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Abstract. As the pace grows in the development of image processing techniques and the current applications rise in machine
learning and deep learning techniques for visual inspections and physical assessment, this article reviews the existing literature.
It provides a detailed synthesis of the overview of surface pavement conditions, computer-vision-based technologies for road
damage detection, various datasets and data collection methods. We analyse and compare different machine-learning methods
and models proposed in the literature and identify challenges that need to be addressed in the future in road surface defect
detection.
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1. Introduction

Road accidents have become one of the most significant reasons leading to severe injuries and deaths in recent
years. Nearly 1.3 million people die on the world’s roads every year, and 20 to 50 million suffer non-fatal injuries
[60]. The degradation and defects of the pavement contribute to poor driving conditions due to insufficient time to
call drivers’ attention, sometimes leading to prolonged reactions, off-track driving and car accidents. It also impacts
driving speed, skid resistance, rain drainage, wear abrasion, ride quality, engine operation, vehicle maintenance,
and the gripping of tyres. Road environment contributes to 34% of traffic accidents via road layout and security
facilities [44], whereas the vehicle factor accounts for 13% comparatively. Kwon [34] reported that the rating of
road pavement is closely linked to traffic collisions and examined that car accident is up to 25 times different due to
the grade of the pavement.

According to the report on New Zealand’s rural roads [8], the average cost of maintaining and repairing a road
surface was measured at $21,000 a year per year, assuming a 40-year life and $38,000 cost per year per km of
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road for a 10-year life cycle. It is predicted that maintaining the road pavement material was estimated to add
approximately US$13.6, US$19.0 and US$21.8 billion, respectively, because of climate change by 2010, 2040 and
2070 [59]. However, if it was expected that the timber resource and the flow of logging trucks would continue on
that path for ten years, the gross annual expense rose to $31,000 per km per year.

Transportation infrastructure systems significantly impact a country’s development progress and well-functioning
economic activities. For example, New Zealand’s ten-year road safety strategy targets to reduce annual fatalities
from 330 in 2019 by 40% by 2030, by which the government has already invested $1.4 billion over three years
to update the most dangerous 3,300 km roads [62]. The maintenance and investment in road safety upgrades are
essential for preventing fatalities and crashes. For example, the measures of GAMBIT, Poland National Road Safety
Programme, were introduced to EU Directive and adopted on inspection of existing road networks in 2005 and
were effective between 2007—2010 [31]. After changing the layout of the road structure, the police claimed that
near those spots, the number of crashes, deaths and injuries dropped by 38%, 65% and 36%, respectively, in Korea
[64]. As a result, detecting road conditions by monitoring techniques becomes imminent to avoid the high cost of
repairing activities and multifunctional constructions.

2. Road surface pavement and other surface damages

Road surfaces consist of concrete, asphalt, chip seals, and unsealed ones. The adhesive material in asphalt is
petroleum, in concrete is cement, and in chip-seal is a thin layer of stones in tars. Asphalt is found to be easy to
patch, while, on the other hand, concrete cracks are more difficult to fix and unlikely to resurface. However, asphalt
driveways require re-sealing, but the concrete surface does not need it. Asphalt has good grip capability but reduces
skid resistance when wet, but the chip seal is generally smooth and lifts the risk of skidding. In rural areas, road
surfaces usually are mud and gravel and cause great dangers because of loosened tops and raised dust. Here, we
mainly focus on asphalt because New Zealand roads are primarily constructed with it. Our discussions revolve
around the necessity to replace or refurnish the road pavement after physical assessment and visual inspections.

2.1. Road surface crack

Climatic reasons such as heavy rain and extreme heat cause most cracks, while some by load and traffic. Some
happen because of pavement layers that are too thin or lack underlying support. Transverse cracks are also known as
unrelated cracks, which run unconnected laterally through the pavement primarily due to the shrinkage of the surface
layer or the underlying base layer. Longitudinal cracks are non-load related. They are formed due to the contraction
or shrinkage of the surface layer or reflection from the underlying base layer joints. Fatigue cracking is inter-
connecting cracks, block cracking is orthogonally intersected transverse and longitudinal, and slippage cracks are
half-moon-shaped cracks caused by traffic. The occurrence of fatigue cracking suggests the end of the pavement’s
life cycle. Alligator cracking is characterised by interconnection or joining breaking within the black-top layer,
taking after traffic loading. Edge crack is the formation of crescent-shaped splits close to the edge of a road [39].
It is caused by the need for support of the street edge, sometimes due to an ineffectively depleted drainage system.
The cracking types’ positions, dimensions, and orientations indicate distinct safety levels (Table 1).

2.2. Road surface damages

Road surface distresses and damages result in less attentive driving and may cause steering off the road and
clashes. Rutting is permanent longitudinal deformation along the surface, followed by surface degradation like
distress and fatigue cracks in the pavement, finally leading to cracking and disintegration in deeper road structures.
It is caused by insufficient moisture control or gradual brokenness of the surrounding structure after construction.
When the drainage system is not functioning well, the subgrade is poorly sealed, and ditches are filled with water
on rainy days. The accumulation of water reduces skid resistance power and causes car accidence. If a road is not
apparent at night or under a thin layer of water, drivers may not be aware of the possible dangers and may be unable
to change the car’s speed in rough areas [16]. In regions affected by moisture and frost, rutting causes expansion in
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Table 1

Effects of road defects on road safety

Road deftec
type

Condition Effect

Good Fair Poor

Pavement
roughness

IRI < 1.5 m/km [44] 1.5 m/km < IRI <

2.7 m/km [44]
IRI > 2.7 m/km

[44]
Decreases single-vehicle
accidents but increases
multiple-vehicle accidents
[4]

Rutting RD < 5 mm [7] 5 mm < RD < 10 mm
[7]

RD > 10 mm [7] Has a significant impact
during the night and rainy
days but is visible during
daytime and normal
weather [16]

Cracking X < 10 mm [47] 10 mm < X < 75 mm
[47]

X > 75 mm [47] Cracking width, length, and
the surrounding area
causing different levels of
ravelling and risk of
brokenness

Ravelling A < 1 m2 [49] 1 m2 < A < 10 m2 [49] A > 10 m2 [49] Stripping area affects the
safety level

Manhole D < 20 mm [49] 20 mm < D < 50 mm
[49]

D > 50 mm [49] Manhole depth or height
has intervention on the
surrounding

Joint X < 75 mm [49] 75 mm < X < 130 mm
[49]

X > 130 mm
[49]

The length of the joint seal
defect needs monitoring
and inspection

Edge break X < 75 mm [49] 75 mm < X < 125 mm
[49]

X > 125 mm
[49]

Edge break exceeding a
limit can be harmful

Patch <10% of the surface
[47]

10%–25% of the surface
[47]

>25% of the
surface [47]

Peculiar in urban areas and
are highly affected by their
shape

Pothole Depth (mm) Diameter (mm) The shape, depth and
average diameter have
different impacts on road
safety and comfort. It can
lead to wheel damage,
distraction, and swerving to
put drivers in danger [47]

