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Abstract. A smart society should not only support the efficiency and effectiveness of processes, they should also have the
ability to comprehend and support its inhabitants well-being. To enable this, we need continuous information on individual’s
well-being. As a first step, we suggest to evaluate people’s long term stress level, as it sheds light on their well-being. We
propose using the biosignal Electrodermal Activity (EDA), a proven measure of people’s arousal or stress. Moreover, EDA can
be measured continuously, in real-time, and unobtrusively via wearables. To assess this idea’s feasibility, the CASE, CEAP-
360VR, and K-EmoCon datasets, including both continuous EDA recordings and continuous subjective self-reported arousal,
were analyzed. With CASE and CEAP-360VR, a multilevel analysis unveiled that the frequency and amplitude of EDA’s non-
specific skin conductance responses significantly correlated with the self-reported arousal. With K-EmoCon, this correlation was
absent, which can be explained by the low arousal condition of this dataset. The latter also signals a main limitation: the lack
of sensitivity of the proposed signal. Nevertheless, the results are promising as they show potential for EDA as a continuous
stress monitor. Therefore, we are optimistic that a future smart society can be enabled to monitor and improve their inhabitant’s
well-being.
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1. Introduction

A smart society, society 5.0, envisions an iterative cycle which gathers data, analyzes it, and turns it into action-
able insights, aiming for a human-centered society that balances economic progress and social problems, all while
merging cyberspace with the physical world [18]. In other words, smartness is considered more than efficiency and
effectiveness, and includes human understanding such as the ability to determine the psychological states of individ-
uals [25]. A smart society can than adapt and support the individual if they require this. Through the understanding
of psychological states, we can intervene accordingly and ultimately enhance individual well-being, creating flour-
ishing societies [1]. Well-being is defined as a construct divided in two branches: hedonic (i.e., positive and negative
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affect) and eudaimonic (i.e., overall fulfillment) [10,29]. An example how smart society can help is signifying stres-
sors and using positive cognitive reappraisal which can moderate the negative outcomes, improving hedonic state
[27].

In this study, our particular interest lies in the assessment of prolonged stress levels experienced by individuals,
which negatively influences well-being. One way in which this prolonged stress level can be expressed is through
arousal (i.e. level of physiological activity) [1]. The comprehension of individual states can be achieved through
diverse information channels, where we focus on biosignals. A biosignal refers to a measurable physiological or
biological signal that conveys information about the functioning of specific physiological processes [7,33]. More
specifically, our interest lies in Electrodermal Activity (EDA), which measures the skin conductance as a result
of sweat gland activity [5]. Despite recent advances in the integration of biosignal data into smart environments,
substantial challenges persist related to (1) the effect of wearable biosensors on smart societies at large, (2) the
real-time discrepancies between subjective arousal reports and EDA signals, and (3) the extended time window of
EDA signals and its consequential impact.

Existing research has shown the possibilities of continuous measuring of biosignals in the health domain [4,13,
20]. However, most of this work uses biosensors in clinical or lab settings, with a few exceptions [15,36,37,41]. This
contrasts the growing interest in monitoring stress and well-being in everyday life [1]. Over the last two decades,
researchers have been investigating the development of unobtrusive biosensors: wearables. Wearable sensors can be
used to monitor one’s physiology and behavior continuously without causing discomfort to the wearer [7]. As such,
users of wearable sensors are still able to interact with their environment intuitively and naturally, while also gaining
valuable insights into their health and well-being. Recent advances in wearable technology made sensors smaller,
lighter, and more wearable [19,21]. Consequently, they are gaining popularity.

Incorporating wearable biosensors in things like smart homes or Intelligent Environments (IE) can allow for
appropriate adaptation and early intervention, ultimately aiding in improving well-being. IE is defined as any space
in our surroundings in which different aspects of the environment are controlled and adapted by intelligent agents,
enhancing individuals’ experiences [3]. Here, we propose using Electrodermal Activity (EDA) signals as an enabler
of early detection of long-term stress. As a biosignal, EDA allows for unbiased, real-time monitoring. Since EDA
was first measured, psycho-physiological research has studied the relationship between emotional states and EDA
on both a subjective (i.e. mental) and objective (i.e. physiological) level [7,34]. Together with the recent advances
in wearable devices, EDA is presumed to be a measure that offers invaluable insights into the intricate interplay
between the mind and body.

For more than a century, Electrodermal Activity (EDA) has been studied as a psycho-physiological measure
for arousal and stress [5,33]. Consequently, there exists a comprehensive understanding of the EDA signal (for a
detailed description of EDA and its features, we refer to Box 1). Empirical research has consistently shown that
stress inducing situations are related to an increase in the EDA signal. To reach these conclusions, researchers
have employed different methods to annotate the EDA signals. When self-reporting is utilized for annotation, it
is typically conducted retrospectively. Hence, self-reported annotations and EDA signals often work on different
temporal scales. Retrospective self-report relies on individuals to report their own feelings, where accurate recall
difficulties is one major limitation [7,24,26]. The primary objective of this paper is to contribute to our understanding
of the relationship between EDA and our subjective experience of arousal. We achieve this by evaluating EDA
signals and continuous real-time self-reported arousal. Consequently, validity of EDA as a real-time stress-indicator
is assessed.

