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Abstract. Distributed Machine Learning (DML) has emerged as a disruptive technology that enables the execution of Machine
Learning (ML) and Deep Learning (DL) algorithms in proximity to data generation, facilitating predictive analytics services
in Smart City environments. However, the real-time analysis of data generated by Smart City Edge Devices (EDs) poses sig-
nificant challenges. Concept drift, where the statistical properties of data streams change over time, leads to degraded predic-
tion performance. Moreover, the reliability of each computing node directly impacts the availability of DML systems, making
them vulnerable to node failures. To address these challenges, we propose a resilience framework comprising computationally
lightweight maintenance strategies that ensure continuous quality of service and availability in DML applications. We conducted
a comprehensive experimental evaluation using real datasets, assessing the effectiveness and efficiency of our resilience main-
tenance strategies across three different scenarios. Our findings demonstrate the significance and practicality of our framework
in sustaining predictive performance in smart city edge learning environments. Specifically, our enhanced model exhibited in-
creased generalizability when confronted with concept drift. Furthermore, we achieved a substantial reduction in the amount of
data transmitted over the network during the maintenance of the enhanced models, while balancing the trade-off between the
quality of analytics and inter-node data communication cost.

Keywords: Edge computing, edge intelligence, model maintenance, resilient machine learning

1. Introduction

In recent years, the field of Internet of Things (IoT) has seen tremendous growth and development, primarily
driven by the rapid advancements in sensor technology. This has allowed physical devices to be interconnected on
a massive scale, forming a vast network infrastructure [27]. The exponential growth in data generation has posed
significant challenges for traditional cloud computing models. As data volumes have soared to unprecedented levels,
the conventional approach of transferring all data to the cloud for processing has proved to be inadequate [30]. This
has resulted in a failure to meet the critical requirements of many systems such as low latency. Consequently,
demand has been raised for driving computation to the edge, shifting the data processing from the cloud closer to
the user, the nodes, and introducing the computation paradigm of Edge Computing (EC).

The birth of EC aimed to enhance the quality of service of IoT applications, by fully utilizing their computational
power, since data storage and transfer to the cloud would consume an excessive amount of computational space
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and power. Thereby, meeting the low-latency requirements of modern applications, while protecting end-users’
privacy, minimizing data transmission and network bandwidth load as well as alleviating the energy consumption
of the network. Nevertheless, EC is not a panacea for the incapabilities of cloud computing. The limited computing
resources and storage of the distributed Edge Nodes (ENs) make them vulnerable to attacks introducing security
issues and widening the available spectrum for the attackers.

Nowadays, EC applications have proliferated across diverse sectors, spanning an array of domains including
healthcare [1], agriculture monitoring [4], energy prediction systems [18] and bike-demand forecasting [29], among
others. These applications collectively fall under the expansive umbrella of smart city applications. By 2012, around
143 smart cities has adopted innovative technologies in addressing urban challenges, driven by the need to ac-
commodate urbanization demands and leverage emerging technologies, thereby establishing robust infrastructures
capable of supporting novel services [21].

The predictive analytics tasks of these applications are critical aspects and play a crucial role in their success.
A majority of these applications are designed to operate in real-time, requiring rapid data processing and providing
accurate results. This highlights the importance of EC in various fields and its potential to revolutionize how data
is processed and analyzed. Given the intricate and ever-changing characteristics of contemporary applications, it
is vital to establish a DML infrastructure to effectively monitor the system and execute predictive operations. The
integration of ML with distributed EDs is motivated by several key factors, including the computational and storage
limitations of these devices and the associated data privacy and security concerns that arise as a result. These
challenges are driving the need for a new paradigm in which ML algorithms are executed and trained locally on
EDs, rather than in centralized data centers. DML systems allow for local data processing, reducing inter-node data
transmission and mitigating privacy and security risks. Subsequently, they enable real-time processing of data and
the deployment of ML algorithms closer to the source of the data, leading to improved response times and increased
reliability, making it an increasingly attractive solution for a wide range of applications.

Nonetheless, the proliferation of IoT applications as previously mentioned has led to a significant increase in
their attractiveness as targets for malicious attacks [5]. As a result, these systems are highly vulnerable to the con-
sequences of node failures, which can severely impact their performance, reliability and availability. Furthermore,
the requirements for real-time data analysis and prediction services in dynamic environments pose a significant
maintainability challenge due to the occurrence of concept drift [26]. Concept drift refers to the alternations in the
distribution of the incoming data as a result of shifts in trends and patterns over time. This presents a significant ob-
stacle in ensuring the accuracy and consistency of predictions made by the ML models. With ML models designed
to learn the concept of a stationary dataset, over time, the distribution of the new incoming data can deviate from that
of the original training data, adversely impacting the performance of the models. To effectively address this issue, it
is crucial to first detect the concept drift, comprehend its characteristics and then adapt the models accordingly. With
our focus lying specifically on the maintainability and adaption of the ML models in the presence of concept drifts,
we seek to address these challenges and facilitate the successful deployment of DML systems, while enhancing their
security and reliability.

The spatial and temporal variations observed among the nodes in a DML system give rise to diverse statistical
characteristics in their respective data. Consequently, the local ML model implemented at each node, trained exclu-
sively on local data, fails to provide adequate support in the event of an attack on the node. This limitation arises due
to the local ML model’s performance being optimized solely for high predictability services when applied to its own
local data, rendering it insufficiently generalized for data originating from other nodes. Consequently, the accuracy
of a node’s local model may vary depending on the specific data it is employed on. To overcome this challenge
and account for the heterogeneity of data across nodes, we propose the development of enhanced models on each
edge component that are sufficiently generalized. These models are trained using data influenced by both the local
and adjacent ENs. Our approach incorporates the principles of federated compressed learning, which encompasses
techniques such as model and data compression, joint learning, communication efficiency and secure data exchange.

This research proposes a resilience framework for DML environments that addresses node failures and concept
drifts. In order to account for the heterogeneity of data across nodes, the framework proposes the development
of generalized enhanced models on each edge component. These enhanced models are trained on data influenced
by the local and adjacent ENs, and are designed to enhance the availability and quality of service in the event of
node failure. To further enhance model resilience in the face of concept drift, the proposed framework introduces
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several maintenance strategies. These strategies aim to reduce the cost of model maintenance by minimizing inter-
node data transmission. Our findings demonstrate that these maintenance strategies help sustain the availability and
quality of service in DML environments during node failure and concept drift. Furthermore, the proposed framework
achieves comparable or superior predictability performance compared to the baseline solution, offering significant
cost savings in model maintenance.

To the best of our knowledge, we are among the first to investigate the interactions between enhanced models and
concept drifts fusing the principles of DML to achieve efficient yet effective and secure data transmission across
ENs. We summarize our contributions as follows:

• A novel and systematic approach that expands the generalizability and predictability capabilities of our models,
facilitating collaborative learning.

• Novel and lightweight (computation and communication efficient) strategies for the construction of the en-
hanced models suitable for regression, multivariate and image classification predictive tasks.

• We provide a theoretical analysis of different concept drift types and their applications on real-world datasets
and examine their effects on the performances of our models.

• We perform a comprehensive evaluation and comparative assessment of our proposed strategies against base-
line models using three real datasets.

