′

�s−s′ �w

])
.

Here, �s−s′ is the column vector denoting the
covariance of w(s′) with the elements of w. Fol-
lowing Equation (4.4), the jth element of �s−s′ is
exp(−φ

∥∥sj − s′
∥∥). Using the principle of conditional

distribution for multivariate normal distribution, we
can then say that

w(s′) | w ∼ N(μnew, σ2
new), (4.15)

where σ2
new = σ2(1 − (�′

s−s′�
−1
w �s−s′ )

)
,

μnew = �′
s−s′�

−1
w w.

4.4. Measures to quantify player abilities

Based on our model, we propose two measures to
quantify a player’s ability on the pitch.

To start with, we would like to introduce, what
we call, the Shooting Prowess (SP) of a player. We
define this measure SPk as the posterior mean of
zk i.e. the player-specific random effect. Recall that
we use a cutoff of sm = 10 matches to evaluate this
random effect, and hence, discrete cases of players
taking few shots to score will be considered as gen-
eral effect in our model. This would effectively help
us in identifying the players who are in general good
shooters.

Next, we would like to quantify a player’s Posi-
tioning sense (PS), which is a pivotal thing for a
striker on the field in terms of scoring goals. One
has to be at the right place at the right time to get
a goal in his name. From our training model, we
can estimate the shot conversion probability of an
average player from a particular distance, angle and
type of opportunity. It is a different issue whether the
player has grabbed the opportunity or not, but getting
into a perfect position, he could ensure that a shot
was fired.

In order to do that for the kth player, suppose
that in a total of gk matches, he has taken nk

shots (calculated over a time period, possibly over a
whole season or for the entire career) in total. The
expected probability of the ith shot, i = 1, . . . , nk, is
denoted by p̂i. Then, summing up the predicted prob-
ability of shot conversion for that player can give us

a perfect idea about his positioning sense. Necessar-
ily, the PSk (Positioning Sense) of the kth player is
defined by

PSk = 1

gk

nk∑
i=1

p̂i. (4.16)

The fact that we calculate the average over the
number of matches and not over the set of all shots
captures the information of whether a player takes
more shots in general.

5. Results

5.1. Fitting the model

Following the discussions in the previous sections,
we consider two different models for ‘other shots’
and ‘headers’, and they can be written as follows.

For other shots, let Yi = I(ri > 0) denote whether
ith shot was a goal. Then, we set ri = μi + zm(i) +
wi + εi, where zm(i), wi, εi are as described in the
previous section and μi is the mean function defined
by

μi = β0 + β1 log(Di) + β2 cos(Ai) + β3Ki

+β4Pi + β5I{Hi = 1} + β6I{Fi = 1}

+
1∑

j=0

β7,jI{GDi = j} + β8I{Si = 1}

+
3∑

k=2

β9,jI{BPi = j}. (5.1)

Here, Di, Ai, Ki and Pi denote the continuous
covariates, namely distance, angle, keepreach and
proportion of shots converted against the same oppo-
nents. Indicators for Hi, Fi and Si equal to 1 are used
to denote if it was a home game, if it was in the first
half and whether it happened during stoppage time.
GDi denotes whether the goal difference at the time
of the shot was zero (j = 0) or positive (j = 1). And
finally, BPi shows which body part (j = 1, 2, 3 corre-
sponding to other, left foot and right foot) was used in
taking the shot. Note that we take β7,−1 = β9,1 = 0
for identifiability purpose.

On the other hand, for ‘headers’, we do not con-
sider the covariate BP , but the other model remains
unchanged.
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Now, using the mean function (Section 5.1), we fit
the model described in Section 4. First of all, using
the procedure described towards the end of Section
4.1, we evaluate the best choice of φ to be used in
the spatial covariance function (Equation (4.4)) It
is obtained to be 0.75 (and 0.45) for ‘headers’ (and
for ‘other shots). Following the approximate relation
e−φd ≈ 0.05, we can say that the spatial correlation
in converting headers (and other shots) is insignif-
icant for locations approximately 4 yards (and 6.7
yards) or more apart from each other. Then, we use
the Gibbs sampler to estimate the parameters. We
have used 10000 runs in the burn-in period and have
used MCMC samples of size 1000 to evaluate the
estimates, standard errors and the confidence inter-
vals of the parameters. Summary of the results for
the ‘headers’ are shown in Table 3, while the same
for ‘other shots’ are displayed in Table 4.