The association between an increase in arousal and the corresponding elevation of EDA is often validated in short
time windows, typically spanning mere seconds [39]. However, the objective of this study is to evaluate the relation
between subjective arousal and EDA on larger time windows, specifically on the order of minutes. This approach
holds interest as it can allow us to evaluate subjective arousal responses against EDA signals on a more detailed
temporal scale while also providing valuable insights into prolonged stress exposure. Extended periods of stress can
negatively influence our well-being, like experienced in bad moods [35,38]. Consequently, this study can show the
potential role of EDA as a monitor of well-being.

In order to assess the viability of Electrodermal Activity (EDA) as a monitoring tool, three distinct datasets have
been identified, each containing continuous EDA signals alongside continuous self-reports. When conducting an
analysis that encompasses multiple datasets, some important factors need to be considered. These datasets contain
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recordings from diverse individuals, various contexts, and different recording devices, including both laboratory
sensors and wearable technologies such as the Empatica E4. We propose a standardized methodology applicable
across all datasets, aiming to aid in standardization within intelligent environments. While the inherent variability
stemming from these individual differences in physiology and subjective experiences introduces complexity to the
interpretation of our analyses, it also provides us the valuable opportunity to examine the robustness of our findings.
This enables us to evaluate and ensure the accuracy of EDA measurements against subjective arousal.

First, we present the methodological framework in Section 2, followed by the presentation of the results in Sec-
tion 3. Finally, in Section 4, we engage in a discussion of the results, their implications, and future research direc-
tions.

Box 1. Electrodermal Activity (EDA), which refers to changes in skin conductance, reflects the activity of the
autonomic nervous system, particularly the sympathetic branch [7]. As stress and arousal levels increase, so
does the electrical conductance (μS) of the skin due to changes in sweat gland activity. The responses present
in an EDA signals can be the result of both positively and negatively experienced stress [5]. This phenomenon
has been meticulously examined across controlled experimental environments, affirming its applicability as a
metric for assessing psychological states. Consequently, EDA is assumed to be a measure that offers valuable
insights into the interplay between the mind and body. Measuring EDA is non-invasive and relatively easy over
extended periods of time, making it a promising tool for long-term monitoring of stress and related outcomes.

EDA signals are generally understood to comprise two primary components: tonic activity and phasic activ-
ity. Tonic activity signifies the gradual variations observed in EDA which is also referred to as Skin Conductance
Level (SCL), whereas phasic activity encompasses rapid responses known as Skin Conductance Responses
(SCRs). SCRs are categorized as either specific, when linked to particular stimulus, or ‘non-specific’ SCRs
(nsSCRs) when not directly associated with a specific event [7]. The frequency of nsSCR is also mentioned as
a valuable measure of tonic activity, even deemed superior to SCL for within-subject changes considering lab
and wearable sensors [40]. In this research, we analyse nsSCRs over extended time windows as a measure of
experienced stress. Figure 1 provides an idealistic depiction of an EDA signal featuring one SCR, which is a
response to the stimulus before, and two nsSCRs that can not be linked to that stimulus. For each response, it
is possible to calculate both its amplitude, defined as the absolute change in μS between onset and peak, and
rise time, defined as the duration from the onset of the response to its peak.

Fig. 1. An idealistic electrodermal activity signal, containing three responses. Two non-specific Skin Conductance Responses (nsSCRs) and one
Skin Conductance Response (SCR) as a result of the stimulus.
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Table 1

Available data sets that measure continuous ElectroDermal Activity (EDA) and affective annotations

Name Stimuli Arousal conditions Duration #Sub

[32] CASE Movie clips Low, mid/high 180 seconds 30

[42] CEAP-360VR 360-VR videos Low, high 60 seconds 32

[23] K-EmoCon Semi-structured turn taking debate Neutral 10 minutes 32

2. Methodology

In this study, we build upon the authors’ prior research, which involved the assessment of two Electrodermal
Activity (EDA) features and self-reported arousal on a continuous scale [22]. The earlier findings were encouraging,
revealing significant correlation coefficients in high-arousal scenarios. Here, we extend our study to two additional
datasets to assess the generalizability of the results. Furthermore, we propose a new processing pipeline that enables
us to deal with the different datasets and their different characteristics while implementing one single methodology.

2.1. Data

To assess EDA as a continuous arousal indicator, we have chosen three recently published datasets that are either
publicly available or accessible upon request. The selection of these datasets is based on two key criteria: (1) the
presence of a high-quality continuous EDA signal, and (2) the availability of a continuous record of self-reported
arousal. The inclusion of continuous arousal annotations in the datasets enables us to investigate the dynamic re-
lationship between physiological stress and the subjective internal state. Through the analysis of these continuous
arousal annotations and the EDA signals, we aim to explore the efficacy of EDA as a dependable measure for con-
tinuous arousal. The datasets that fulfill these criteria are summarized in Table 1. It’s worth noting that the list of
datasets is not lengthy, which is primarily due to the infrequent implementation of the second requirement in the
study designs. The following sections provide a brief description of key features for each dataset.

2.1.1. CASE
The Continuously Annotated Signals of Emotion (CASE) dataset contains data entries derived from 30 partic-

ipants. The experimental set-up used a within-subject design, where participants were subjected to a sequence of
eight distinct movie clips with an average duration of 180 seconds, each inducing varying effects on valence and
arousal. Specifically focusing on the arousal dimension, the stimuli have been categorized into two discrete types:
low arousal and mid to high arousal effects, as indicated by Sharma et al. [31,32].