The remainder of the paper is structured as follows: Section 2 reports on the related work, Section 3 elaborates
on the problem formulation, Section 4 introduces our maintenance strategies, Section 5 reports on the performance
evaluation and comparative assessment of our paradigm under three experimental scenarios using real datasets and
Section 6 concludes the paper with a summary and our future research agenda.

2. Related work

Firstly introduced by [22], concept drift has been initially investigated as a means to highlight how current noisy
data could become helpful information in future instances. Since then, the field has undergone significant develop-
ment and can be categorized into three primary stages: detection, understanding and adaption [16].

As the first step in the pipeline, detecting concept drift is a crucial component in ensuring that predictive mod-
els remain accurate and reliable over time. Concept drift detection can be categorized based on the test statistics
they utilize into three main categories. The largest category, error rate-based drift detection, measures changes in
the performance of predictive models over time. Proposed by [10], the Drift Detection Method (DDM), is one of
the earliest and simplest concept drift detection algorithms. DDM evaluates new data instances and determines the
error rate of the predictive model over a specified time window compared to the previous timeframe. The algorithm
operates at two levels of detection: warning and drift. Once the warning level is reached, new predictive models are
built. When the confidence level reaches the drift level, the existing models are replaced with the models trained
over the warning level. Several extensions of the DDM algorithm have been proposed such as Learning with Lo-
cal Drift Detection (LLDD) [9], Heoffing’s inequality-based Drift Detection Method (HDDM) [8] and Dynamic
Extreme Learning Machine (DELM) [28]. LLDD uses a plurality of node-based decision trees for concept drift
detection; HDDM extends the hypothesis testing part of the algorithm by using Hoeffding’s inequality to determine
the drift region and DELM incorporates a hidden layer neural network base learner, targeting the enhancement of
the adaption phase.

Data Distribution-based Drift Detection and Multiple Hypothesis Test Drift Detection form the last two categories
of the detection phase methods. In the former category, distance metrics are used to measure the dissimilarity
between the distribution of new incoming data and historical data. If the dissimilarity is statistically significant, a
new concept is detected. This category provides additional information about the location of the drift, making it
attractive for various distribution-based detection methods such as Information-Theoretic Approach (ITA) [13] and
PCA-based change detection framework (PCA-CD) [20]. ITA uses a kdqTree partition method to cluster both the
historical and new data, while Kullback–Leibler divergence is applied to determine density difference. PCA-CD, on
the other hand, employs principal component analysis to facilitate density estimation, reducing computational costs.
The final category of concept drift detection methods is hypotheses-based detection, which uses multiple hypotheses
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to determine concept drift. Hierarchical Hypothesis Testing with Attribute-wise “Goodness-of-fit” (HHT-AG) [31]
is one of the most evolved methods in this category. HHT-AG is capable of handling concept drift with fewer true
labels, making it more robust in the face of high verification latency.

Concept drift understanding refers to the ability of the drift detection algorithm to determine when, how and
where the concept drift occurs. In addition to identifying the time of occurrence of concept drift, density-based
algorithms can also provide information on its severity and drift regions with a few exceptions. As a result, all of
this information will be used later in the adaptation phase to help us achieve it as easily and efficiently as possible.
Firstly, by incorporating the information on the start time and the duration of the concept drift we aid the adaption
process by identifying the drift type. The algorithm’s timestamp will, however, be delayed compared to the actual
one due to its requirement that a minimum number of new data must be collected before evaluating the drift.
Therefore, it is still unclear when the new concept emerges. The detected timestamp of the drift can be controlled
by some algorithms based on the sensitivity chosen, with the warning level set a little lower than the drift level.
Typically, a p-value of 2σ is used for warning, and 3σ for drift detections, with the data between the two levels
utilized for enhancing the new models. DDM [10], HDDM [8] and EDDM [3] are examples of detection algorithms
based on this mechanism.

The severity of the concept drift, or else, the similarity between the old and new concepts, can also be taken
into consideration when selecting appropriate adaption methods. In less severe cases, incremental learning may
be sufficient to adjust the model, while highly severe drifts require the retraining of the model from scratch. Al-
though severity cannot be directly measured using error-based detection algorithms, it can be indirectly counted
by comparing the rate of change of the overall accuracy phist and the new accuracy pnew, as noted by [19]. In
contrast, distribution-based detectors can capture and measure this severity by calculating the difference between
two data distributions. By using competence measurement instead of feature space for comparison, [17] proposes
a competency-based concept drift detection method. The method provides a statistical guarantee of the reliability
of the changes detected without requiring prior knowledge of the case distribution. In general, severity plays an
important role in selecting adaptation strategies to deal with drift effects. Furthermore, the location of the concept
drift region is also crucial for effective adaptation. Proposed by [15], Local Drift Degree Drifted Instance Selection
(LDD-DIS), is one of the few algorithms that can locate the region of the concept drift, by synchronizing the regional
density discrepancies. According to [23], some regions of the data may remain stable throughout a concept drift.
As a result, the data residing in the unaffected regions needs to be discarded, whereas only the drifted regions can
be used for the adaption process. Moreover, the detection of drift regions can aid in distinguishing drifted, obsolete
and noisy data which will further reduce the complexity of the adaption problem.

Since our work relies upon preserving the model performance in the face of concept drift, we concentrate on
concept drift adaption and resilience maintenance. Drift adaptation refers to strategies aimed at updating predic-
tive models by incorporating information gained during the detection and understanding phases. However, existing
research in this domain has limitations, with approaches targeting specific models and concatenating the detection
and adaptation phases, limiting the flexibility of the proposed approaches and making them problematic to apply as
extensions to individual components. Proposed by [2], Paired Learners is an example of an adaption method that
entails training new models from scratch. This approach uses two models, the stable learner, which is trained over all
historical data, and the reactive learner, which predicts based on the latest data. Upon the presence of a new concept,
the performance of the stable learner will drop indicating a concept drift, with the reactive learner taking the place
of the stable learner. Another approach, Learn+++.NSE [7], is an ensemble-based incremental learning approach,
that learns from continuous streams of data without considering any information about the drift. The algorithm
trains a new model for each data batch with the combined output adjusted based on dynamically weighted majority
voting with the weights determined based on the classifier’s error rate on historical and recent data. Considering
the regional information provided by some concept drift detection algorithms, [6] proposed a decision tree-based
approach called Very Fast Decision Tree (VFDT) classifier, aiming for high-volume data streams. Its extension,
CVFDT [12] specifically designed for handling concept drift, uses a sliding window to keep the most recent data.
A new model is trained based on that data and if it outperforms the original model, it becomes the new original
model. The sub-tree with obsolete data where the old original model is trained will now be pruned, allowing us to
adapt to the new concept by partially updating our tree.
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In conclusion, the current state of the literature surrounding data transmission and maintenance issues does not
offer solutions that are sufficiently generalizable. This research aims to address this gap by proposing a resilience
mechanism composed of several strategies for maintaining enhanced models while considering the distributed nature
of the edge environment. Additionally, we investigate the trade-off between the amount of data transmission and
the potential performance loss, with the goal of minimizing network data transmission costs while preserving user
privacy and ensuring that the performance of enhanced models remains uncompromised.