13–25 100–200 200–450 450–750

25–50 Low Low Medium

>50 Low Medium High

Medium Medium High

susceptible soil and road materials, and it further loses road carrying capacity in defrost season. The related accident
rate is beginning to rise slightly as the routing depth approaches 7.6 mm [54]. Pavement roughness is the pavement
surface’s irregularness that adverts the ride of vehicles. The measurement to define the roughness of longitudinal
profiles is known as the International Roughness Index (IRI), which is the ratio of a vehicle’s suspension motion and
the travelled distance. It has been estimated that a 1 m/km decrease in IRI would save $321 million per year [46].
On the other hand, an IRI rise of up to 4 m/km would increase the cost of repair and maintenance for passenger cars
and heavy trucks by 10 per cent. This rise is up to 40 per cent for passenger cars and 50 per cent for heavy trucks at
an IRI of 5 m/km.
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Pavement deformation involves the vertical and horizontal change of the layer, such as depression caused by the
swelling of the surface structure accompanied by traffic and climatic influence. Depression is a bowl-shaped depres-
sion or broken part of a slab, which comes into effect because of the concrete’s disconnection and reinforcement
placement. Potholes start after rain leaks into breaks and down into the soil underneath the street surface. The soil
turns into mud with no bolster, and a gap forms beneath the road. Repeated freezing and defrosting of overwhelming
traffic causes the ground to extend. The ground returns to a lower level as the temperature rises, but the surface is
raised. This makes a crevice between the asphalt and the ground underneath it. When a vehicle drives over it, the
surface splits and falls into the hole, thus making a pothole. Potholes cause thousands of dollars of harm to vehicle
wheels each year.

The surface imperfection includes bleeding and ravelling, shown as excessive bituminous cover on the top layer
and insufficient asphalt, resulting in dislodging of the total. The causes of surface defects are related to bitumi-
nous and asphalt materials characteristics. Comfort is adversely influenced by the surface defects like ravelling and
bleeding, whereas surface deformation like potholes, depression, rutting, and other road distresses like manholes,
separation, pavement joints, and railroad crossings have an apparent impact on driving conditions [47].

2.3. Other surface damage scenarios

Other surfaces like bridges, tunnels, pipes, bricks, and building surfaces form similar degradation to road surfaces,
such as cracking, spalling, corrosion, etc. The defect’s magnitude helps predict future damage changes for visual
inspection. Cha et al. [13] have collected 2366 images of civil infrastructure for four types of damage – concrete
crack, steel corrosion, bolt corrosion, and steel delamination. Faghi-Roohi et al. [21] used the video data covering
700 km railway to label 22408 subjects into six surface classes normal, weld, light squat, moderate squat, severe
squat, and joint. Kim et al. [26] classified the images collected from the Internet into cracks, single line joints/edges,
multiple lines join/edges, intact surfaces, and plants. In another work, the crack and non-crack images from the con-
crete and brickwork buildings are generalised for inspection during building monitoring [43]. Different construction
surfaces are assessed in the previous studies by comparing distinct defect classes and severities, which has provided
useful data resources for DL model development. Nevertheless, the data types can still be improved to include more
comprehensive categories and degradation levels. In addition, it is worth discovering technical methods to detect
similar kinds of defects in various construction surfaces.

3. Computer vision-based image processing techniques

Civil infrastructure like tunnels, pipes, roads, and bridges are under continuous assessment to ensure the safety
and serviceability of engineering facilities and building structures. Usually, pavement assessment procedures are
carried out manually by inspectors and road assessors. However, Computer Vision (CV) techniques have developed
swiftly to take the intensive job of visual inspection of surface defects to save time and increase accuracy.

Feature engineering based on mathematical algorithms has been proposed to detect road damage in a street context
in the past decades. The traditional image processing techniques [25] mainly include such methods as intensity-
thresholding [14,24,40], edge detection [1], filtering [51,67], and wavelet transforms [15,70]. These techniques can
be attributed to feature-based methods, model-based methods, and pattern-based methods [. Abdel-Qader et al. [1]
showed fast Haar transform is more reliable than other edge detection techniques like a fast Fourier transform,
Sobel and Canny on detecting concrete bridge crack images. Yamaguchi et al. proposed a percolated technique to
extract a continuous texture to reflect the connectivity of brightness and shape [63]. This method was used for noise
reduction and has achieved high precision-recall and receiver operating characteristics. [24] presents subtraction pre-
processing with smoothed image and a line filter based on the Hessian matrix to highlight the cracks-like structures.
Fujita et al. finally utilised thresholding processing to separate cracks from the background. Salman et al. [51]
showed that the Gabor filter is highly effective in detecting multidirectional cracks by analysing images with a large
degree of surface texture that makes crack detection hard. The Gabor filtering technique is further developed by
Medina and Llamas [67] with three different methodologies for setting the threshold of the classifiers. The AdaBoost
algorithm is found to show the best results. Zhong et al. [70] showcased the application of continuous transforms
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Table 2

Some examples of image processing and ML techniques for crack detection

Work Type of damages Techniques Performance Methods Drawbacks/Limitations

Abdel-Qader et al. [1] Bridge crack Haar Wavelet Acc = 86% feature-based Noisy image data
questionable

Yamaguchi et al. [63] Large surface
crack

Scalable local
percolation-
based

Pr = 70%

R = 90%

Model-based rely on user input to
initialise the seed pixels

Abdel-Qader et al. [2] Cracks on a bridge
surface

Principle
component
analysis

Acc = 73% ML Camera pose and distance
make results different

Salman et al. [51] Pavement cracks Gabor filter Pr = 98% feature-based Not optimal if one seeks
broad spectral information

Lattanzi and Miller [35] Cracks on
different surfaces

Clustering
method based
on Canny and
K-Means

Acc (Canny) =
87.5%
Acc (K-Means) =
86.5%

feature-based
& ML

smaller objects not
recognised as one
continuous crack

Zhong et al. [70] Cracks on
pavement surfaces

Wavelet
transforms

NA feature-based Results not validified on
datasets

Prassana et al. [45] Cracks on bridge
decks

Multi-feature
Adaboost

Acc = 95% ML Can only analyse
high-resolution images

Shi et al. [52] Road pavement
cracks

CrackForest Pr > 90% ML Computational complex

representing a cracked simply-support beam using finite elements. Another work adapting the wavelet method by a
2D matched filter [15] uses Markov Random Field (MRF) to detect multi-scale and segment fine structures of the
image. The overview of image and ML techniques on crack detection is summarised in Table 2.

4. Machine learning in road defect detection

The development of machine learning (ML) has grown in the interest of defect/damage detection studies in the
past decade. For example, it was well applied to studying automated pavement crack detection problems. In addition,
by eliminating the need for manually tuning threshold parameters, ML helps develop parameter choices.

4.1. Traditional machine learning methods

The development of vision-based ML, surface crack and distress investigation, has prompted plenty of techniques,
such as PCA [2], AdaBoost [45], K-Means [35], SVM [3] and Random Forests [52]. Abdel-Qader et al. [2] applied
PCA on raw data, implemented linear structure modelling, and segmented local information to enhance local de-
tection with linear modelling over global. Lattanzi and Miller [35] used robust feature extraction and ML methods
based on Canny and

K-Means for crack segmentation. They showed that the clustering techniques explore the inherent character-
istics of fracture images to achieve consistent performance and improve classifier outcomes. Prassana et al. [45]
investigated support vector machines (SVM), AdaBoost, and Random Forest as classifiers with different Laplacian
pyramid feature vector combinations. They used this algorithm to make robust curve fitting so that the potential
crack regions are spatially localised even in the presence of noise. CrackForest was developed by Shi et al. [52]
by introducing random structured forests with integral channel features and proposing a new crack descriptor to
characterise cracks and differentiate them from noises.