Over the course of the experiment, a total of 6 biosignals were captured, including Electrodermal Activity (EDA).
Concurrent with the presentation of stimuli, participants provided continuous annotations regarding their affective
responses on the valence and arousal domain [28], using a joystick. For more details on the experimental set up, we
refer to the work by Sharma et al. [32].

2.1.2. CEAP-360VR
The dataset Continuous Physiological and Behavioral Emotion Annotation Dataset for 360◦Videos (CEAP-

360VR) encompasses data records originating from 32 participants. They adhered to a within-subject design,
wherein participants were exposed to a sequence of eight distinct movie clips within a 360-VR environment with a
duration of 60 seconds. These stimuli have been categorized into two distinct types, based on their arousal attributes:
low arousal and high arousal, as classified by Xue et al. [42].

Throughout the experiment, participants wore Empatica E4 wristbands, which facilitated the measurement of sev-
eral physiological parameters including EDA. Additionally, participants were equipped with a Joy-Con controller,
allowing them to provide continuous annotations concerning their affective states across the valence and arousal
domain [28]. For a more comprehensive insight into the experimental set up we refer to the work by Xue et al. [42].

2.1.3. K-EmoCon
The K-EmoCon dataset encompasses data records from a total of 32 participants. However, data from 6 of these

participants (specifically, P2, P3, P6, P7, P17, and P20) were excluded due to either device malfunctions or poor
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Fig. 2. The processing pipeline for the 3 datasets. The processing of the annotation data and Electrodermal Activity (EDA) data is separated.

Table 2

Details on the Electrodermal Activity (EDA) and arousal annotation signals and their difference across datasets

Name EDA recording device Sample rate
EDA (Hz)

Range EDA
(μS)

Annotation
recording device

Sample rate
annotation (Hz)

Range
annotation

[32] CASE Thought technology,
GSR sensor

1000 0–40 Joystick 20 0.5–9.5

[42] CEAP-360VR Empatica E4 4 0–1.5 Joy-Con controller 10 1–9

[23] K-EmoCon Empatica E4 4 0–4 Likert Scale 0.2 1–5

data quality, as specified in the work of Park et al. [23]. The experimental setup facilitated one-on-one debates on a
social issue involving each participant, thus rendering a single experimental condition. It is important to emphasize
that the design of the study deliberately aimed to elicit naturalistic affective states, rather than intensively arousing
affective states.

Throughout the course of the experiment, participants were wearing the Empatica E4 wristband, which recorded
EDA. Subsequent to the debate interaction, participants provided annotations of their affective state, encompassing
both the valence and arousal dimensions. They did so by viewing videos of themselves recorded during the exper-
iment. Each five seconds annotations were given on a Likert scale spanning five points. For a more comprehensive
description of the experimental framework, we refer to the publication by Park et al. [23].

2.2. Data processing

Within each dataset, two recordings are stored, self-reported arousal and an Electrodermal Activity (EDA) signal.
These signals undergo discrete processing procedures, as illustrated in Fig. 2. The process ultimately leads to the
computation of a correlation coefficient using both processed signals, followed by an assessment for statistical
significance.

Table 2 provides an overview of the signal characteristics of the different datasets. It is important to note these
differences because they impact signal characteristics and ultimately processing decisions. We have applied a sim-
ilar method in previous work on the CASE dataset which used lab grade biosignal sensors [22]. Interestingly, the
additional datasets in this work have biosignals recordings measured with the Empatica E4 wristband. These sig-
nals are inherently different because placement of the Empatica E4 EDA sensors is on the wrist, whereas the EDA
sensor used for the CASE dataset was placed on the palm of the hand. It has been shown that the skin conductance
on the wrist is less evident, which is clearly reflected in the range of μS in the recordings and how they differ across
datasets [12,40]. This difference, together with the difference in sampling rate, is considered in the EDA processing
explained in Section 2.2.2.

If we review the annotation signals in Table 2 we can observe that the recordings in the CASE and CEAP-360VR
datasets are, even though distinct, rather similar. However, the K-EmoCon datasets applied a completely different
method and reported continuous self-report using a method with a far lower sampling rate and resolution. These,
together with the fact that recording of self-report is in retrospect, are important notes to consider when processing
and interpreting the results.
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Algorithm 1: Self-reported arousal processing
Data: dict_arousal containing self-reported arousal recordings, vec_arousal, for all stimuli (e.g. video’s).

for participant ∈ 1, 2, . . . , P do
max_value = get_max_value(dict_arousal);
for video ∈ 1, 2, . . . , V do

if dataset == K − EmoCon then
vec_arousal = vec_arousal − 3;

else if dataset == CEAP ∨ dataset == CASE then
vec_arousal = vec_arousal − 5;

vec_arousal = vec_arousal / max_value ; // normalize

end
end

2.2.1. Annotation processing
In the CASE and CEAP-360VR datasets, the recorded annotations are outcomes of a Cartesian-based annotation

process, wherein the valence and arousal dimensions are respectively represented along the x and y axes. In the
present context, only the arousal component (i.e., the y-position) is considered.