From the results, we can see that the effect of log-
arithm of distance is significantly negative for both
headers and other shots. This matches with the estab-
lished theory that the closer you shoot from, the
greater chances of the shot being converted to goal.
However, the conclusion about the ‘angle’ of shots
is interesting. In the simple logistic regression model
used by current researchers in this field, it was found
that a smaller angle (higher value of the cosine of
the angles) significantly increases the goal-scoring
chance of any shot. But, in our model, we have found
that the angle of the shot is not a significant covari-
ate for headers. This happens probably because the
effect of the angle is already being explained by the
spatial process. On the contrary, even with the spatial
dependence in the model, the angle has significant
positive effect on the conversion rate for other shots.

So far as the other variables are concerned, only
keeper’s reach and stoppage time are significant for
headers. The chance of converting from a header
increases when the keeper’s reach is less. Also, head-
ers taken during the stoppage time has a significantly
higher chance of being converted. On the other hand,
we also find that the two variance components are
very different. While the spatially correlated process
shows a variance of 0.999, the player effect explains
more variability (estimated value of σ2

p is 1.656) in
the data.

Further, for non-headed shots, barring the dis-
tance and angle of the shot, no other situational
or match-specific covariate is significant. One inter-
esting observation is the estimates and confidence
intervals for the effect of left or right footed shots.

They are very close to each other, thereby supporting
the nature of symmetry in the game of soccer. The
variability in the data, similar to the previous case, is
explained more by the player-effect (σ2

p is estimated
to be 1.675) while the spatially correlated process has
a variance of 0.995. These values are similar to the
‘headers’ data.

5.2. Diagnostics

We next delve into the diagnostics of the model,
and compare the performance of our model to three
different models. First, we consider the simple logis-
tic regression model (SLRM) which is the most
common one to use for such data. Second, we con-
sider the spatial probit model proposed by Klier
and McMillen (2008). It is in essence similar to
our proposed model. This model, henceforth denoted
as KMM, uses a spatially related weight matrix,
where the weights are corresponding to the num-
ber of observations contiguous to every observation.
The parameters, including the spatial interaction
coefficient, are estimated by a linearized version of
generalized method of moments estimators for pro-
bit models. We include this model in this comparison
study to understand if our specification of the spatial
correlation can be deemed appropriate. Finally, we
include a machine-learning algorithm. A type of neu-
ral network (later denoted as NN) that performs well
on such a binary classification problem from a set of
vectors is a simple stack of fully connected (dense)
layers with rectified linear unit activation function.
We use two dense layers with 16 and 8 hidden units
and then pass it onto a layer with sigmoid function as
output to train classification probabilities.

In order to compare the performance of the differ-
ent techniques, at first we calculate the Brier score
for all the models. This is recognized as one of the
most important score function to measure the accu-
racy of model fit for binary type data. It is defined as∑N

t=1 (ft − ot)2/N where ft is the expected proba-
bility of forecast and ot is the actual outcome. For the
non-headed shots, we compute it to be 0.067, while
for the headers it is approximately 0.061. Note that for
both cases, this score is around 30% less than what we
observed in the other three candidate models, namely
SLRM, KMM or NN.

Another standard method to evaluate probabilis-
tic prediction is the log score, which is defined
by
∑N

t=1{ot log ft + (1 − ot) log(1 − ft)}. A higher
value of the log score will indicate a better predictive
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Table 3

Results from fitting our model to headers (total number of events was 961)

Parameter Estimate Standard error Confidence interval

β0 (Intercept) 0.349 1.140 (−1.950, 2.542)
β1 (log(Distance)) −1.139 0.389 (−1.904, −0.360)
β2 (cos(Angle)) 0.625 0.874 (−1.062, 2.336)
β3 (Keeper’s reach) −0.208 0.058 (−0.326, −0.101)
β4 (Opponent) −1.297 1.625 (−4.324, 1.863)
β5 (Home) 0.037 0.154 (−0.262, 0.337)
β6 (First half) 0.002 0.166 (−0.326, 0.333)
β7,0 (score level) 0.052 0.174 (−0.277, 0.406)
β7,1 (leading) 0.324 0.211 (−0.078, 0.747)
β8 (Stoppage time) 0.596 0.292 (0.008, 1.187)
σ2 (Variance) 0.999 0.065 (0.884, 1.129)
σ2

p (Player variance) 1.656 0.785 (0.787, 3.687)

Table 4

Results from fitting our model to other shots (total number of events was 2996)