Many works integrated traditional ML and image processing techniques to enhance performance. Wang et al.
[61] detect surface cracks of wind turbine blades by images captured by UAVs. They used a Parallel data-driven
crack location method: parallelised sliding windows connected into the cascading classifier and parallel Jaya K-
means crack contour detection methods. Specifically, a parallel sliding window method is utilised to scan images
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for locations, cascading classifier to classify sliding windows into two classes: cracks and non-cracks, and crack
windows on Haar-like features to locate cracks by the extended cascading classifier (ECC). Finally, the Jaya K-
means algorithm is developed to cluster each pixel in crack windows into crack and non-crack segments to obtain
crack contour. Jaya algorithm tunes the parameters and simplifies the approach. Gaussian filter is then used for edge
preservation.

In practice, WT blade images are captured by UAVs from commercial wind farms. The raw images have different
backgrounds under different lighting conditions. Each pixel of crack windows is labelled by RGB and HSV features.
The performance evaluation shows that 95.83% of cracks are detected, and no false alarm is observed. For contour
detection: Jaya K-means algorithm yields the smallest values of minimal, maximal and average values of SSEs
(sum of square errors) over Sequential sliding window, Generic K-means and PSO K-means. For crack locations:
The parallel sliding window can reduce the detection time by 7.9 times. For contour detection: the Jaya algorithm
has a faster convergence speed. The integration of cascading classifier and parallel sliding window accelerated
image-based crack detection and developed parallel Jaya K-means-based crack contour detection. The benefit of the
approach is the flexibility to access remote areas, collect multimedia information on blades, and prevent inspection
dangers. But then, robustness needs to be proposed for variations of the illumination and background.

Ai et al. [3] proposed a probabilistic generative model (PGM) and a support vector machine (SVM) based fusion
algorithm. A PGM-based method is used to generate a probability map based on pixel intensity information. The
SVM-based method generates probability maps based on multi-scale neighbourhood information. A novel fusion
algorithm can merge the multiple probability maps into a fused map to detect cracks with high accuracy. Weighted
dilation operation enhances the recognition of borderline pixels and improves crack continuity. The method out-
performs the two baselines regarding recall and F1-score while achieving precision (90.7%) close to the baseline
approaches at 2-pixel margin vicinity. They fuse the probability vector to make Max, Min, Multiply and Mean oper-
ations, respectively. They found that the Max operation can help detect most cracks as non-crack pixels are classified
as cracks. Multiply operation uses a small number of crack pixels, which misses several cracks. But Min and Mean
operations are in between the Max and Multiply operations. The results show that the accuracy is higher than any
original probability maps. It detailed the borders and the widths of the cracks applicable to noisy environments.
The method deals with cracks with heterogeneous intensity, complex topology in morphology, and bad illumination
conditions. However, it is necessary to continue to investigate how the neighbourhood affects the detection results
and need to determine features extracted from the neighbourhood. They also need to accelerate the detection using
CUDA and further optimise the detection algorithms.

4.2. Deep learning methods

The visual inspection of asphalt pavements and other surfaces has been developed over the last three decades.
However, detecting damages is a challenging problem due to the variations of image sources, non-uniformity of
cracks, inadequate brightening, and other similar features. Mathematical method-based algorithms show limitations
in detecting cracks in different morphology and situations, demanding tedious efforts to calculate the crack pixel
locations. The recent achievements brought by Deep Learning (DL) methods have shed light on automatic pavement
image investigation and propelled the applications to move from handcrafted features to data-driven approaches.
The results of large neural networks outperform small and medium neural networks in precedence over traditional
learning algorithms by the tide of AI development. More dynamic analysis and algorithmic strategies are developed
to address the challenges. Due to the flourishing deployment of portable hardware, powerful-capacity computation,
parallel device usage and database systems, Deep Learning (DL) approaches have reached outstanding achievements
and are brought into the applications in street view detections and surface texture investigation.

In the 1980 s, the idea of non-linear dynamics was introduced into a neural network. In the same period, the back-
propagation (BP) algorithm was applied as an efficient gradient descent algorithm, a reliable learning method for
multilayer neural networks. Neural networks, characterised by hidden layers of numerous neurons, extract features
by training forth and back through the architecture levels constituting non-linear information processing units. Deep
networks, usually Convolutional Neural Networks (CNN), implement foundational layers like pooling and convnet
to target multi-class classification problems. Deeper neural networks, however, often encounter over-fitting issues
when coming in the form of complicated structures to deal with small crack image datasets. Hence, fine-tuning
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process, the use of a dropout layer, and regularisation are necessary to adjust the parameters of the classification
layer or the entire network.

Many up-to-date techniques of deep learning models use CV visions to produce good recognition results. Hinton
et al. [30] integrate backpropagation learning with a multilayer neural network to recognise an object with high
computational efficiency. The authors train a deep learning model to generate sensory data and learn non-linear
distributed data for each layer. Fu et al. [23] proposed a recurrent CNN (RCNN) for object recognition. They
discovered that this model could fix the number of parameters, facilitate the learning process, and outperform the
state-of-art models. The number of hidden nodes is shown to be more significant than the algorithm or depth of
the model to achieve high performance in Coates et al. [19]. Only a single layer of features can be used to obtain
good results when pushed to limits. He et al. [29] demonstrated a residual learning framework to ease the training
of deeper neural networks. The result shows that the residual networks are easier to optimise and can achieve
higher accuracy when tested to conduct visual recognition tasks. A novel recurrent attention convolutional neural
network (RA-CNN) [23] is proposed by Fu et al. to reflect the mutually correlated relation between region detection
and feature representation. Again, a deep CNN network by Krizhevsky et al. [33] is shown to classify 1.3 million
high-resolution images with a low top-5 error. The current CV machine learning studies focus on a result-oriented
engineering process. However, it lacks target-oriented motives to modify models to tailor them to user-defined
objects.