Within each dataset, distinct scales are employed to signify arousal levels. To illustrate, within the CASE dataset,
the range for arousal annotation spans from 0.5 to 9.5, whereas the K-EmoCon dataset adopts a range of 1 to 5 for
the same purpose, see Table 2. To normalize these ranges consistently across datasets, an adjustment is implemented,
effectively rendering a neutral state of arousal ascribed to the value 0. This procedure is outlined in Algorithm 1.
Subsequently, the signal is subjected to a normalization process, which corrects for interpersonal differences among
participants. This entails division by the maximum arousal annotation recorded across all stimuli. This normalization
approach is chosen for its ability to retain positive arousal values within the interval of [0, 1], while concurrently
mapping negative arousal values onto the interval of [−1, 0] [34].

2.2.2. Electrodermal activity processing
As explained in Box 1, Electrodermal Activity (EDA) signals are typically divided into tonic activity and pha-

sic actvity. In our study, our focus is specifically on the phasic activity, more precisely the ‘non-specific’ SCRs
(nsSCRs). An nsSCR denotes any emerging SCR that lacks a direct connection to internal or external stimuli. The
frequency of these nsSCRs is widely employed as a measure, particularly in contexts involving arousal, stress, and
emotions [5,40]. It is even considered a more effective and valid measure compared to skin conductance level when
employing both palm and wrist based EDA measures [40]. Although less frequently employed, the sum amplitude
of nsSCRs also serves as a valuable measure, enabling the quantification of total ‘non-specific’ changes in EDA [5].

A challenge emerged during the analysis of EDA signals from diverse datasets. The records showed significant
disparities, including variations in range, likely attributed to differences in recording devices and sensor placement.
The CEAP-360VR and K-EmoCon datasets utilized the Empatica E4 wristband to measure EDA, while CASE used
a sensor positioned on the index and ring finger, a common site for EDA measurement related to affective states [12].
Consequently, the EDA data within the CEAP-360VR and K-EmoCon datasets feature smaller ranges, sometimes
even up to 30 times smaller compared to the CASE dataset. This discrepancy significantly impacts EDA analysis.
Traditionally, a static threshold has been set for nsSCR detection, allowing for a minimum value typically between
0.01 and 0.05. However, due to the range disparities present in the raw Empatica E4 data, this conventional static
threshold proved ineffective. Consequently, we propose a procedure for nsSCR detection that is independent of the
recording device used.

Algorithm 2 provides an overview of the EDA processing. For the peak detection we made use of the neu-
rokit2 package, which contains functions for biosignals processing. Here, we used eda_phasic() with the
‘highpass’ argument to extract the phasic activity of the signal, the highpass filter had a cutoff frequency of
0.05. The eda_phasic() function returns the phasic activity present in the signal (i.e. the skin conductance re-
sponses). To ensure that all EDA data from the different datasets can be analysed accordingly, we normalize this
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Algorithm 2: Electrodermal Activity (EDA) processing
Data: dict_eda containing self-reported arousal recordings, vec_eda, for all stimuli (e.g. video’s).
for participant ∈ 1, 2, . . . , P do

for video ∈ 1, 2, . . . , V do
if sample_rate == 1000Hz then

vec_eda = median_filter(vec_eda);
downsample vec_eda to 20 Hz ;
vec_eda = smoothing_filter(vec_eda);

else if sample_rate == 4Hz then
vec_eda = butterworth_filter(vec_eda);
interpolate vec_eda to 8 Hz;
vec_eda = smoothing_filter(vec_eda);

onset, peak, amplitude = ns-scr_detection(vec_eda) ; // neurokit2 package
onset, peak, amplitude = check_peaks_requirements(onset, peak, amplitude);
information_vector_amplitude = information_vector(onset, peak, amplitude) ;
information_vector_frequency = information_vector(onset, peak, amplitude) ;
sum_vec_amplitude = moving_sum_filter(information_vector_amplitude) ;
sum_vec_frequency = moving_sum_filter(information_vector_frequency) ;

end
end
for participant ∈ 1, 2, . . . , P do

max_value_amplitude = get_max_value(dict_sum_vec_amplitude);
max_value_frequency = get_max_value(dict_sum_vec_frequency);
for video ∈ 1, 2, . . . , V do

sum_vec_amplitude = sum_vec_amplitude / max_value_amplitude ; // normalize
sum_vec_frequency = sum_vec_frequency / max_value_frequency ; // normalize

end
end

phasic activity. This normalized phasic signal is then passed in the eda_peaks() function which detects the nsS-
CRs and returns the onset, peak, and amplitude. A threshold of 0.01 μS was set for the nsSCRs amplitude, which
represents the minimum EDA change to count as an elicited nsSCR [7].

Based on the location and amplitude of the nsSCRs we can create two information vectors where (1) contains a
1 where a peak is detected, and (2) contains the amplitude value at the same peak location. A moving sum filter
of 20 seconds is then applied over the two information vectors, resulting in two vectors, (1) contains the nsSCRs
frequency per 20 seconds and (2) contains the total nsSCRs amplitude per 20 seconds. Finally, both vectors are
normalized by dividing by the maximum value recorded across all stimuli of the corresponding nsSCRs feature, see
Algorithm 2.