3. Problem definition

Our study is a natural extension of the research presented in [24] by Wang et al. In particular, our work expands
upon their findings by delving into the regression, multivariate classification and image classification aspects of the
DML systems. We seek to evaluate the effectiveness of statistical learning, dimensionality reduction, compression,
and DL techniques in enhancing the performance of our models. In addition, we also examine the impact of these
techniques on the maintainability of our models in concept drift scenarios. Specifically, we aim to assess the degree
to which these techniques can help to mitigate the adverse effects of concept drift and enhance the overall robustness
of our models over time.

Consider a DML environment depicted in Fig. 1 that comprises n nodes, denoted as N = {N1, N2, .., Nn}.
While all nodes perform comparable predictive tasks, each node works independently on its unique local dataset
defined as Di = {(x, y)�}Li

�=1, containing Li input-output pairs (x, y) ∈ X × Y . Notably, the feature vector
x = [X1, X2, . . . , Xd ]T ∈ R

d is d-dimensional and is linked to output y ∈ Y for regression (e.g. Y ⊆ R) or
classification predictive tasks (e.g. Y ⊆ {1, 2, .., n}). The adjacent ENs of Ni,Nj ⊆ N \ {Ni}, are a subset of
nodes that communicate directly with Ni . In addition, we assume that each node Ni is equipped with two distinct
models, a local model fi trained purely on Di and an enhanced model that is built on D̃s

i data. These enhanced
models are built with a varying amount of data from neighboring nodes, which facilitates collaborative learning
while preserving data privacy.

Enhanced Models are firstly introduced in [25], that is, for each node Ni and its adjacent nodes Nj , we build
enhanced data D̃s

i = {�s(Di)} ∪ {�s(Dj )}, ∀j , j �= i, in which �s(Dj ) represents the information extracted from
the original data Dj by using a strategy s. Strategy s controls how our data is extracted from the original distribution
Di through statistical learning, dimensionality reduction, compression or DL techniques.

In the context of an enhanced predictive model f̃ s
i , which operates on a set of data Ni and provides predictive

services on a data Di , it is important to consider the potential impact of concept drift. Concept drift refers to the
possibility that the underlying distribution of data in neighboring nodes, represented by Dj , could change over
time. In order to ensure the continued accuracy and reliability of the enhanced model, it is necessary to establish
a threshold of error tolerance, denoted as ε. If the difference between the accuracy of the model before and after
concept drift, represented by α and α′ respectively, exceeds this threshold (i.e. |α|−|α′| > ε), then the model must be
maintained and adapted to the new concept. This consideration is essential for ensuring the continued effectiveness
of the enhanced model in practical applications.

Fig. 1. DML system diagram in a smart city edge computing environment.
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Problem 1. We examine how the severity of concept drifts affects the performances of the enhanced models.

Specifically, we aim to assess the effectiveness of enhanced models in handling concept drifts and compare their
performances against baseline and local models. Our focus lies on evaluating the impact of introducing a new
concept on enhanced model performance, rather than on detecting or understanding concept drifts more generally.
To this end, we will simulate abrupt concept drifts, which involve sudden changes in the underlying data distribution,
making the effects of concept drift more readily observable. We have identified three distinct types of concept drift
simulations, each defined by the relationship between input-output pairs from the original distribution (x and y) and
those from the drifted distribution (x′ and y′). In our research, we will be specifically examining the following drift
types:

• Virtual: P(x) �= P(x′) ∧ P(y) = P(y′)
• Actual: P(x) = P(x′) ∧ P(y) �= P(y′)
• Total: P(x) �= P(x′) ∧ P(y) �= P(y′) ∧ P(y|x) �= P(y′|x′),

where P(x) and P(y) are the associated probabilities and P(y|x) is the conditional probability.

Problem 2. We seek maintenance strategies that can be used to extract information from novel concepts and main-
tain enhanced models in the event of concept drift.

Consider a DML environment with two nodes, denoted as N1 and N2, each of which has its own local model fi

and an enhanced model f̃ s
i . Suppose that a concept drift occurs in the data of N2, and the enhanced model f̃ s

1 needs
to be maintained as it was built upon the older D2 data. In such a case, the drifted data D′

2 must be transmitted

through the network to N1 to update the models, resulting in the updated enhanced model f̃ s′
1 . The error L of the

updated model is obtained by validating it against the drifted data D′
2. Our goal is to minimize the expected error

EL(f̃ s′
1 (D′

2)) while minimizing inter-node data transmission during maintenance, and ensuring the privacy and
security of the user’s data.

4. Maintenance strategies

In this research paper, we present a maintenance approach for our enhanced models, where we leverage the drifted
data along a selected strategy to extract information that is used to retrain the enhanced model. We propose different
maintenance strategies that can be employed depending on the dataset and predictive tasks performed by the DML
system. Our framework comprises strategies that are applicable to regression, multivariate classification, and image
classification predictive tasks.

For regression tasks, we adopt on statistical learning approaches, such as clustering, to extract statistics about the
underlying data distribution, thereby reducing the number of instances transmitted. For multivariate classification,
we primarily rely on dimensionality reduction and compression techniques to transmit the compressed form of the
drifted data to the target node, which is then decompressed. Finally, for image classification tasks, we leverage a DL
technique to capture the intricate characteristics of computer vision applications.

It is important to note that for all predictive tasks, a baseline (BS) approach exists that involves transmitting
raw data over the network. However, this approach violates security constraints and significantly increases the
network bandwidth. Our proposed maintenance strategies address these issues and aim to optimize the performance
of the DML system while ensuring data security and minimizing network resource utilization. Experimental results
demonstrate the effectiveness of our approach in achieving these objectives.

Centroid Guided (CG): The CG approach involves partitioning the input space Dj into K disjoint clusters, where
each cluster is represented by its own cluster centroid wjk . In the case of classification data, clustering is performed
on the grouped-by-label data, allowing the resulting cluster centroids to be labeled accordingly. The CG strategy
involves selecting only the cluster centroids wjk and transmitting them among the ENs:

�CG(Dj ) =
K⋃

k=1

{wjk}} (1)
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Enhanced Centroid Guided (ECG): The ECG approach builds upon CG strategy. It starts by partitioning the data
space into K clusters and then transfers the resulting cluster centroids wjk to Ni . Next, ECG generates additional
samples N (wjk, σ

2
j ) around the cluster centroids wjk , where σ 2

j is the variance of the Gaussian distribution. The

resulting set of samples �ECG(Dj ) is then used as the input data of the model when applying the ECG strategy. It
is important to note that the value of σ 2

j must be selected carefully to ensure that the sampled points do not deviate
too far from the original distribution of Dj while allowing the model to capture the characteristics of Dj .