1) Existing DL work on pavement image analysis and automated distress detection CNNs, which comprise con-
volutional layers, activation layers and pooling, are commonly used for DL applications on a wide range of
pavement image analysis problems. CNNs and DCNNs have deeper architectures than shallow neural net-
work structures, resulting in more reliable performance and application efficacy. In the past five years, there
has been a vast growth of studies on CNN applications to address various challenges in vision-based auto-
mated pavement distress detection. The large-scale public annotated image datasets serve for pavement image
classification problems by applying various the-state-of-the-art CNN techniques.
For example, Gopalakrishnan et al. [26] built a simplified vision-based pavement crack detection system using
a pre-trained deep learning model through transfer learning and domain adaptation approach. The pre-trained
DCNN uses Keras deep learning framework and is implemented on the VGG-16 model. The pre-trained deep
Convolutional Neural Networks (DCNN) were studied by transfer learning for automated pavement distress
detection. The truncated VGG-16 DCNN is a deep feature generator that vectorises the labelled pavement
images and then trains a machine learning classifier to predict the labels. Various machine learning classifiers
are trained using the semantic image vectors, and a neural network classifier gives the best result. A single-
layer neural network classifier (with ‘adam’ optimiser) is trained on ImageNet pre-trained VGG-16 DCNN
with 144 million parameters. It contains 16 convolutional layers with very small receptive fields of size 3 × 3,
and five max-pooling layers of size 2 × 2 for carrying out spatial pooling, followed by three fully-connected
layers, with the final layer as the soft-max layer. Rectification nonlinearity (ReLu) activation and dropout
regularisation are applied to all hidden and fully-connected layers. Pavement images were sampled from the
FHWA/LTPP ImageNet database with 1056 pavement images. The pre-processed image size is set to 1000 ×
500 pixels, and VGG-16 DCNN default images were cropped to 224 × 224 pixels.
There are 25,088 deep transfer learning features as inputs. The experiments were conducted on an Intel
CoreTM i7-5600U CPU on 64-bit Windows 10 OS. The NN classifiers were trained on ImageNet pre-trained
VGG-16 DCNN. They yielded the best performance in accuracy, precision, recall, F1-score, Cohen’s Kappa
score, ROC curves, and area-under-the-ROC-curve (AUC) values. VGG, AlexNet, and GoogLeNet are learned
in the deep transfer learning approach, which was insensitive to surface colour and texture variation. Using a
pre-trained deep learning model and fine-tuning with smaller datasets achieves a higher order of complexity.
A challenging machine learning for a few instances to the VGG-16 model has learned to extract features and
distinguish one class from another. A significantly higher order of complexity is introduced to prove model
robustness. However, it fails to learn to distinguish cracks from joints in PCC-surfaced pavements and requires
high computational complexity. Table 3 lists examples of recent deep learning models for surface defect de-
tection.
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Table 3

Some examples of deep learning models on surface defect detection

Work Type of damages Techniques Performance
Acc/F1/. . .

Detection
problem

Drawbacks/Limitations

Gopalakrishnan et al. [27] Pavement cracks Transfer
learning &
VGG

Acc = 90% Classification Fails to learn to distinguish cracks
from joints in PCC-surfaced
pavements

Rajadurai et al. [48] Surface cracks AlexNet Acc = 81–89% Classification Accuracy degraded by shadows,
surface roughness, scaling, edges,
holes, and background debris

Cha et al. [11] Concrete and
steel surfaces

CNN &
sliding
window

Acc = 98% Classification The incapability of sensing internal
features due to the nature of the
photographic image

Faghih-Roohi et al. [22] Railway defects DCNN F1-score –
92%

Classification Doubles computational time

Maeda et al. [14] Road defects SSD Pr > 75%
R > 75%

Detection Hard to detect rare types of damage

Stricker et al. [56] Road defect GAN &
Auto-decoder

Acc = 60% Detection The performance can be improved

1.1) Deep learning models on road defect classification. Kim et al. [32] detect real structures (various apparent
conditions) over cracks and intact surfaces into five classes (intact surfaces, cracks, multiple joints and
edges, and a single joint or edge). They used transfer learning to form a probability map (softmax layer) to
increase the robustness of a sliding window and parametric study of thresholds. The database was scraped
from the Internet, the classifier was developed by transfer learning of Alexnet (CNN), and the probability
map detected cracks. They used AlexNet of five convolutional layers, max-polling layers, three fully-
connected layers with a 1000-way softmax, and a non-linear unit (ReLU) (activation function) at the
end of neurons to reduce the vanishing gradient effect for real-time video frames of an unmanned aerial
vehicle under field conditions. UAV-based inspection https://youtu.be/5sNbfEaRwkU has 40 images. The
experiments were conducted on CPU: Intel(R) Core(TM) i3-6100 and RAM:8192 MB GPU: NVIDIA
Geforce 1060 3 GB. Pixel-level test results turn at 90% of accuracy at 86.73% average precision and
88.68% average recall. Accuracy vs. threshold shows that when at average accuracy, the result changes
slightly. At average precision, it slowly increases from 0% to 50% and remains constant afterwards. The
average recall decreases slightly from 0% to 50% and drops after 50%. A threshold is determined as
35%, and precision and recall are higher than 90%. The automated DL method is to detect cracks in
natural structures. Detailed categorisation can achieve high accuracy of trained CNN misclassification
due to shape similarity.
Cha et al. [12] extract defect features like cracks in concrete and steel surfaces with a vision-based
method using a deep architecture of convolutional neural networks (CNNs) for detecting concrete cracks
without calculating the defect features and works without the conjugation of IPTs for extracting features.
The trained CNN is combined with a sliding window technique to scan any image size larger than 256
× 256 pixels resolutions. The designed CNN is trained on 40 K images of 256 × 256 pixels resolutions
and tested on 55 images of 5,888 × 3,584 pixels. It achieves 98% accuracy and overcomes extensively
varying real-world situations (e.g., lighting and shadow changes).
Faghih-Roohi et al. use a deep convolutional neural network with three DCNN structures (small, medium,
and large) considered [21]. The implementation is based on the framework in Torch 7. The images are
obtained from many hours of automated video recordings for 350 kilometres of track manually labelled
22408 objects, 10 per cent of the samples for testing and use the remaining 90 per cent for training.
The rail defect classes can be classified with almost 92% by F1-score measurement. The large DCNN
primarily performs better than the rest. However, this improvement comes at the price of doubling the
computation time as opposed to the small DCNN for extracting suitable features for detecting rail surface
defects. The approach took advantage of the DCNN to skip elaborate procedures of feature extractions

https://youtu.be/5sNbfEaRwkU
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that are required in classical learning approaches. It uses raw images as the only input to the classification
model and optimises the network using a mini-batch gradient descent method. The DCNN classification
accuracy is very high, and only the normal type can reach 95.74%. However, there is no cross-validation
with other models.

1.2) Deep learning models on object detection of road defects. The SSD Inception V2 and SSD MobileNet by
Maeda et al. [38] were trained on the dataset and compared the accuracy and runtime speed on both, using
a GPU server and a smartphone. For the results, they achieved recalls and precisions greater than 75% in
the best-detectable category and achieved an inference time of 1.5 s on a smartphone. Stricker et al. [55]
used a generative adversarial network (GAN) along with Poisson blending and a variational autoencoder
to generate road damage images as new training data to improve the accuracy of road damage detection.
The addition of a synthesised road damage image to the training data improves the F-measure by 5% and
2% when the number of original images is small and relatively large. The enlisted groups participating
in the RDDC2020 challenge achieved an average f1-score of more than 60%. Their detection techniques
include Yolov5, Ensemble model, Ensemble Prediction, and data augmentation such as TTA are also
adopted as efficient methods to lift performance. Duplicate or overlapped predictions generated in the
process are filtered using the non-maximum suppression (NMS) algorithm [5].