2.2.3. Correlation and testing
Prior to performing a correlation analysis, it is essential to ensure uniform sample frequencies for both signals

(i.e. the self-report signal and EDA feature signal). For all datasets, with the exception of CASE, this meant down-
sampling either the self-reported arousal or the EDA signal, dependent upon which of the two has the lower sample
rate. Following down-sampling, a smoothing filter is applied to both signals, employing a window size of 15 seconds.

Subsequent to these preparatory steps, the data is ready for correlation testing. The Pearson’s correlation coef-
ficient was computed for each recording, corresponding to each participant and stimulus combination. When no
nsSCRs were present in the signal, both the nsSCR frequency and amplitude signal is zero, hence no correlation
value can be computed, which results in missing values. We hypothesise a positive Pearson’s correlation coefficient
between the continuously self-reported arousal and nsSCRs’ frequency and amplitude. In other words, we expect
an real-time increase in nsSCRs’ frequency and amplitude when self-reported arousal is increased.

We then performed statistical tests to assess the statistical significance of the correlation values. For our CASE
and CEAP-360VR datasets we encountered 8 distinct conditions, corresponding to 8 distinct videos. Consequently,
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we obtained on average 8 observations per participant per nsSCR feature, although it is noteworthy that some
participants had missing correlation measures. Hence, for the CASE and CEAP-360VR datasets we conducted a
multilevel (ML) analysis, also known as a mixed-effects or mixed linear model [16]. ML analysis is capable of
handling such missing data. More details on ML analysis is given in the following section. Note that correlation
results for K-EmoCon do not contain repeated measures and thus no ML modeling is applied, we have just one data
point (i.e. correlation value) per participant. Hence, we test the correlations on their statistical significance against
the null hypothesis by employing an one-sampled t-test.

2.2.4. Multilevel analysis
We employ multilevel (ML) analysis because of the nested structure of our observations within participants. This

choice becomes particularly relevant when considering the potential influence of individual differences in biosignals
data. Individual participants inherently possess unique physiological and psychological traits, contributing to varia-
tions in their biosignals, including Electrodermal Activity (EDA). For instance, the number of sweat glances on the
skin differs from one individual to another [7]. These differences are expected to have implications for the monitor-
ing and analysis of affective states through biosignals. In addition to these physiological variations, we anticipate
that individuals possess differing abilities to interpret their psychological states and, consequently, may annotate
their experiences differently. For instance, people can differ in their tendency to adhere to socially desirable re-
sponding [24]. More generally, the interpretation of arousal (and valence) differs across persons and circumstances
[17]. Hence, we present our multilevel model, defined as

OutcomeVariableij = B0j + B1j · Arousal1ij + eij , (1)

where OutcomeVariableij is a representative for our two outcome variables, which represent the correlation values
of amplitude and frequency of nsSCRs against self-report. Arousal1ij reflects the level of arousal depicted in the
stimuli which is either low (0) or high (1). The subscript i refers to the lower level 1 (i.e. repeated measure of video
conditions) and the subscript j to level 2 (i.e. the individual participants). Multilevel analysis allows to compare the
individual participants since each participant will have its own slope B1j and intercept B0j . It shows the variance
across participants by looking at individual slopes and intercepts. It also allows to evaluate the overall or average
effects by looking at the fixed effect. To provide more detail, we can rewrite the coefficients of the model as

B0j = γ00 + U0j and

B1j = γ10 + U1j ,
(2)

where γ00 is the overall mean intercept and U0j j ’s deviation from the mean intercept, and γ10 the overall mean
slope and U1j j ’s deviation from the mean slope. To be able to elaborate on the significance of the model, we first
build a baseline model, also called a random effect model, defined as

OutcomeVariableij = B0j + eij , (3)

here we only set the cluster variable (i.e. the participants) and calculate the mean intercepts, both within and between
participants. We then build on top of this baseline model and test the effect of arousal level and whether the fit of the
model improves. Multilevel analysis was performed in R version 4.3.1, using the lme4, lmerTest, and effects
packages.

3. Results

Illustrated in Fig. 3 are three representative examples showcasing the relation between self-reported annotations
and Electrodermal Activity (EDA) features within the context of a high arousal video. These instances are drawn
from discrete datasets, and notably, the examples 3a and 3b affirm the hypothesis. Nonetheless, it is essential to



A.L. Meijer et al. / Electrodermal activity: A Continuous monitor of well-being 201

Fig. 3. Example of the processed self-reported arousal against the processed ‘non-specific’ Skin Conductance Response’s (nsSCR) frequency
and amplitude, given over the duration of one video with a high arousal context, extracted from the (A) CASE, (B) CEAP-360VR, and (C)
K-EmoCon dataset.

underscore that these examples have a limited scope as they show participants which were exposed to stimuli
eliciting heightened arousal, except for Fig. 3c.

First we calculated the Pearson correlation coefficients, which in rare cases resulted in a missing value. This is
due to the absence of a nsSCR, hence one of the vectors has a constant value of zero. With the CASE dataset 5%
of correlation coefficients was missing. The CEAP-360VR correlation coefficients contained 1.5% missing values.
Finally, the correlation coefficient calculated from the K-EmoCon dataset contained no missing values.

Figure 4 presents the calculated correlation coefficients for different arousal contexts, across datasets. Notably
is the congruence between the findings from the CASE dataset in previously established research [22], while here
we used a different nsSCRS detection method. Furthermore, Fig. 4 showcases similar results for the CASE and
CEAP-360VR datasets. Despite the distinct differences between the datasets, encompassing different participants,
contextual variables, and instrumentation, it is noteworthy that for both the correlation coefficients show elevations
in instances of heightened arousal. Table 3 provides an overview of the exact median values across the datasets and
arousal conditions.