Parameter Estimate Standard error Confidence interval

β0 (Intercept) 1.506 0.959 (−0.293, 3.508)
β1 (log(Distance)) −1.688 0.253 (−2.208, −1.234)
β2 (cos(Angle)) 1.259 0.604 (0.114, 2.433)
β3 (Keeper’s reach) −0.055 0.034 (−0.118, 0.011)
β4 (Opponent) −0.320 0.859 (−2.097, 1.291)
β5 (Home) 0.012 0.086 (−0.152, 0.191)
β6 (First half) 0.011 0.089 (−0.167, 0.189)
β7,0 (score level) −0.030 0.105 (−0.236, 0.184)
β7,1 (leading) 0.141 0.121 (−0.083, 0.366)
β8 (Stoppage time) −0.058 0.190 (−0.439, 0.290)
β9,2 (Left foot) 0.553 0.479 (−0.401, 1.476)
β9,3 (Right foot) 0.613 0.478 (−0.333, 1.519)
σ2 (Variance) 0.995 0.038 (0.925, 1.073)
σ2

p (Player variance) 1.675 0.378 (1.085, 2.519)

Table 5

Comparison of four candidate models

SLRM KMM NN Our model

Headers Brier Score 0.091 0.101 0.089 0.061
−log score 301.738 338.876 299.42 184.278

error % 11.03% 11.654% 11.03% 8.949%
AUC 0.746 0.745 0.789 0.952

Other shots Brier Score 0.094 0.098 0.097 0.067
−log score 958.212 1043.567 976.625 633.371

error % 11.983% 11.983% 12.216% 9.813%
AUC 0.776 0.775 0.763 0.937

ability of the model. We have observed improvement
in our model according to this measure as well. For
headers, SLRM, KMM and NN yield log score of
approximately −301.7, −338.9 and −299.4, respec-
tively, while the same for our model is nearly −184.3.
Thus, our model performs more than 38% better in
this aspect. Similar phenomena has been observed for
non-headed shots as well.

Next, we evaluate the proportion of times the mod-
els could classify the outcomes correctly. Here, the

improvement with our model is about 20%, as com-
pared to the other three methods.

The above results are summarized in Table 5.
As a final piece, we want to see how accurately

we can predict out-of-sample outcomes based on the
model we developed. At this point, one should keep
in mind that this is a case of rare events binary regres-
sion and one of the main issues with these scenarios
is that the prediction problem is immensely difficult
and some calibration method is always needed, which
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further requires more information on the whole popu-
lation, as pointed out by King and Zeng (2001). Since
we do not have that information, we have to rely on
usual prediction methods (refer to Section 4.3). We
use cross-validation techniques to evaluate how good
the predictions are, by taking a subset of the full data
(approximately 80%) to learn the model and apply-
ing it on the rest (approximately 20%). Afterwards,
in order to evaluate the prediction efficiency, we fol-
low the general scoring rules outlined by Merkle and
Steyvers (2013).

In the aforementioned study, the authors discussed
the beta family of proper scoring rules, proposed by
Buja et al. (2005) for binary regression problems, in
detail. Using different combinations of the parame-
ters (α, β) for the beta distribution, one can choose
the most appropriate scoring rule. For example, α =
β = 0 corresponds to log score while α = β = 1 cor-
responds to Brier score. On the other hand, Merkle
and Steyvers (2013) presented another way of think-
ing about the parameters, where one can assume that
the value of α/(α + β) (or 1 − α/(α + β)) is the cost
of a false positive (or false negative). In light of this,
one should note that scoring rules with α < β empha-
size low-probability forecasts, in the sense that such
a scoring rule would heavily penalize a prediction
that attach a low probability to a successful out-
come (goals). Similarly, scoring rules with α > β

emphasize high-probability forecasts. Using the R
package scoring (Merkle (2014)), we have computed
the scores for different values of α/(α + β). The log-
arithm of the scores for the three models are plotted
against different cost functions in Fig. 5.

We can see that the performances of the three meth-
ods are very similar for other shots. But, our model
shows consistently better (higher score function) per-
formance when the cost for a false positive is less than
0.7. From a practical point of view, it is probably more
important to predict a goal successfully, and naturally,
the cost for a false positive should be less. And we
can see that in such cases, our model performs better
than the other two. Even for α = β, when the cost is
equal for goal and miss, calculations showed that for
our model, the score function is approximately 20%
higher than the other candidate models.

For headers, though, the results are a bit differ-
ent. While similar conclusions remain true for our
model as compared to SLRM or NN, KMM performs
the best. Hence, one can expect that for headers, the
specification for the spatial correlation is probably
not being best explained by the exponential decay
function.