1.3) Deep learning models on crack segmentation

1.3.1) Pixel-wise segmentation. Zou et al. [72] found that more detailed representations are made in
larger-scale and smaller-scale feature maps. They proposed DeepCrack: an end-to-end trainable
deep CNN. It is built on the encoder-decoder architecture of Segnet. They made a skip-layer fu-
sion to connect the encoder and decoder networks and pixel-wise semantic segmentation to learn
multi-scale features. There is one convolutional layer before the pooling layer at each scale of the
encoder network concatenated crack dataset of 260 pavement images (https://sites.google.com/
site/qinzoucn). There are three crack datasets: pavement image datasets of 100 and 315 images
each and stone surface of 331 images. Human experts manually label the ground truth cracks. It
is implemented on GeForce GTX TITAN X GPU by three metrics of F-measurement: ODS, OIS
and AP, all have the highest value of 0.872. The precision-recall achieves the highest performance.
It is compared with HED, RCF, SegNet, SRN, U-net, SE, CrackForest, DeepCrack, and Crack-
Tree (Traditional low-level feature-based method). The performance efficiency is 6 FPS, slower
than HED, RFC, and SRN. They removed the skip-layer connection to decrease performance.
The model is trained from scratch to obtain better performance than trained from a pre-trained
model. They also reduce the ground-truth crack label and shift crack labels to overcome declined
performance, whilst noisy crack labels have little influence. Smaller crack weight decreased per-
formance. They design a new neural network architecture for crack detection, using a fusion of
multi-scale features at each encoder-and-decoder level to infer cracks from the background. They
construct DeepCrack with different scales and weights assigned to each scale and train DeepCrack
with or without pre-trained models of SegNet and Pascal Voc, sampling operation of max-pooling
indices to bilinear interpolation and detection of bright cracks. However, it is not practical only
for crack information extraction. Ground truth marks are laboured by handwritten compared with
decision tree and three other none-DL models. More network layers lead to DeepCrack handling
images more slowly than HED, RCF and SRN.

1.3.2) Patch-wise segmentation. Eisenbach et al. [50] introduced the German asphalt pavement distress
(GAPs) dataset as the first free and publicly available massive pavement distress images dataset
suitable for training high-performance DCNNs. However, almost all previous studies in this do-
main used their datasets collected and annotated differently. Thus the performance of the devel-
oped distress detection algorithms and techniques could not be compared to a standard bench-
marking dataset. Furthermore, even when the pavement distress datasets were made publicly
available, they were not big enough to directly implement the DCNNs [50]. Thus, the GAPs
dataset (http://www.tu-ilmenau.de/neurob/data-sets-code/gaps/) seems to be the first attempt at

https://sites.google.com/site/qinzoucn
https://sites.google.com/site/qinzoucn
http://www.tu-ilmenau.de/neurob/data-sets-code/gaps/
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creating a standard benchmarking pavement distress images dataset for deep learning applica-
tions. It includes 1969 grayscale pavement images (1418 for training, 51 for validation, and 500
for testing) with various distresses, including crack, potholes, inlaid patches, applied patches,
open joints, and bleeding.

2) Temporal-spatial analysis of pavement conditions. Chen et al. [18] proposed a DL convolutional neural net-
work (CNN) and a Na¨ıve Bayes data fusion CNN that detects crack patches in each video frame. The data
fusion scheme maintains the spatiotemporal coherence of cracks in the video. Na¨ıve Bayes decision-making
discards false positives effectively. Configurations of convolution, pooling and fully connected layers follow
the model used in TensorFlow. The videos are with 30 ft/s and 720 × 540 pixels resolution 2. 5326 crack im-
age patches manually annotated. It is augmented to have 147 344 crack and 149 460 non-crack image patches.
Two Intel Xeon E5-2620 v4 CPUs, 256-GB DDR4 memories, and four NVIDIA Titan X Pascal GPUs. It turns
out that there is a 98.3% hit rate against 0.1 false positives per frame with NB-CNN with data fusion LBP-
SVM with data fusion LBP-SVM. The CNN architecture detects crack patches, and a registration procedure
maintains the spatiotemporal coherence of cracks in videos. A Na¨ıve Bayes data fusion scheme discards false
positives effectively by aggregating information from multiple frames.

3) 3D detection of road distress. The methods for recognition, location, measurement, and 3D reconstruction
of concealed cracks are developed based on convolutional neural networks. Tong et al. [58] proposed three
different CNNs (recognition, location, and feature extraction). They used a feed-forward algorithm to train
data and decrease errors. The recognition CNN is to distinguish concealed cracks from other types of damage
in a GPR image. The location CNN determines the location and length. The 3D reconstruction makes feature
extraction by CNN models. In recognition CNN: CNN is composed of two convolutional layers (C1 and C2
based on the activation function sigmoid) and two subsampling layers (S1 and S2 based on different feature
matrixes to avoid excessive useless information), followed by two full connection layers (F1 and F2) and the
output layer. Location CNN is similar to the above. Recognition CNN uses 500 grey-scale maps divided into
256 × 256 pixel sized 6832 images, 2200 as the training samples for the CNNs. The types of damages are
quadrature encoded. Location CNN uses 5233 data 4000 labelled for training. Feature extraction CNN made
4000 labelled images out of 5233. Recognition CNN split 4632 divided images for testing. Location CNN has
5233 data and 1233 for testing. Feature extraction CNN made 1233 images out of 5233.
The experiments are conducted on Inter(R Core(TM) i7-6700 CPU, 8.00 GB RAM, and NVIDIA GeForce
GTX 1060 6GB GPU. The recognition CNN has zero errors, and CNN locates concealed cracks correctly.
The MSE of the edge box and length is 0.327 cm and 0.732 cm. The length recognition possesses a 0.2543 cm
mean-squared error, a 0.978 cm maximum length error, and a 0.504 cm average error in the recognition. CNN
was designed to distinguish concealed cracks from other pavement damage in GPR radar images with no error.
Measuring errors satisfies the demand for highway engineering detection. The recognition CNN produces no
erroneous results. However, there is more to explore on how 3D reconstruction models can predict the growth
tendency of cracks. Detection efficiency could be improved for classification. Width coordinates and feature
point extraction are too rough and not verified to be the best-performed method due to a lack of comparison
with other methods.
Zhang et al. [68] explicitly the objective of pixel-perfect accuracy for the set of predicted class scores for all
pixels. CrackNet, an efficient architecture, is based on the Convolutional Neural Network (CNN). CrackNet
does not have any pooling layers that downsize previous layers’ outputs. It ensures pixel-perfect accuracy
using the newly developed invariant image width and height technique through all layers. CrackNet comprises
five layers and includes more than one million parameters trained in the learning process. The input data of
the CrackNet are feature maps generated by the feature extractor using the proposed line filters with various
orientations, widths, and lengths and trained with 1,800 3D pavement images and tested with another set of
200 3D pavement images. It achieved high precision (90.13%), recall (87.63%) and F-measure (88.86%). The
spatial size of the input data is invariant through all layers. The ground truth of training data is prepared for
pixel-to-pixel supervised learning 3. Last, an individual pixel is compared with its neighbours through local
connections.
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4) Road defect measurement. Tong et al. [57] handled image sizes and shapes from asphalt pavement images and
transferred learning of DCNN to use weights and bias for length classification. RGBs are transformed into
grey-scale images to calculate the threshold and properties by k-means clustering. The DCNN is initialised
with parameters in the fine-tuning process to recognise crack length. Quadrature encoding improves response
rate and training convergence. The stochastic gradient descent (SGD) speeds up the training rate and decreases
weight errors in the feed-forward algorithm and is composed of two convolutional layers, two subsampling
layers, and two fully connected layers. The dataset is divided into 200*200 images as grey-scale pictures.
Training samples contain 7500 images with cracks and 500 images without cracks, and 1200 images are
randomly selected for the pre-train process. Five hundred images are selected from the training sample as the
testing sample. For image Extraction: Inter ® Core ™ i7-6700 CPU and 8.00GB Random Access Memory
(RAM) and NVIDIA GeForce 1060 6GB GPU 2. For length classification: Intel ® Core ™ i5-2520 CPU,
4.00 GB RAM and NVIDIA GeForce GT 630. Recognition accuracy achieves 94.36%. Maximum length
error equals 1 cm, mean squared error equals 0.2377, length recognition = 3 ms. It is found that the image
resolution has little influence on accuracy in the range of 54–300 PPI. The light condition has little impact
on the accuracy of DCNN because of the extracting features by k-means. The training strategy overcomes
the lack of crack labels and improves accuracy. They can extract discriminative crack features. Crack labels
fine-tune the trained network to recognise length. The developed DCNN has lower requirements for hardware
capacity and enhances efficiency. The developed DCNN is transferrable to other asphalt pavement at 6–8 cm
cracks with high error rates. The model’s efficiency and accuracy are not verified by comparing it with other
benchmark models.