3.1. Statistical analysis

The correlation outcomes derived from K-EmoCon do not confirm our initial hypothesis, denoting a median
correlation coefficient approximating zero. We evaluated this outcome with an one-sampled t-test, testing if the
correlations significantly differ from zero. Applying a Bonferroni correction for the multiple tests (i.e. 2 tests,
for amplitude against self-report and frequency against self-report), we can conclude that there is no significant
Pearson correlation coefficient; t(25) = 0.666, p = .512 for amplitude, and t(25) = 0.819, p = .420 for frequency.
Consequently, the findings display the absence of a correlation between EDA features and self-reported arousal
within the context of the study.



202 A.L. Meijer et al. / Electrodermal activity: A Continuous monitor of well-being

Fig. 4. Distribution of correlation coefficients for frequency and amplitude of ‘non-specific’ Skin Conductance Responses (nsSCRs) with self-
reported arousal. It shows the results of all three datasets and accordingly on the different arousal conditions present in the datasets.

Table 3

The median correlation values for the difference level of arousal, given for both electrodermal activity features (“non-specific” Skin Conductance
Responses (nsSCR) their frequency and amplitude) against self-report

Dataset Condition nsSCR frequency nsSCR amplitude

CASE Low arousal 0.019 0.012

High arousal 0.440 0.510

CEAP-360VR Low arousal −0.553 −0.453

High arousal 0.689 0.639

K-Emocon Neutral arousal 0.019 0.046

3.1.1. Multilevel analysis
In our analysis of the CASE dataset (see Table 4), we consider the two key features: amplitude and frequency.

First, the baseline model M0 shows that, on average across all participants, there is a significant difference from
zero for both amplitude and frequency; 0.221 (p < .001) and 0.190 (p < .001) respectively. However, we found
no effects signifying individual differences. The second model, M1, includes arousal levels of the stimuli (as given
in Equation (1)). As such it allows for the intercept to vary randomly and fix the slope, allowing us to determine
the effect of the stimulus. Notably, when arousal is low (0), the correlation coefficient approaches zero, while it
significantly increases in high arousal (1) (0.379, p < .001 for amplitude and 0.380, p < .001 for frequency).

Similarly, in our analysis of the CEAP-360VR dataset (see Table 5), we examine both amplitude and frequency
features. The baseline model M0 reveals that, on average across all participants, there is no significant difference
from zero, with estimates of 0.065 (p < .035) for amplitude and 0.085 (p < .045) for frequency. Again, no effect
was found that showed significant individuals differences. In our second model M1, which includes arousal levels
of the stimuli (see Equation (1)), we again allow the intercept to vary randomly and fix the slope. When arousal is
low (0), the correlation coefficient becomes negative (−0.274 for amplitude and −0.336 for frequency), while the
coefficient increases for amplitude (0.706, p < .001) and for frequency (0.829, p < .001) for high arousal stimulus
(1).

The results of the M1 models, for both CASE (Table 4) and CEAP-360VR (Table 5), show that adding information
on the context arousal (i.e. stimulus) significantly improved the fit of the ML model. We can observe this by looking
at the drop in deviance of the models. Moreover, we can derive from this that an increase in arousal context results
in a substantial positive upswing in the correlation coefficient for both amplitude and frequency. Subsequently, we
examined whether introducing variable slope terms with the predictor variable would further improve model fit in
both datasets. The deviance of this model M2, either remained unchanged or exhibited a slight decrease, yielding
no statistically significant improvements.
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Table 4

Details on the multilevel models created with the CASE dataset, for correlations on self-report against both electrodermal activity features:
amplitude and frequency of ‘non-specific’ skin conductance responses

Amplitude Frequency

Model: M0: intercept only M1: with predictor M2: with random
slope arousal

M0: Intercept only M1: with predictor M2: with random
slope arousal

Fixed part Coef. (s.e.) Coef. (s.e.) Coef. (s.e.) Coef. (s.e.) Coef. (s.e.) Coef. (s.e.)

Intercept 0.221 (0.028) 0.022 (0.037) 0.022 (0.037) 0.190 (0.027) −0.010 (0.034) −0.009 (0.0376)

Arousal 0.379 (0.051) 0.379 (0.051) 0.382 (0.048) 0.380 (0.049)

Random part

σ 2
e 0.0000 0.0000 0.000 0.000 0.000 0.008

σ 2
u0 0.183 0.148 0.148 0.164 0.128 0.124

σ 2
u1 0.000 0.007

Deviance 257.35 207.68 207.68 232.54 175.19 174.89

Table 5

Details on the multilevel models created with the CEAP-360VR dataset, for correlations on self-report against both electrodermal activity
features: amplitude and frequency of ‘non-specific’ skin conductance responses

Amplitude Frequency

Model: M0: Intercept only M1: with predictor M2: with random
slope arousal

M0: intercept only M1: with predictor M2: with random
slope arousal

Fixed part Coef. (s.e.) Coef. (s.e.) Coef. (s.e.) Coef. (s.e.) Coef. (s.e.) Coef. (s.e.)