�ECG(Dj ) =
K⋃

k=1

{wjk}
K⋃

k=1

{
(X, Y ) ∼ N

(
wjk, σ

2
j

)}
(2)

Mock Data (MD): The MD approach is a novel strategy that avoids any data transfer to the target node Ni . Instead
of sending samples of data, the MD approach substitutes the data with a Linear Regression model fj and additional
statistical information such as the mean μj and standard deviation σj of the input space Xj . Training samples X̄j

are generated on Ni based on the statistics drawn from a Gaussian distribution N (μj , σ
2
j ). The Linear Regression

model fj is then utilized to obtain the corresponding output pairs as Ȳj = fj (X̄j ) + εj , where εj is a noise term
drawn from a Gaussian distribution that is added to the fj output. Therefore, the MD approach’s sample data (X̄, Ȳ )

is defined as follows:

�MOCK(Dj ) = (X̄j , Ȳj ) : X̄j ∼ N
(
μj , σ

2
j

)
, Ȳj = fj (X̄j ) + εj (3)

Principal Component Analysis (PCA): Our proposed approach employs PCA to reduce the dimensionality of
the input space Xj by projecting it onto a low-dimensional space, while still retaining as much information as
possible. The first step involves normalizing the input space Xj and computing the eigendecomposition of the

covariance matrix Cx = Xj XT
j

n
. Subsequently, the eigenvalues are sorted in decreasing order of variance and the data

is projected into a lower dimensional space by multiplying the original normalized data by the principal components
or the leading eigenvectors. This reduces the amount of information preserved, resulting in greater compression as
the number of retained eigenvectors is decreased. The principal components are then transferred to the target node
Ni , thereby avoiding the transmission of actual user data and significantly reducing network bandwidth usage. Upon
receiving the principal components, the inverse PCA process is initiated to restore the original data format and train
the enhanced models. The number of components retained determines how close the decompressed data is to the
original Dj . The entire process operates on a group-by-label basis, where the input data Dj is first grouped, and
PCA is applied to each distinct labeling group. In this way, we have:

�PCA(Dj ) = {
(X̄j , Ȳj ) = INV_PCA

(
PCA(Xj , n)

)}
, (4)

where n is the number of principal components we choose to retain and transfer to Ni .
Discrete Cosine Transformation (DCT): Widely used by JPEG as a lossy image compression technique, DCT is

utilised as an efficient way of storing our data space Dj upon transmission between the nodes. By applying DCT, the
data can be converted into its elementary frequency components. For an input space Dj = f (x, y) with dimensions
xL × yL, the 2D-DCT equation can be expressed as:

DCT(X, Y ) = 2√
xL · yL

C(X)C(Y )

xL−1∑
x=0

yL−1∑
y=0

f (x, y) cos
(2x + 1)Xπ

2xL

cos
(2y + 1)Yπ

2yL

(5)

C(u) =
{

1√
2

if u = 0

1 if u > 0
(6)

Our transformation technique does not reduce the number of bits required to represent the data. However, it
concentrates the low-frequency coefficients, while setting the other coefficients to zero. When considering an M×N
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matrix, the most significant coefficients are located at the top-left side of the matrix. By applying this method, a
fraction of the most important coefficients is transmitted, while the rest are discarded. As the majority of DCT
coefficients have values close to zero, their elimination does not significantly affect the reconstructed nature of the
data space D′

j . Following data transfer to Ni , decompression is performed by utilizing inverse DCT to restore the
data to its original format, as presented below:

INV_DCT
(
X′, Y ′) = 2√

xL ∗ yL

xL−1∑
x=0

yL−1∑
y=0

C(X)C(Y )

× DCT(X, Y ) cos
(2x + 1)Xπ

2xL

cos
(2y + 1)Yπ

2yL

(7)

By the end of the decompression stage, we have:

�DCT(Dj ) = {
(X̄j , Ȳj ) = INV_DCT(DCT

(
Xj , Yj , (Cx, Cy)

)}
, (8)

where (Cx, Cy) is the shape of the important coefficients that we retain during the data transmission stage.
Conditional Variational AutoEncoder (CVAE): It is an enhanced version of the standard Variational AutoEn-

coder (VAE) that enables the generation of samples conditioned on supplementary input data. The architecture of
the CVAE, depicted in Fig. 2, comprises an encoder network, a decoder network, and a latent space.

The encoder network takes an input sample X and a conditioning label Y and maps them to the latent vector Z.
More specifically, the encoder maps the input data X and the condition label Y to the latent vector Z that follows
Gaussian distribution with mean μ and variance σ learned from the input. To achieve this, the encoder output is
split into two parts, the mean μ and the variance σ of the Gaussian distribution, which are then used to sample the
latent space from the Gaussian distribution. The sampling process introduces stochasticity into the model and helps
capture the variations in the data. Formally, let X be the input data and Y be the condition. The encoder maps the
input (X, Y ) to a distribution over the latent code Z, which follows a Gaussian distribution with mean and variance:

Qφ(Z|X, Y) = N
(
μφ(X, Y ), σ 2

φ (X, Y )I
)

(9)

where μφ(X, Y ) and σ 2
φ(X, Y ) are the mean and variance of the Gaussian distribution, respectively, parameterized

by the encoder network with parameters φ. I is the identity matrix of the same dimension as σ 2
φ(X, Y ).

The decoder then maps the latent code Z and the condition Y to a distribution over the data space, which is also
modeled as a Gaussian distribution with mean and variance:

Pθ(X|Z, Y ) = N
(
μθ(Z, Y ), σ 2

θ (Z, Y )I
)

(10)

where μθ(Z, Y ) and σ 2
θ (Z, Y ) are the mean and variance of the Gaussian distribution, respectively, parameterized

by the decoder network with parameters θ .

Fig. 2. CVAE architecture.
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During training, the loss function is the negative log-likelihood of the data, which is approximated using the
evidence lower bound (ELBO) objective:

L(θ, φ; X, Y) =EQφ(Z|X, Y)
[
log Pθ(X|Z, Y )

] − DKL
(
Qφ(Z|X, Y)|p(Z)

)
(11)

where EQφ(Z|X, Y)[log Pθ(X|Z, Y )] is the expected log-likelihood of the data under the decoder distribution,
and DKL(Qφ(Z|X, Y)|P(Z)) is the Kullback–Leibler divergence between the encoder distribution and the prior
distribution P(Z), which is assumed to be a unit Gaussian distribution. Once the training procedure is completed
and the latent space is formed, novel samples can be generated from the learned distribution. This can be achieved
by sampling the latent variable Z from the prior distribution and then mapping it back to the input space using the
decoder network. In addition, to generate a conditioned sample, we simply provide a conditioning variable Y to
the decoder network along with the sampled latent variable Z ∼ N (0, 1). Formally, the sampling process is given
by: X̂ = fθ (Z, Y ), where Z ∼ P(Z|Y) and f is the decoded network with parameters θ . Therefore, the CVAE
approach’s sample data is defined as follows:

�CVAE(Dj ) =
K⋃
y

{
(X̄j , Ȳj ) : X̄j = fθ (Z, y)

}
, (12)

where y ∈ Z is the label of the image that we aim to generate and K is the set of labels predicted by the model.

5. Experimental evaluation

Our objective is to investigate Problem 1 by examining varying levels of concept drifts and their impact on
enhanced models’ performance, and the efficacy of the proposed maintenance strategies in addressing Problem 2.
To assess our paradigm, we established three experimental scenarios using real datasets in DML environments.

5.1. Performance metrics

We assess our methods with respect to two categories of performance metrics for accuracy and network through-
out. For the former, we utilize two metrics acknowledged in the literature: Accuracy and Root Mean Squared
Error (RMSE) for classification and regression predictive tasks, respectively. RMSE measures the square root of
the mean of the squared difference between the actual yj and predicted ŷj values and it can be expressed as:
RMSE = [ 1

n

∑N
n=1(yj − ŷj )

2]1/2. For the network throughout, we focused on the computation of the bit-wise data
requirements necessary for network transmission, specifically pertaining to the maintenance of a model. In essence,
the amount of data transmitted over the network to sustain an enhanced model in the event of concept drift.