5. Datasets

A conventional approach includes high labouring and survey cost. It also renders workers in unsafe conditions
with unreliable inspection results. For instance, an inspector can measure the 2D dimensions of surface damage
but cannot calculate its underground depth and variation extent. Due to the availability of low-cost and highly
accessible sensors, the emergence of technology of visual evaluation is replacing manual inspection for pavement
distress acquisition. Some deploy GPS in the data acquisition vehicle, coordinating with the information from a
camera, laser and other sensors for automatic processing in spatial resolution.

5.1. Data collection and image capture

Digital cameras are a widely applied technology in distress detection. Most 2D image studies have led to a high
accuracy rate in recognition and classification. The camera devices can be carried in vehicles whilst capturing other
information such as vehicle speed, acceleration, longitudinal and transverse position, height, and environmental
factors. After collecting the relevant information, the raw image data needs to be cleaned and pre-processed to avoid
deformations and exclude noises.

Line-Scan cameras are normally used for crack detection from 2D images because of their high acquisition rate
and high resolution. One of the difficulties for computer vision algorithms is the variability of the lighting conditions.
Crack detection using 3D data is a new line of research and application [10], which can be acquired by 3D scanners
and LiDAR devices and transferred to point cloud data. An example in Fujita et al. [24] builds a Laser Road System
(LRIS) on a vehicle employing a Differential Global Position System (DGPS), a high-definition camera, and a
high-speed area scan camera. The geometrical information is obtained with 3D detection captured by the laser line
projected with the scanning camera.

Recently, new pavement defect detection applications were developed that utilised Unmanned Aerial Vehicles
(UAVs) to avoid blocking the traffic flow and to access remote sensing. Branco et al. [9] use a CMOS sensor
attached to a UAV platform called MaNIAC-UAV (Methodology for Asphalt Automatic Characterization – using
Unmanned Aerial Vehicles). The sensor’s resolution was 16 megapixels, while the flight altitude was 130 m with a
spatial resolution of 4.0 cm per pixel. Zhang et al. [69] designed programs for UAV intelligent control modulus and
defect detection modulus. After the automatic flight task, they combined image processing techniques with typical
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edge detection algorithms. The method improved the accuracy and efficiency of remote monitoring and established
the basis for large-scale automatic detection.

5.2. Other sensor-based data

Chellaswamy et al. [17] proposed an internet of things-based road monitoring system (IoT-RMS) to identify
potholes and humps in the road. An accelerometer has been included with the ultrasonic sensor to measure the
degree of variety present in the signal, applying the honey-bee optimisation (HBO) technique. Moreover, Due to the
common limitation of the nature of photographic images, the internal features of objects cannot be fully discovered.
In order to overcome the drawbacks of vision-based methods, Yang et al. [66] proposed an approach for detecting
cracks in infrared thermal imaging steel sheets using Faster R-CNN. Their study also collected 3,000 infrared
thermograms labeled for penetrating cracks, non-penetrating cracks, and surface scratches.

Furthermore, Ground Penetrating Radar (GPR) can recognise subsurface damage using the emission of short
pulses of electromagnetic energy without deepening into the buried area. Lit et al. [37] proposed an effective method
to automatically perform the recognition and location of concealed cracks based on 3-D ground penetrating radar
(GPR) and YOLO deep learning models. A dataset containing 303 GPR images and 1306 cracks was constructed
as part of their study.

5.3. Dataset of road defects and other surface damages

2D images are the primary data source discussed in this section because it is well studied and widely applied,
which has obtained a solid base to compare and analyse. Some video frames, 3D images and stereo vision data are
enlisted but very limited and less pertinent to our research focus. After obtaining the 2D images from camera devices,
they are cleaned and pre-processed before going through image-processing or modelling procedures. Table 4 gives
an overview of a public dataset on road defects with annotations to provide benchmarks for solid evaluation.

5.3.1. Image-level dataset
Özgenel et al. [42] collected various concrete images from walls and concrete floors in campus buildings of

Middle East Technical University (METU). The dataset is obtained by extracting 40k 224 × 224-pixel image patches
from 500 (4032 pixels to 3024 pixels). Here, we abbreviate the dataset to CCIC (crack image classification). The
two classes of concrete images – con-crack and crack, are balanced in number. The total number of CCIC dataset are

Table 4

Some examples of public datasets for road defect

Reference Dataset Goal Label level Data size/unit Total number

Zou et al. [71] CrackTree206 Detect road cracks with similar
background texture

Pixel-level 800 × 600 pixels 206

Eisenbach et al. [20] GAPS v1 Pavement distress detection Batch-level 64 × 64 pixels 32k

Stricker et al. [56] GAPS v2 Pavement distress detection on
different classes and patch levels

Batch-level 64 × 64 pixels and
various scales

50k

Li et al. [36] AEL Road crack detection Pixel-level 800 × 800 pixels 35

Shi et al. [53] CFD Road crack detection Pixel-level 480 × 320 pixels 118

Yang et al. [65] Crack500 Pavement crack detection Pixel-level 2000 × 1500 pixels 3368

Guzmán et al. [28] CCSAD Hazardous road conditions Stereo-level 1096 × 822 pixels 40 sequences

Nienaber et al. [41] Sunny South African roads with
potholes

Image-level 3880 × 2760 pixels 48913 frames

Özgenel et al. [42] CCIC Classify cracks and non-cracks
on concrete surfaces

Image-level 224 × 224 pixels 40k

Maeda et al. [14] RDDC2018 Classification of 8 categories of
road damages

Image-level 600 × 600 pixels 9053

Arya et al. [6] RDD2022 Classification of 9 categories of
road damages

Image-level 600 × 600 pixels 47,420
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randomly split into 70%, 15% and 15% of training, validating and testing data. The CCIC dataset provides enough
data for training and testing and is used to test prototype models for road crack image classification. It highlights the
crack features with a bright look and high-quality effect. As a result, concrete damages show clear boundaries and
contrasts with the background in colour and intensity. In their study, a multidimensional performance analysis of
highly acknowledged pre-trained networks (e.g., AlexNet, GoogleNet, ResNet50, ResNet101, ReNet152, Vgg16,
and Vgg19) concerns the size of the training dataset, depth of networks, the number of epochs for training, and the
expandability to other material types.