Intercept 0.085 (0.040) −0.274 (0.049) −0.274 (0.058) 0.085 (0.042) −0.336 (0.051) −0.336 (0.061)

Arousal 0.706 (0.066) 0.706 (0.072) 0.829 (0.064) 0.828 (0.073)

Random part

σ 2
e 0.000 0.008 0.040 0.000 0.018 0.054

σ 2
u0 0.402 0.271 0.259 0.449 0.260 0.248

σ 2
u1 0.036 0.044

Deviance 484.58 390.21 387.54 512.4 387.7 384.57

4. Discussion

To create a truly smart society, we believe that next to efficiency and effectiveness, there is great value in being
able to ‘sense’ an individual’s health and well-being [18]. Having a human understanding allows for appropriate
adaptation of the environment, creating a loop of information gathering and action, adding to a smart society. An
example of this is the ability to identify affective states of hospitalized children, providing appropriate adjusted
surroundings such as offering soothing stimuli to relieve the child’s anxiety. Or, adaptive lighting of the room
based on affective state of the inhabitant. This personalized and responsive approach to environments showcases the
potential of integrating sensory technologies into our society.

Pro-longed experience of stress is reflected in bad moods and a decrease in performance and well-being [14,35].
Being able to detect these stress levels can allow for appropriate intervening through smart environments and sup-
port individuals, functioning as a first step in supporting the complex construct well-being [9]. Recent advances in
wearable biosensors introduce new directions to monitor these states. One particular biosignal that can be measured
trough wearable devices is Electrodermal Activity (EDA). We assessed EDA’s potential as a real-time indicator
of stress levels. We did so by conducting an analysis on three datasets (i.e. CASE [32], CEAP-360VR [42], and
K-EmoCon [23]) containing both continuous EDA signals and continuous self-reported arousal. We calculated
the correlation between EDA features, namely non-specific Skin Conductance Response (nsSCR) amplitude and
frequency, and self-reported arousal. In the CASE and CEAP-360VR datasets, our analysis revealed significant pos-
itive correlations, where in the K-EmoCon dataset these were absent. Next, we will consider these results along the
following discussion points: (1) EDA as a real-time indicator, (2) extended time windows, and (3) the ecological
validity. Subsequently, we present the limitations of the study and end with a conclusion.
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The results showcase that EDA is capable of functioning as a real-time measure for arousal. The positive cor-
relations in high arousal situations, obtained from CASE and CEAP-360VR, underscore that as subjective arousal
increases, EDA features also exhibit increase across a continuous temporal scale. For over a century different the-
ories have been developed in relation to the subjective experience and physiological states. One of these theories is
the James–Lange theory which states that our affective experiences, such as emotions, are a result of perceiving to
physiological changes in our body, for example we feel fear or joy after we notice our heart rate increases or our
palms sweat [11]. An alternative theory is the Schachter and Singer’s two-factor theory of emotion, which states that
affective states are determined by a combination of both physiological responses and the cognitive appraisal of the
situation. This means that the same physiological state can lead to different experiences, depending on the cognitive
interpretation [30]. Although our research is not able to validate either of such theories, which is very complex as
pointed out by Cacioppo and Tassinary [6], it is interesting that the results of two datasets suggest the mapping be-
tween physiological changes and subjective experience is there, on a continuous scale, indicating the two are indeed
interconnected. Note that this mapping is complex and not universal (i.e. the same across individuals) nor constant
(i.e., the same at different instances for a given person) [14]. It is regulated by our cognitive processes of evaluation,
which may be one the reason our third dataset, K-EmoCon, does not show this mapping.

In contrast to traditional practices in EDA validation studies, which often focus on time windows no longer than
a few seconds [39], our study employed extended time windows (i.e., minutes). This approach enables us to look
at the EDA signal differently and extract different features. Instead of looking at acute responses, we are interested
in prolonged diffused responses. As a results we look at different features of the signal. Our decision to look at the
nsSCR as our measure is one of them, which has been validated in other work [40]. The extended time windows
and different features also means we can examine different psychological constructs, including moods, prolonged
stress, and, ultimately, well-being. Summarizing, we are not using EDA traditionally as for acute stress responses,
but rather as underlying continuous stress indicator. The presence of positive and significant correlation coefficients
in high arousal scenarios underscores the potential for gaining insight into stress dynamics and implementing timely
interventions, particularly when high arousal persists over extended duration.

The CEAP-360VR and the K-EmoCon datasets featured EDA measurements obtained via a wearable device,
specifically the Empatica E4. In contrast, EDA measures for the CASE dataset were recorded in controlled lab
environments using laboratory sensors. This means that EDA recordings in the CASE dataset are significantly
different from the CEAP-360VR and K-EmoCon dataset. For one, wearable devices measure EDA on the wrist,
whereas laboratory sensors measure on the palm of the hand, which is recommended [12]. It is knows that the phasic
signals originating from the wrist may be less pronounced compared to those originating from the fingers or the
palmar surface [40]. Overall, the signal quality of wearable devices tends to be lower compared to lab-grade devices,
partly due to the use of dry sensors [2]. Despite these important differences, it is noteworthy that both the CASE and
CEAP-360VR datasets yielded similar outcomes in cases of high arousal, suggesting applicability of Empatica E4
in this context. This finding bears particular significance concerning a smart society, which cannot rely on laboratory
sensors but must incorporate wearable devices. Consequently, the results from our study advocate for the integration
of wearable devices into our living environments to provide individual support. This integration can assist in timely
interventions when stress levels escalate, ultimately contributing to improved well-being. Note that K-EmoCon
dataset does not show the same results while employing an Empatica E4, and thus not support the argument given.
We believe there are several factors that can explain this deviance, provided in the following paragraph which present
the first of several limitations that warrant consideration: (1) the challenge of generalization, (2) constraints related
to low arousal states, and (3) individual variations in self-report.