5.2. Descriptions of the scenarios

We report on the descriptions of the experimentation scenarios, the concept drift simulation and the experimental
setup to assess the performance of the proposed framework.

5.2.1. Experimental Scenario I: Regression
Dataset Description: We evaluated our regression scenario upon the real GNFUV multi-node dataset1 adopted

by Harth and Anagnostopoulos [11]. The dataset consists of mobile sensors readings over four Unmanned Surface
Vehicles (USVs), floating over the sea surface in a testbed in Athens, Greece. Each USV (node) records the mea-
surements such as humidity and temperature of the sea surface, each of which represents an ED within a DML
environment. For our experiments, the local data gathered by two of the USVs are employed notated by D1 and D2.

1https://archive.ics.uci.edu/ml/datasets/GNFUV+Unmanned+Surface+Vehicles+Sensor+Data+Set+2

https://archive.ics.uci.edu/ml/datasets/GNFUV+Unmanned+Surface+Vehicles+Sensor+Data+Set+2
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Fig. 3. Distributions of the GNFUV drifted nodes.

Using as input the temperature variable x ∈ R, we are seeking to predict the humidity which acts as our output
variable y ∈ R.

Simulating Concept Drift: We simulated concept drift in a controlled manner to one of our nodes by employing
the three drift types on D2 data. The resulting drifted GNFUV data is illustrated in Fig. 3, where D1 and D2 represent
the original data distributions, and Dv′

2 , Da′
2 , and Dt ′

2 represent the virtual, actual, and total drifted distributions of
D2, respectively. This simulation methodology enables us to study the impact of concept drift on ML models and
evaluate their robustness in dynamic environments.

Experiment Setup: We conduct experiments by building local fi and enhanced f̃ s
i using the Support Vector

Regression (SVR) models and the CG, ECG and MD strategies on the original distributions of the data Di . Subse-
quently, we examine the impact of each drift type on the enhanced models’ performance and assess the effectiveness
of our proposed strategies in mitigating the impact of concept drift. Specifically, we retrain the enhanced model f̃ s′

i

using the drifted data D′
i and re-evaluate its performance against the same drifted data. By analyzing the bandwidth

utilization required for maintenance in relation to the performance of the maintained model, we are able to gauge
the efficacy of our approach in mitigating the effects of concept drift.

5.2.2. Experimental Scenario II: Multivariate classification
Dataset Description: We also delve into the performance of our resilience framework using the Banknote Au-

thentication (BA) real dataset2 taken from UCI machine learning repository. The present scenario employs a binary
classification dataset, consisting of 1372 instances, comprised of image-extracted data from genuine and forged
banknote-like specimens. The dataset contains five attributes, with four features and one target attribute and a bal-
anced class distribution ratio of 55:45. In contrast to the GNFUV dataset, the current dataset, lacks an inherent
network-node structure. Therefore, the K-means clustering was utilized to construct two nodes. The resulting clus-
ters were designated as D1 and D2, respectively, while preserving the original class distribution of each split data
subset. Using as input the 4 − dim feature vector x ∈ R, we are seeking to predict the target attribute which acts as
our output variable y ⊆ {0, 1}. Figure 4 depicts the two clustered nodes projected over three Principal Components
(PCs).

Simulating Concept Drift: We simulated concept drifts on D2 data using an extension of the actual drift type.
We kept P(x) unchanged for all the data, while a certain percentage of P(y) underwent changes in probability. To
achieve this, we introduced a parameter α to control the percentage of the data, where its label is swapped. This
conversion led to the Actual Drift being converted to P(x) = P(x′) ∧ α[P(y) �= P(y′)]. To investigate the impact
of this parameter on the severity of drift, we conducted experiments using different values of α (0.05, 0.3, and 1),
which resulted in the creation of D0.05a′

2 , D0.3a′
2 , and D1a′

2 , respectively. Increasing the value of α led to an increase
in the severity of the drift.

2https://archive.ics.uci.edu/ml/datasets/banknote+authentication

https://archive.ics.uci.edu/ml/datasets/banknote+authentication
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Fig. 4. Clustered BA dataset projected to 3 PCs.

Experimental Setup: Our classification models are constructed using the Gaussian Naive Bayes (GaussianNB)
algorithm, along with the CG, PCA, and DCT strategies. Upon investigation of the effect of the severity of the
concept drift, we update our models to reflect the drifted data Dαa′

2 . We then re-evaluate the performance of our
models on the updated data to assess their robustness to concept drift. The results of this experiment provide insights
into the effectiveness of the different strategies employed in mitigating the impact of concept drift.

5.2.3. Experimental Scenario III: Image classification
Dataset Description: In order to investigate the applicability of our framework in more intricate tasks, we conduct

an analysis on a Computer Vision classification task using the MNIST dataset3 introduced by LeCun et al. [14]. The
dataset contains a set of 70,000 28×28 pixel grayscale images of handwritten digits (0–9), collected by high school
students and employees. Similar to the BA dataset, the MNIST dataset lacks an inherent network-node structure,
hence we split our dataset into two clusters D1 and D2 comprising of images with labels 0–4 and 5–9, respectively.
Using an input image x ∈ R

28×28, we are seeking to predict the handwritten digit y ⊆ {0, 1, 2, . . . , 9} of the image.
Simulating Concept Drift: In the current scenario, we simulated concept drift by employing the Virtual drift type

to alternate P(x) distribution while keeping P(y) unchanged. Two distinct cases of concept drift are simulated,
where the first involves a minor drift by changing the P(x) distribution of the handwritten digit 8 to the P(x′)
distribution of the handwritten character B obtained by the EMNIST dataset.4 The second case, which is more
severe, involves changing the P(x) distribution of the handwritten digit 9 to the P(x′) distribution of the handwritten
character K . In both cases, the labels are unchanged and the simulated concept drifts are identified as Dv′8→B

2 and

Dv′9→K
2 , respectively.
Experimental Setup: We used a Multi-Layer Perception (MLP) classifier consisting of three linear layers and

ReLU activations functions. This allowed us to learn complex non-linear relationships between the input features
x ∈ R

28×28 and the output classes y ⊆ {0, 1, 2, . . . , 9} of the images. The CVAE strategy is employed for the
training of the enhanced models f̃ CVAE

i , where the two concept drift scenarios are evaluated. The CVAE model
fθ (Zi) is trained on each node’s local data Di , capturing the characteristics of the data and modeling the latent space
Zi . The CVAE network architecture consisted of three linear layers for the encoding part and 2 linear layers for the
decoding part, utilizing the Exponential Linear Unit (ELU) function and sigmoid activation functions between the
layers.

3http://yann.lecun.com/exdb/mnist/
4https://www.nist.gov/itl/products-and-services/emnist-dataset

http://yann.lecun.com/exdb/mnist/
https://www.nist.gov/itl/products-and-services/emnist-dataset
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Fig. 5. MNIST images with a label value of 5.

The experimental procedure for the training of the enhanced models consisted of four steps: (i) training a CVAE
model fθ (Zi) on each node’s local data Di , (ii) transferring the latent space Zi to the target node Nj , (iii) generating
new sample images based on the Zi latent space using the labels of the Di data on Nj node, and (iv) using the newly
generated images along with the decoded images of the Nj node, train the f̃ CVAE

j enhanced model. The visual
comparison presented in Fig. 5 pertains to images possessing a label value of 5. Specifically, the figure displays
three images: an original MNIST image (5a), the corresponding decoded image generated by the CVAE (5b), and a
novel generated image sample produced by the CVAE (5c).