Nienaber et al. [41] annotated 53 images containing 97 potholes from the newly created pothole image library.
The video frames were obtained while driving at 40 km/h, from which the images of resolution size 3880 × 2760
pixels are selected to involve one pothole in a single frame. They included pictures from different situations, for
example, driving while pointing toward the sun, having the sun on the right of the vehicle, and potholes close to
trees with huge shadows. The entire dataset was partitioned into simple and complex groups. Each dataset contains
folders containing the training (positive and negative) images and a set of positive test images.

Maeda et al. [14] have collected the road damage dataset as a benchmark for evaluating state-of-art computer
vision techniques for detection and classification. The Road Damage Detection Classification (RDDC2018) Dataset
is based on eight classes: wheel mark part, longitudinal construction joint part, equal interval, transverse construction
joint part, partial & overall pavement, rutting, bump, pothole, and separation, white line blur, and crosswalk blur.
The Japanese government uses the eight road categories as a classification standard to inspect the road. It is the most
completely categorised and is extensively used in road damage detection applications for object detection purposes.
RDDC includes 2k to 4k instances and less than 1k instances of other classes.

Nevertheless, the data structure distribution is imbalanced as there are more road cases of cracks than potholes or
significant damage. In 2022, Arya et al. [6] released dataset of 47,420 road images collected from India, Japan, the
Czech Republic, Norway, the United States, and China and it was used in the Crowdsensing-based Road Damage
Detection Challenge (CRDDC), a Big Data Cup organized as a part of the IEEE International Conference on Big
Data’2022.

5.3.2. Patch-level dataset
The German Asphalt Pavement distress (GAPs) dataset provides high-quality images collected by the mobile

mapping system STIER deployed with laser sensors and camera systems for surface measurement. The distress
annotations are provided according to Road Monitoring and Assessment (RMA), which fulfils German federal
regulations. GAPs v1 [20] contains 32k small batches of 64 × 64 pixels extracted from annotated regions and intact
surfaces in HD images. The training, validation and testing set come in 32k samples in which we use 32k instances
for training and 13k for testing. The GAPs v2 dataset [56] has 2 468 grey-valued images in total, separated into 1417
training images, 51 validation images, 500 validation-test images, and 500 test images. They created a training set
of 50 000 samples with 10,000 samples of the validation set, validation-test set, and test set. Surface defect classes
in the GAPs dataset comprise single/multiple cracking, longitudinal/transversal cracking, alligator cracking, and
sealed/filled cracks.

5.3.3. Pixel-level dataset
The CrackTree206 dataset [71] consists of 206 road surface images taken from spacious road textures. It has

800 × 600 pixels RGB crack images manually labelled as ground truth with a delineated centre line. The pavement
images are used to detect road cracks automatically. AEL [36] comprises three Aigle-RN, ESAR and LCMS data,
including 58 crack images of around 800 × 800 pixels. The dataset is gained at traffic speed for occasionally
checking the French asphalt surface condition utilising the Aigle-RN framework. ESAR has 15 images captured
by a static acquisition system with no controlled lighting. LCMS contains five pixel-wise annotated crack images.
Yang et al. [65] collected a pavement crack dataset Crack500 which composes of 500 images captured by a mobile
phone on the main road of Temple University, which are of a size of around 2,000 × 1,500 pixels. The dataset is
divided into 250 images of training data, 50 images of validation data, and 200 images of test data. They cropped
the data to obtain 1896 images for training data, 348 images for validation data, and 1124 images for test data. Shi
et al. [53] proposed an annotated road crack dataset CFD (https://github.com/cuilimeng/CrackForest-dataset) with
manually labelled crack contours. The dataset consists of 118 images with 480 × 320 pixels resolution. The device
used to acquire the images is an iPhone5 with a focus of 4 mm, aperture of f/2.4 and exposure time of 1/135 s.

https://github.com/cuilimeng/CrackForest-dataset
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5.3.4. Stereo-level dataset
Guzmán et al. [28] collected around 500 GB of data corresponding to more than 96,000 stereo pairs distributed

in 42 sequences in 1 h and 20 minutes of stereo sequences. The stereo pairs were chosen at 20 fps using a rectified
radiometric 8-bit pixel depth and made into a CCSAD dataset (http://camaron.cimat.mx/Personal/jbhayet/ccsad-
dataset) of 1096 × 822 pixels in hazardous road condition of developing countries including abundant potholes,
varying speed bumpers and peculiar flows of pedestrians. In addition, they recorded high-resolution stereo datasets
complemented with direction and acceleration information captured from IMU and GPS in Mexico from a moving
vehicle. The dataset, however, is limited to highway traffic with annotations relevant to work zones.

6. Conclusion and future work

The development of computer vision and the deployment of visual technologies have exponentially increased
in the past few decades. We reviewed the computer-vision techniques, from image processing to machine-learning
methods, across different challenge-focused works of automatic road damage detection. The different classifications
of road defects are identified, and the most up-to-date data collection technologies are discussed.

The advantages and limits of the existing methods for automatic road defect detection are outlined in the dis-
cussion. There are still plenty of challenges to face in computer vision to support civil engineering research in the
future. The common problem is the over-fitting resulting from the DL models that conduct the high precision per-
formance on training data but fails to generalise and identify other datasets. The current studies have not detected
crack severity levels nor analysed the impact on road safety issues, despite being one of the most critical factors in
road inspection. Due to the variety of road distress types in sparse areas, the cost increases to carry heavy visual
devices to different locations for acquiring specific damage classes.

In addition, the abnormalities of asphalt surfaces and the variety of different types of distinct surface materials
lead to few successes in automatic surface distress detection with high precision and comprehensiveness.

Conflict of interest

None to report.

References

[1] I. Abdel-Qader, O. Abudayyeh and M.E. Kelly, Analysis of edge-detection techniques for crack identification in bridges, Journal of Com-
puting in Civil Engineering 17(4) (2003), 255–263. doi:10.1061/(ASCE)0887-3801(2003)17:4(255).

[2] I. Abdel-Qader, S. Pashaie-Rad, O. Abudayyeh and S. Yehia, PCA-based algorithm for unsupervised bridge crack detection, Advances in
Engineering Software 37(12) (2006), 771–778. doi:10.1016/j.advengsoft.2006.06.002.

[3] D. Ai, G. Jiang, L.S. Kei and C. Li, Automatic pixel-level pavement crack detection using information of multi-scale neighborhoods, IEEE
Access 6 (2018), 24452–24463. doi:10.1109/ACCESS.2018.2829347.

[4] H.R. Al-Masaeid, Impact of pavement condition on rural road accidents, Canadian Journal of Civil Engineering 24(4) (1997), 523–531.
doi:10.1139/l97-009.