To conclude this section, we once again emphasize
that goals are example of rare events (Anderson and
Sally (2013)), as only about 10% of the shots get con-
verted to goals on an average. It is nearly impossible
to get a very high prediction accuracy without calibra-
tion. Since we do not have the necessary information
to calibrate the predictions, we should primarily focus
on validating the model. And from the above discus-
sions, we can say that in our proposed model performs
better than the three different types of methods we
considered.

5.3. SP and PS of the players

We now proceed to compute the two measures
described in Section 4.4. In line with the way we ana-
lyze the data, SP and PS are evaluated separately for
headers (denoted as SPH and PSH henceforth) and
other shots (denoted as SPS and PSS henceforth),
in order to identify the players with best heading or
shooting ability. Histograms of the measures for all
these players are shown in Fig. 6.

For the SP values in both cases (figures on the left),
one can see that there is a huge peak around 0 and that
the histogram is slightly skewed to the right, suggest-
ing that with more shots per game, players become
more adept in converting them to goals. Similarly for
the figures on the right, we can see that most players
showed standard positioning senses, while there were
some outliers as well.

Next, to examine if our measures can success-
fully capture the shooting abilities of the players, we
identified the top five shooters in terms of SPS and
PSS. However, at this point, to avoid potential small-
sample issues, we considered players with more than
5 headers or more than 20 shots. The list of the best
players in this regard, along with their real life data
from the MLS 2016/17 season are presented in table
Table 6. In that table, we also present the data for the
top players according to SPH and PSH.

We note that Ignacio Piatti, Giovani Dos Santos,
Fanendo Adi, Ola Kamara, Bradley Wright-Phillips
and Dominic Dwyer were in the list of top ten high-
est scorers in 2016/17 season and our measures show
that the reason behind this is that all have great shoot-
ing or heading abilities. Michael Barrios, a winger
for FC Dallas that season, is very good with his posi-
tioning senses and shooting abilities. Another winger,
Kekuta Manneh also showed good shooting prowess
and found a spot in the list of top five.
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Fig. 5. Logarithm of the score function, corresponding to different cost values, for simple logistic regression model (SLRM), Klier-McMillen
model (KMM), Neural network (NN) and for our proposed model.

The results for the heading abilities were some-
thing intriguing. At first, we like to point out the
special cases of Drew Moor, Sebastian Hines and
David Horst. All of them are defenders and their
heading abilities are supposed to be good. In soc-
cer, it is often observed that the defenders move
ahead during a corner or a long free-kick. Naturally,
it would be beneficial for the teams to identify which
defenders can take good positions during the set-
piece situations and convert the chances that come
in the way. It is evident that our model can serve
that purpose well. Among forwards, Bradley Wright-
Phillips, Cyle Larin and Dominic Dwyer showed
really good positioning sense and conversion ability
when it comes to heading. Moreover, it was found that
positioning sense is significantly positively correlated
with heading prowess.

It is worth mention here that the training data we
use in our model contained information only from a
small part of the season and the above measures are
always calculated based on that data. Thus, it is inter-
esting that the list of best players according to these
measures consists mostly of the players who were
actually at the top of the goal-scoring chart after the
season ended. This clearly reflects that we have been
able to single out the players’ goal-scoring abilities

and positioning senses perfectly. In real life, it has
huge potential to identify most suitable players in
different scenarios.

6. Summary

In conclusion, we have presented an alternate way
of analyzing the conversion rate of shots in soccer.
Using a spatially correlated error process, we have
shown that our model fits the data well. Our proposed
method has exhibited improved Brier score, log score
and predictive abilities, as compared to the logistic
regression model that is in practice at the moment.
On the other hand, our way of specifying the spa-
tial correlation term is usually more appropriate than
other possible way for probit regression models. It
also provided better predictive abilities than neural
network, one popular machine learning technique.

Another key contribution of our work is to prop-
erly quantify the shooters’ efficiency and positioning
sense. To the best of our knowledge, this is the first
paper to introduce such measures. We have also estab-
lished that the quantitative measures are good enough
to identify the best strikers and thus, the teams would
certainly be benefited from using this concept. In
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Fig. 6. Histogram of the shooting prowess (left) and positioning senses (right) for 381 players, calculated based on fitted probability and
actual outcomes.

a more specialized way, conditioning on different
opponents, one can use relevant data to find out the
best shooters against them and that would help the
coaches in making strategies and tactics against par-
ticular teams.