In cases where concept drift is detected, a new CVAE model f ′
θ (Zi) is trained, forming a new latent space Z′

i . The

procedure then resumed from point (ii) to ensure that the enhanced model f̃ CVAE′
j can accurately perform on the

drifted data D′
i . The present methodology offers a practical approach for the training and maintenance of enhanced

models that can proficiently handle concept drifts. By implementing the CVAE strategy, the transmission of data
across the network is minimized as solely the latent space is transferred instead of a voluminous amount of raw
images, which holds significant promise for reducing computational requirements in EC.

5.3. Comparative assessment

5.3.1. Concept drift effects on enhanced models
We first analyze the effect of concept drift on the efficacy of enhanced models, as well as its correlation with local

models. Furthermore, we seek to delve deeper into this impact and its relationship with the strategies employed in
constructing the enhanced models. Through this analysis, we aim to provide valuable insights into the nuances of
concept drift and its implications for model performance.

Scenario I: To examine the impact of concept drifts on the performance of the enhanced model, we conducted
experiments by combining the original D2 data with the drifted D′

2 data, followed by applying our enhanced models
trained on the original D2 data. It is important to note that our incoming data are delivered in batches of 100 data
points, with a sliding window of 10 data points.

The outcomes of the study in Scenario I reveal the mean RMSE performance of the local and enhanced models for
each concept drift type, as indicated in Table 1. Additionally, Fig. 6 showcases the performances of f̃1, constructed
by each strategy per batch of the three drift types.

The analysis of the results presented in Table 1 reveals that the local model f2 performs better on the original
distribution; however, it is less generalizable and hence more susceptible to the negative effects of concept drift.
In contrast, the enhanced models exhibit lower quality of service on the original distribution, with a less severe
performance drop when confronted with concept drift as compared to f2.

Furthermore, it is worth noting that the strategies employed to construct the enhanced models do not appear to
have a significant impact on the effect of concept drift, as evidenced in Fig. 6, where all the enhanced models exhibit
similar trends and patterns. Moreover, the experimental findings indicate that Dv′

2 has the least detrimental effect

on model performance, while Dt ′
2 has the most severe effect, thereby corroborating the order of severity of the drift

types being Dv′
2 , Da′

2 and Dt ′
2 in ascending order.
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Table 1

Scenario I mean models’ performance by drift

RMSE

Model D2 Dv′
2 Da′

2 Dt ′
2

f2 0.42 ± 0.04 5.31 ± 0.26 14.80 ± 0.77 17.53 ± 0.76

f̃ BS
1 0.81 ± 0.40 4.87 ± 0.21 14.86 ± 0.78 16.40 ± 0.80

f̃ CG
1 0.81 ± 0.37 4.60 ± 0.22 14.55 ± 0.76 16.09 ± 0.78

f̃ ECG
1 1.05 ± 0.51 4.66 ± 0.21 14.49 ± 0.75 15.92 ± 0.78

f̃ MD
1 1.06 ± 0.46 5.02 ± 0.24 14.82 ± 0.77 16.05 ± 0.78

Fig. 6. Performance of f̃1 against D2, Dv′
2 , Da′

2 and Dt ′
2 batches of data.

Table 2

Scenario II mean models’ performance by drift

Accuracy (%)

Model D2 D0.05a′
2 D0.3a′

2 D1a′
2

f2 98.05 ± 1.68 93.68 ± 1.57 68.82 ± 6.84 1.59 ± 0.74

f̃ BS
1 95.77 ± 1.73 92.44 ± 1.69 68.86 ± 9.21 3.30 ± 2.05

f̃ CG
1 93.75 ± 2.36 90.31 ± 2.70 69.37 ± 7.85 1.38 ± 1.07

f̃ PCA
1 95.52 ± 1.55 92.36 ± 1.62 68.43 ± 8.15 4.14 ± 2.17

f̃ DCT
1 96.60 ± 1.78 93.47 ± 1.25 69.31 ± 8.30 3.00 ± 1.92

Scenario II: In this study, we conducted multivariate classification using the distribution D2 and its drifted coun-
terpart D′

2. Specifically, we concatenated these two datasets to evaluate the performance of our enhanced models
before and after concept drift, following a similar approach to Scenario I. We used a batch size of 100 and a
sliding window size of 10 throughout the experiment. Table 2 presents the average performance of the local and
enhanced models before and after the occurrence of concept drift for each drift type. In addition, we visualize the
accuracy per batch and the performance drop of the enhanced models f̃1 upon the emergence of novel concepts in
Fig. 7.

Our results indicate that similar to Scenario I, the local model outperforms the enhanced models by a small
margin of approximately 3%. On the other hand, and in contrast to Scenario I, the enhanced models provide the
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Fig. 7. Performance of f̃1 against D2, D0.05a′
2 , D0.3a′

2 and D1a′
2 batches of data.

Table 3

Scenario III mean model’s performance by drift

Accuracy (%)

Model D2 Dv′8→B
2 Dv′9→K

2
f2 98.57 ± 1.45 88.83 ± 4.05 78.17 ± 5.38

f̃ BS
1 97.51 ± 2.03 91.11 ± 3.81 87.76 ± 4.01

f̃ CVAE
1 90.65 ± 3.57 83.00 ± 4.42 82.37 ± 4.73

same level of generalizability as the local model. That is, both the local and enhanced models exhibit comparable
predictive service quality in the presence of concept drift. Interestingly, we did not observe any improvement in
the performance of the enhanced models as compared to the local model after the occurrence of concept drifts,
which was consistent with our expectations. This observation may be attributed to the characteristics of the BA
dataset or the lack of an inferent network-node structure in the dataset, as opposed to the GNFUV dataset used in
Scenario I.

We also found that the parameter α, which was introduced to the formula of the Actual Drift, is correlated with
the performance drop of the model. When α was set to 5%, we observed a corresponding drop in accuracy of
approximately 5%, which was consistent across all drift cases. Finally, by analyzing the accuracy of the enhanced
models over batches of incoming data in Fig. 7, we reveal a consistent trend, indicating that the strategies employed
to construct the enhanced models are independent of the performance drop.

Scenario III: In this scenario, we conducted an evaluation of the image classification predictive task. To ensure
consistency with our previous evaluation procedures, we followed the same methodology for this scenario. Specif-
ically, we concatenated the original dataset D2 with the drifted datasets D′

2 and evaluated and tested our models
on the incoming data in batches of 64 images. The experimental results are presented in Table 3, while Fig. 8a
illustrates the accuracy per batch plot of the baseline enhanced model f̃ BS

1 . Furthermore, the accuracy per batch of
the local f2 and enhanced f̃ CVAE

1 models are presented in Fig. 8b.
Upon observing f2 in both Table 3 and Fig. 8b, it is apparent that the model experiences a drop in accuracy of

10% and 20% on drifts Dv′8→B
2 and Dv′9→K

2 , respectively. Notably, the more severe drift, Dv′9→K
2 , resulted in a

twice larger decrease in model performance compared to the less severe drift, Dv′8→B
2 . Similarly, f̃ BS

1 exhibits a
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Fig. 8. Models performances against D2, Dv′8→B
2 and Dv′9→K

2 batches of data.

reduction in accuracy of approximately 5% and 10% on Dv′8→B
2 and Dv′9→K

2 , respectively. These findings suggest
that f̃ BS

1 is less vulnerable to the effects of concept drifts compared to f2.
On the other hand, the experimental results reveal that the performance of f̃ CVAE

1 is not as high as f2 and f̃ BS
1 .