Firstly, while the different datasets facilitated an extensive examination of arousal within varied contexts, both in
controlled laboratory settings and more realistic scenarios, it is essential to acknowledge that they may not fully cap-
ture the intricacies of real-world situations. This complexity poses challenges in translating our findings into practi-
cal real-world applications and generalizing them effectively. One step towards real-world applications is the use of
wearable devices to measure Electrodermal Activity (EDA). Two datasets, namely CEAP-360VR and K-EmoCon,
did employ such wearable devices. Consequently, the outcomes derived from these datasets hold significant rele-
vance concerning their potential applicability to real-world monitoring scenarios. However, both datasets yielded
diverse results, making it hard to draw definitive conclusions from these findings. The results from K-EmoCon did
not support our hypothesis. It is noteworthy that this dataset is designed to minimize intense emotional responses.
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Additionally, self-report data in this dataset suffered from retrospective reporting and poor resolution. Prior re-
search has highlighted the limitations associated with such retrospective annotations and the time gap it introduces
between the actual affective state and its annotation [24]. This may explain the deviance with our hypothesis in
the K-EmoCon dataset. Overall, to support our findings, future research should be focused on expanding the vari-
ety of datasets and contexts in which data is gathered. Furthermore, long-term studies would be beneficial for the
assessment of EDA in real-world application for smart societies.

Secondly, our study consistently identified significant effects between EDA features and self-reported arousal in
instances of heightened arousal. Notably, as arousal levels diminished, correlation coefficients exhibited a corre-
sponding decrease. Consequently, our findings do not offer comprehensive insights into states of low arousal, which
is also limiting their direct applicability in real-world contexts. It suggests the existence of a threshold, beyond which
physiological indicators directly reflect arousal levels. As such, accounting for the anticipated level of arousal is cru-
cial when utilizing nsSCR frequency and amplitude as indicators. Future research should aim to precisely determine
this threshold.

Finally, an examination of the spread of correlation coefficients, even in high arousal scenarios, reveals notable
variance. This variance may be attributed to individual differences in reflective abilities, such as an individuals’
capability for annotating and articulating their physiological states. It is possible that not all individuals possess
the same degree of competence. There are issues to consider in self-report such as socially desirable responding
(SDR), acquiescent responding (AR), and extreme responding (ER) [24]. People can differ in their tendency to
adhere to SDR and present self-report that reflects what they think the researches expect from the stimuli, rather
than reflect what they are feeling. This tendency can be linked to personality, but since we do not have personality
information on the participants in the datasets, we were not able to test for this. AR, which is a term used for
people who tend to agree, can be viewed as an individual difference linked to conformity and impulsiveness [24].
Again, we lack the information on personality to check for this effect. ER, which has been validated as a consistent
individual difference, where ambiguity, emotional arousal, and rapid responding induce temporary increases in
extreme responding [24]. This makes ER also a likely factor to consider. With normalization we try to control for
this factors, but in cases where someone is experiencing little arousal yet annotates extremely over all stimuli, the
normalization does not suffice. Finally, people simply do not have an infinite ability to recall and reflect all relevant
information [24]. They can be overwhelmed with information, in this case rapid changes in stimuli. This can make
the task of annotation difficult, for some more than for others.

Collecting physiological data and using it in a smart society brings a responsibility regarding safety and privacy
of this sensitive information. For one, users of wearable devices should have ownership of their data. Additional
concerns are re-identification and linkage risks resulting from routine activities and regular movements recorded
through the device. A potential solution involves implementing anonymous user IDs to communicate across devices.
Furthermore, incorporating local real-time processing on the device (i.e. federated learning) can address privacy
and safety concerns. Users should be notified of any policy changes to ensure transparency and user awareness
[8]. Finally, it’s also important to acknowledge that self-tracking, while beneficial, can escalate into an obsession,
potentially causing more harm than good. Further research is needed to determine how to maintain a balanced
approach to wearable devices integrated in our society [8].

In conclusion, our findings reveal a significant correlation between EDA features and self-reported arousal within
contexts characterized by high arousal levels. This consistency in results holds across two distinct datasets (i.e.,
CASE and CEAP-360VR), with the third dataset (i.e., K-EmoCon) deviating. This divergence can arguably be
attributed to inherent differences from the other datasets, such as the retrospective annotation as well as the frequency
and resolution of the self-report. Our research underscores the possibilities of continuous monitoring of EDA signals,
particularly in real-time reflection of subjective arousal under high arousal conditions. The results highlight the
potential of EDA monitoring through wearable devices as a promising avenue for real-world stress and arousal
detection. Overall, this study contributes to our understanding and monitoring of physiological responses, adding to
the larger vision of creating a smart society that can adapt to individual needs. As such, smart societies may one day
be able to be truly smart and support individuals in their pursuit of well-being.
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