[5] D. Arya et al., Global road damage detection: State-of-the-art solutions, 2020, arXiv preprint arXiv:2011.08740.
[6] D. Arya, H. Maeda, Y. Sekimoto, H. Omata, S.K. Ghosh, D. Toshniwal, M. Sharma, V.V. Pham, J. Zhong, M. AlHammadi, M.B. Shami,

D. Nguyen, H. Cheng, J. Zhang, A. Klein-Paste, H. Mork, F. Lindseth, T. Seto, A. Mraz and T. Kashiyama, RDD2022 – The multi-national
Road Damage Dataset released through CRDDC’2022, 10 2022. [Online]. Available: https://figshare.com/articles/dataset/RDD2022Road
Damage Dataset released through The CRDDC, multi-national 2022/21431547.

[7] S. Baskara et al., Influence of Pavement Condition Towards Accident Number on Malaysian Highway, IOP Conference Series: Earth and
Environmental Science, Vol. 220, IOP Publishing, 2019, p. 012008.

[8] J. Bluett, M. de Aguiar and N. Gimson, Impacts of exposure to dust from unsealed roads April 2017, 2017.
[9] L.H.C. Branco and P.C.L. Segantine, August. MaNIAC-UAV-a methodology for automatic pavement defects detection using images ob-

tained by Unmanned Aerial Vehicles, in: Journal of Physics: Conference Series, Vol. 633, IOP Publishing, 2015, p. 012122.
[10] W. Cao, Q. Liu and Z. He, Review of pavement defect detection methods, IEEE Access 8 (2020), 14531–14544. doi:10.1109/ACCESS.

2020.2966881.

http://camaron.cimat.mx/Personal/jbhayet/ccsad-dataset
http://camaron.cimat.mx/Personal/jbhayet/ccsad-dataset
https://doi.org/10.1061/(ASCE)0887-3801(2003)17:4(255)
https://doi.org/10.1016/j.advengsoft.2006.06.002
https://doi.org/10.1109/ACCESS.2018.2829347
https://doi.org/10.1139/l97-009
http://arxiv.org/abs/arXiv:2011.08740
https://figshare.com/articles/dataset/RDD2022Road
https://doi.org/10.1109/ACCESS.2020.2966881
https://doi.org/10.1109/ACCESS.2020.2966881


X. Chen et al. / A review on automated road defect detection 273

[11] Y.-J. Cha, W. Choi and O. Büyüköztürk, Deep learning-based crack damage detection using convolutional neural networks, Computer-Aided
Civil and Infrastructure Engineering 32 (2017), 361–378. doi:10.1111/mice.12263.

[12] Y.J. Cha, W. Choi and O. Büyüköztürk, Deep learning-based crack damage detection using convolutional neural networks, Computer-Aided
Civil and Infrastructure Engineering 32(5) (2017), 361–378. doi:10.1111/mice.12263.

[13] Y.J. Cha, W. Choi, G. Suh, S. Mahmoudkhani and O. Büyüköztürk, Autonomous structural visual inspection using region-based deep
learning for detecting multiple damage types, Computer-Aided Civil and Infrastructure Engineering 33(9) (2018), 731–747. doi:10.1111/
mice.12334.

[14] K. Chaiyasarn, Damage detection and monitoring for tunnel inspection based on computer vision, 2014.
[15] S. Chambon, P. Subirats and J. Dumoulin, Introduction of a wavelet transform based on 2D matched filter in a Markov random field for

fine structure extraction: Application on road crack detection, in: Image Processing: Machine Vision Applications II, Optics and Photonics,
Vol. 7251, International Society for, 2009, p. 72510A.

[16] C.Y. Chan, B. Huang, X. Yan and S. Richards, Investigating effects of asphalt pavement conditions on traffic accidents in Tennessee based
on the pavement management system (PMS), Journal of advanced transportation 44(3) (2010), 150–161. doi:10.1002/atr.129.

[17] C. Chellaswamy, H. Famitha, T. Anusuya and S.B. Amirthavarshini, IoT based humps and pothole detection on roads and information
sharing, in: 2018 International Conference on Computation of Power, Energy, Information and Communication (ICCPEIC), 2018, March,
IEEE, 2018, pp. 084–090.

[18] F. Chen and M.R. Jahanshahi, NB-CNN: Deep learning-based crack detection using convolutional neural network and naïve Bayes data
fusion, IEEE Transactions on Industrial Electronics 65 (2018), 4392–4400. doi:10.1109/TIE.2017.2764844.

[19] A. Coates, A. Ng and H. Lee, An analysis of single-layer networks in unsupervised feature learning, in: Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics, JMLR Workshop and Conference Proceedings, 2011, pp. 215–223.

[20] M. Eisenbach, R. Stricker, D. Seichter, K. Amende, K. Debes, M. Sesselmann, D. Ebersbach, U. Stöckert and H.-M. Gross, How to get
pavement distress detection ready for deep learning? A systematic approach, in: Int. Joint Conf. on Neural Networks (IJCNN), IEEE,
Anchorage, USA, 2017, pp. 2039–2047.

[21] S. Faghih-Roohi, S. Hajizadeh, A. Núñez, R. Babuska and B. De Schutter, Deep convolutional neural networks for detection of rail surface
defects, in: 2016 International Joint Conference on Neural Networks (IJCNN), IEEE, 2016, pp. 2584–2589.

[22] S. Faghih-Roohi, S. Hajizadeh, A. Núñez, R. Babuska and B. De Schutter, Deep convolutional neural networks for detection of rail surface
defects, in: 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, 2016, pp. 2584–2589. doi:10.1109/
IJCNN.2016.7727522.

[23] J. Fu, H. Zheng and T. Mei, Look closer to see better: Recurrent attention convolutional neural network for fine-grained image recognition,
in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 4438–4446.

[24] Y. Fujita, Y. Mitani and Y. Hamamoto, A method for crack detection on a concrete structure, in: 18th International Conference on Pattern
Recognition (ICPR’06), Vol. 3, IEEE, 2006, pp. 901–904. doi:10.1109/ICPR.2006.98.

[25] K. Gopalakrishnan, Deep learning in data-driven pavement image analysis and automated distress detection: A review, Data 3(3) (2018),
28. doi:10.3390/data3030028.

[26] K. Gopalakrishnan, S.K. Khaitan, A. Choudhary and A. Agrawal, Deep convolutional neural networks with transfer learning for com-
puter vision-based data-driven pavement distress detection, Construction and Building Materials 157 (2017), 322–330. doi:10.1016/j.
conbuildmat.2017.09.110.

[27] K. Gopalakrishnan, S.K. Khaitan, A. Choudhary and A. Agrawal, Deep convolutional neural networks with transfer learning for computer
vision-based data-driven pavement distress detection, Construct. Building Mater. 157 (2017), 322–330. doi:10.1016/j.conbuildmat.2017.
09.110.

[28] R. Guzmán, J.B. Hayet and R. Klette, Towards ubiquitous autonomous driving: The CCSAD dataset, in: Computer Analysis of Images and
Patterns. CAIP 2015, G. Azzopardi and N. Petkov, eds, Lecture Notes in Computer Science, Vol. 9256, Springer, Cham, 2015. doi:10.1007/
978-3-319-23192-1_49.

[29] K. He, X. Zhang, S. Ren and J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 770–778.

[30] G.E. Hinton, Learning multiple layers of representation, Trends in cognitive sciences 11(10) (2007), 428–434. doi:10.1016/j.tics.2007.09.
004.
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