However, an interesting finding is that the severity of the drift does not correlate with the performance drop of the
model, indicating that f̃ CVAE

1 is less vulnerable to the effects of concept drifts. Specifically, the performance of

f̃ CVAE
1 remains relatively consistent across both less severe (Dv′8→B

2 ) and more severe (Dv′9→K
2 ) drifts, which is

better than the performance of the local model f2 in some cases. This can be explained by the fact that during the
training of the CVAE and generation of novel images, certain characteristics of the drifted dataset deteriorate in
scale, making f̃ CVAE

1 more generalizable and less susceptible to the effects of concept drifts. In other words, the
CVAE’s ability to learn and generate novel images that capture the underlying characteristics of the drifted dataset
allows it to maintain its performance across different drift types, making it a promising approach for dealing with
concept drifts in image classification scenarios.

5.3.2. Enhanced models maintenance
In this phase of our evaluation, we employ all types of drifted data D′

2 to preserve our enhanced models and
examined the impact of our proposed maintenance strategies on the performance of the enhanced models over the
drifted data. Furthermore, we analyze how these strategies mitigate inter-node data transmission during the main-
tenance of an enhanced model. Consequently, we assess the trade-off between the performance of the maintained
enhanced models and the volume of data transmitted over the DML network required to sustain our models.

Scenario I: Fig. 9 showcases the outcomes of our analysis. The plot displays the performance of the initial
enhanced model over the original D2 data, the performance of the same model on the drifted D′

2 data, and the
performance of the maintained enhanced model against the drifted D′

2 data where the virtual, total and actual drift
types are employed. Additionally, we demonstrated the trade-off between the performance and network throughput
ratio in Fig. 10. The performance denotes the mean RMSE score of the maintained enhanced models over the drifted
data, while the network throughput ratio represents the ratio of the bit-wise data requirements for the maintenance
of the baseline enhanced model in comparison to the maintenance of the enhanced models generated by the other
strategies.

Upon examining the performances of the enhanced models before and after the occurrence of concept drift, it is
apparent that superior performance of f̃1(D2) corresponds to better performance of f̃ ′

1(D
′
2). However, there exists a

marginal increase in the mean RMSE value of the f̃ ′
1(D

′
2) as compared to f̃1(D2), across all the different drift types.

Furthermore, it is noteworthy that the magnitude of the RMSE increase can be related to a proportional manner to
the severity of the drift, as this marginal increase is more for the actual and total drifts. Among the three employed
strategies, f̃ CG

1 emerged as the best-performing approach, disregarding the inter-node data requirements essential
for enhanced model maintenance. It outperformed the other strategies and achieved performance similar to that of
the baseline.

Figure 10 illustrates the RMSE performance of the f̃ S′
1 enhanced model after maintenance over drifted D′

2 data
types using the different maintenance strategies. One could observe that the severity of the drift types correlates with
the increase of the RMSE value, regardless of the value of the data transferred ratio. However, as evidenced, the data
compression ratio over the ECG strategy is not associated in a proportional manner with the overall performance of
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Fig. 9. Average performance of f̃1 and maintained f̃ ′
1 against D2 and D′

2.

Fig. 10. Performance of f̃ ′
1 against Dv′

2 , Da′
2 and Dt ′

2 given different ratio of the inter-node data transmission.

the enhanced model. The results demonstrate that the enhanced model’s performance is adversely affected by either
a very small or a very large number of cluster centroids used. In the latter, the high number of cluster centroids
and hence the small number around them, overfit the enhanced models. While, in the former case, there are too
few cluster centroids to adequately capture the characteristics of the dataset, leading to under-fitting. Accordingly,
the best trade-off lies within the 0.1 data transmission ratio, which scores a lower RMSE for each type of drift. In
this way, our framework achieves similar performance with GS, CG, and MD strategies while transferring 10 times
fewer data in the network.
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Scenario II: This section presents the experimental results of our analysis on a multivariate classification scenario
over the BA dataset, obtained after the maintenance of the enhanced models. Figure 11 presents the maintained
performance of the models for D0.05a′

2 , D0.3a′
2 and D1a′

2 . As in Scenario I, a trade-off plot is depicted in Fig. 14.
It can be observed that the slight deterioration in the performance of the maintained enhanced models, as wit-

nessed in Scenario I, is no longer evident. This is due to the fact that certain enhanced models after maintenance
f̃ ′

1(D
0.3α′
2 ), exhibit better performance than f̃1(D2). Furthermore, in contrast to Scenario I, it is noteworthy that the

CG strategy performed the worst out of the three maintenance strategies employed in this scenario. On the other
hand, the enhanced models built using compression and dimensionality reduction techniques displayed better per-
formances. Among the three strategies employed in this phase, the enhanced model built using the DCT strategy
emerged as the best, while the PCA strategy came second, with its performance being comparable to the base-
line. Our findings demonstrate that the maintenance strategies employed in our analysis have a significant impact
on the performance of the enhanced models. The enhanced models built upon compression techniques were able
to overcome the performance deterioration observed in Scenario I, and in some cases, outperformed the baseline
model.

In this section, we focus on the trade-off plot presented in Fig. 12, which provides insights into the relationship
between model performance and inter-node data transmission. Specifically, we examine the right-bottom corner of
the plot where models achieve superior performance with less inter-node data transmission. To identify the optimal
parameters for each maintenance strategy, we explore several parameters that push the boundaries of the models
while avoiding those with poor performance. Our experimentation begins with f̃ PCA′

1 , where we gradually remove
one dimension at a time. Our findings demonstrate that even by projecting the dataset into lower dimensions, there is
a significant reduction in inter-node data transmission without compromising the performance of the model. How-
ever, while projecting the data onto a single dimension achieved superior performance, there exist other strategies

Fig. 11. Average performance of f̃1 and maintained f̃ ′
1 against D2 and D0.05a′

2 , D0.3a′
2 and D1a′

2 .
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Fig. 12. Performance of f̃ ′
1 against D0.3a′

2 given different ratio of the inter-node data transmission.

that can achieve the same or even better performance while transferring fewer data. Therefore, enhanced models
constructed using the PCA strategy can help reduce the inter-node data requirements for sustainable models while
simultaneously achieving high-quality service. Nevertheless, in this scenario, it is not the optimal strategy.

Upon careful examination of the performance of the f̃ DCT′
1 , we observed a correlation between the amount of

data transmitted and the model’s performance. We found that when the dataset remains almost untouched upon
transmission, the model’s performance is comparable to the baseline. However, when fewer frequency coefficients
are transmitted over the network, the generalizability of f̃ DCT′

1 improves, resulting in more accurate results. The
optimal performance of the model is achieved when the ratio of transmitted data is between 0.2–0.7. When the ratio
is less than 0.2, the model’s performance starts to deteriorate, as not enough coefficients are transmitted to capture
the characteristics of the BA dataset. A similar observation was made regarding the performance of f̃ CG′

1 . The CG
strategy achieved the least amount of data transmission among all the strategies, while performing the best out of all
the enhanced models. We found that the optimal data transfer ratio for this model was around 0.02–0.2, resulting in
accuracies above 95%, with some cases close to 100%.