On a related note, we also mention that using a sim-
ilar measure for the goalkeepers, one can quantify the
‘saving prowess’ to single out the best custodians in
the league. We chose not to do that in this study, for
we think the goalkeepers’ abilities should not be eval-
uated solely based on the number of goals conceded,
but also on the number of blocks and saves made by
the goalkeeper. And that is one of the future directions
we are interested in. We emphasize that the methods
we described here are applicable to binary data (goals
and misses), but it can be extended to the multinomial
case (blocked, goal, missed, hit by post or saved) as
well and that is what needs to be done to identify the
best goalkeepers in business.

A minor issue with our model is that if we have
the exact same co-ordinates for two shot locations,
then the covariance matrix associated with the error
process will be singular and the model will fail. But,

theoretically, it is a measure zero event and it hap-
pens very rarely in practice. For example, we did
not encounter such an issue in our data. To under-
stand it a bit further, observe that penalty kicks are
one such kind of events, where the shots are taken
from a fixed location inside the box. But, penalty
kicks should not be considered in a study like ours
because the outcome of the spot-kicks do not really
depend on the distance, angle or other physiologi-
cal attributes. Rather, it only depends on the penalty
taker’s abilities and usually every team has a spe-
cialist for this job. Hence, quite rightly, we left out
these cases from the data before running the analy-
sis. Now, apart from penalty kicks, even if we have
two or more shots fired from the same exact location,
we can easily make adjustments as follows. Suppose,
z1, .., zk are the shots fired from exact same location.
Then, we randomly pick one shot from z1, .., zk and
leave out the other shots from the data. Next, we fit
the model based on the available data and predict
the outcomes of the left-out shots from the model.
We calculate the sum of squared prediction errors in
this case and continue this procedure for all of the k
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Table 6

Real-life statistics of best players as identified by our model

Players with best SPS (ability to score with a shot)

Player SPS PSS Shots (on target) Goals Assists
Michael Barrios 0.814 0.211 50 (26) 9 2
Ignacio Piatti 0.723 0.228 95 (42) 17 6
Giovani Dos Santos 0.654 0.177 63 (31) 14 12
Giles Barnes 0.504 0.129 51 (19) 6 3
Kekuta Manneh 0.453 0.106 36 (20) 5 2

Players with best PSS (positioning sense for shooting)
Player PSS SPS Shots (on target) Goals Assists
Ignacio Piatti 0.228 0.723 95 (42) 17 6
Fanendo Adi 0.219 0.124 88 (37) 16 2
Ola Kamara 0.216 0.178 80 (38) 16 2
Michael Barrios 0.211 0.814 50 (26) 9 2
Giovani Dos Santos 0.177 0.654 63 (31) 14 12

Players with best SPH (ability to score with a header)
Player SPH PSH Shots (on target) Goals Assists
Drew Moor 0.937 0.208 21 (6) 3 0
Bradley Wright-Phillips 0.793 0.185 103 (56) 24 5
Cyle Larin 0.558 0.203 73 (33) 14 3
Dominic Dwyer 0.537 0.152 119 (44) 16 3
Sebastian Hines 0.379 0.130 27 (9) 3 0

Players with best PSH (positioning sense for heading)
Player PSH SPH Shots (on target) Goals Assists
Drew Moor 0.208 0.937 21 (6) 3 0
Cyle Larin 0.203 0.558 73 (33) 14 3
Bradley Wright-Phillips 0.185 0.793 103 (56) 24 5
David Horst 0.154 0.150 21 (11) 3 0
Dominic Dwyer 0.152 0.537 119 (44) 16 3

shots. And finally, we pick the shot with the lowest
error and include it, discarding the rest, in our final
model.

We also note that the parameter φ (refer to Equation
(4.4)), which denotes the extent of spatial depen-
dence, is not estimated directly from our model.
Instead, we use a cross-validation approach to find
out the best choice of φ from a grid. Naturally, this
does not allow us to test the hypothesis of no spa-
tial dependence, cf. Anselin (2001). While it might
seem a disadvantage, we want to point out that this
is a common practice in many spatial studies, see,
for example, Sahu et al. (2006). In fact, in this
study, we built the model after getting sufficient evi-
dence in favour of spatial autocorrelation and hence,
afterwards, we are more interested in explaining the
variation among conversion of shots explained by the
covariates and the spatial error process and then, how
accurately we can predict the outcomes. The results
establish that our model works well to serve that
purpose.

Finally, we believe that the predictions will
improve with more intense data containing informa-
tion like the shot speed, the attacking speed and the
position of the defenders in the shooting range of the

shooter. As our model is really flexible, in future, we
aim to incorporate those attributes in the discussion
to conduct a more comprehensive study.
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