Our analysis revealed that all the strategies we tested achieved a substantial reduction in the amount of data
required to be transmitted over the network during the maintenance of our enhanced models. We observed instances
where our strategies transferred significantly less data compared to the baseline. Notably, the CG strategy stood out
as the most effective strategy in terms of data transfer ratio and accuracy performance of the enhanced model. This
strategy reduced data transmission by up to 50 times while achieving better accuracy than the baseline.

Scenario III: This study presents an experimental analysis of the performance of enhanced models before and
after maintenance in the image classification scenario. The performance of the enhanced models over Dv′8→B

2 is

plotted in Fig. 13a, while the same analysis is presented over Dv′9→K
2 in Fig. 13b. Additionally, to evaluate the

trade-off between the models’ performance and inter-node data transmission, we exploited different latent space Z

dimensions as illustrated in Fig. 14.
Through a comparative analysis of the performance of f̃1(D2) and f̃ ′

1(D
v′8→B
2 ) using both baseline and CVAE

strategies, we can observe that the enhanced models’ performance is improved by a slight margin. These improve-
ments are significant as they enable the models to maintain and enhance the quality of service even after encounter-
ing drift. While it is true that f̃ BS

1 provides higher accuracy levels for both pre and post-maintenance scenarios, it is
important to note that the performance of f̃ CVAE

1 can still be deemed acceptable, especially considering the benefits
of reduced inter-node data requirements, as analyzed in the subsequent sections.

The construction and maintenance of f̃ BS
1 involved using approximately 5000 labeled images from D1 with

labels 0–4 and another 5000 labeled images from D2 with labels 5–9. These images were transferred over the DML
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Fig. 13. Average performance of f̃1 and maintained f̃ ′
1 against D2 and Dv′

2 .

Table 4

Byte-wise data requirements for the construction and maintenance of f̃ ′
1 per strategy

Strategy Z dimensions Parameters θ Bytes

BS – – 15,860,000

CVAE 30 326,784 1,307,136

CVAE 20 322,784 1,291,136

CVAE 10 318,784 1,275,136

CVAE 5 316,784 1,267,136

CVAE 3 315,984 1,263,936

CVAE 2 315,584 1,262,336

CVAE 1 315,184 1,260,736

network to train the model, which corresponds to an average of 1000 images per label, considering that the MNIST
dataset has ten labels.

However, for the construction and maintenance of f̃ CVAE
1 , we did not transfer the raw images. Instead, we trans-

ferred the latent space Z, which is required to generate new images from the trained CVAE model. The generation
of new images requires knowledge of the decoder network’s parameters θ and the prior distribution P(Z) over the
latent space. The number of parameters θ depends on the number of layers, their corresponding input and output
dimensions, and the number of bias parameters, which is the same as the number of outputs for each linear layer.
The byte-wise data requirements upon a concept drift maintenance scenario for f̃ CVAE

1 , are presented in Table 4.
The table also displays the byte-wise data requirements for transferring 5000 MNIST images over the network, used
for the baseline solution. To calculate the number of parameters θ for each decoder network, we multiplied the input
and output features of each linear layer. We assume that the commonly used 32-bit floating-point precision (float32)
is used to represent the parameters θ , which means that each parameter requires 4 bytes of storage.

Based on the results presented in Table 4 and Fig. 14, it can be concluded that the dimensionality of the latent
space Z does not have a significant impact on the inter-node data transmission. However, it does play a critical role
in the performance of the enhanced models. Among the enhanced models constructed using the CVAE strategy, it
was observed that f̃ CVAE′

1 , z ∈ R
20 achieved the best performance, with f̃ CVAE′

1 , z ∈ R
10 and f̃ CVAE′

1 , z ∈ R
30

following closely in second and third place, respectively. Models with a latent space dimensionality of less than 5
could not adequately provide quality predictive services. Hence, our optimal number of latent space dimensions is
20, as demonstrated by the f̃ CVAE′

1 model, which achieved a mean accuracy of approximately 94%, 3% less than
the baseline, while transferring roughly 12 times fewer data. It is worth noting that these calculations are based on
the transfer of 5000 images between the nodes, and the benefits of the CVAE strategy can be further amplified when
constructing enhanced models using more images.

These findings demonstrate the practical implications of using CVAE over the traditional baseline approach, as
the byte-wise data requirements for transferring latent space Z are substantially lower than those for transferring raw
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Fig. 14. Performance of f̃ ′
1 against Dv′8→B

2 given different ratio of the inter-node data transmission.

images. This is an important consideration when designing systems that must operate efficiently and with minimal
network utilization.

6. Conclusion

In this research, we addressed the problem of model maintenance in a DML environment, where models must
adapt to changes in the data distribution over time. Specifically, we proposed a framework that constructs enhanced
models to aid failed nodes in their predictive analytics services and introduced maintenance strategies to sustain the
quality of service of the enhanced models in the presence of concept drifts, in a lightweight yet effective manner.
Our method can work together with federated learning, especially for making federated learning resilient and robust
when it comes to node failures and concept drifts.

To evaluate the effectiveness of our proposed framework and maintenance strategies, we conducted three experi-
mental scenarios over three real datasets with different predictive analytics tasks, including regression, multivariate
classification, and image classification. For each scenario, we proposed maintenance strategies that are applicable
to each task and simulated different types of concept drifts in a controlled manner.

We divided our experimental evaluation into two phases. In the first phase, we investigated how the performance
of the enhanced model is affected under different severities of concept drift and how this correlates with the perfor-
mance effects of local models. We found that the enhanced model exhibited increased generalizability, resulting in
less impact on predictability performance when facing a concept drift as compared to local models. Moreover, the
severity of concept drift correlated with the performance drop of the enhanced models. Importantly, we also found
that the strategies adopted to construct the enhanced model did not significantly impact its performance, as all of
them exhibit similar trends and patterns.

In the second phase of our experimental evaluation, we validated the applicability of our proposed maintenance
strategies by retraining the models with the novel trends encountered after a concept drift. Our findings suggest that
the trade-off between the inter-node data transmission volume and performance loss can be effectively managed by
selecting a suitable maintenance strategy that balances the need for data reduction with the preservation of model
performance. Different scenarios yielded different optimal strategies, but all performed similarly or even better than
the baseline, achieving a substantial reduction in the amount of data required to be transmitted over the network
during the maintenance of the enhanced models.

Our future agenda includes exploring several areas to improve upon our framework and extend its applicability
to a wider range of DML scenarios. One important direction is to expand the scope of our experimental evaluation
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beyond the limited two-EN setting, and explore the applicability of the enhanced model to aid multiple failed nodes
in more complex DML environments. This would provide a more comprehensive understanding of the framework’s
effectiveness and limitations, and enable us to further optimize the maintenance strategies for the enhanced models
in such scenarios. Another promising direction is to investigate the applicability of other conditional generative
models, such as Conditional Generative Adversarial Network (cGAN) and Conditional PixelCNN, which could
help improve the framework’s capabilities in generating high-quality images, and thereby improve the predictability
performance of the enhanced models. While our study has focused on VAE-based conditional generative models,
cGANs and Conditional PixelCNN have been shown to have high-quality image generation capabilities, and could
be explored for image-based predictive analytics tasks.
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