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Abstract. With advances in the treatment of the mucopolysaccharidosis (MPS) disorders, musculoskeletal problems are increas-
ingly becoming a focus of care for these patients. This review discusses the current understanding of the pathophysiology of
musculoskeletal disease in MPS and its orthopedic management. Deformities of the spine, hips and extremities are common and
often functionally limiting. Carpal tunnel syndrome and flexor tendon triggering are common. Surgical intervention is often
required to optimize long-term function.
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1. Introduction

The mucopolysaccharidoses(MPS) constitute a fam-
ily a lysosomal storage diseases resulting from an
inborn error of metabolism and subsequent abnor-
mal accumulation of cellular glycosaminoglycans (Ta-
ble 1). Mucopolysaccharides, or glycosaminoglycans
(GAGs), are important constituents of the connective
tissue matrix, and play a critical role in collagen-matrix
adhesion, and consequently cell and tissue integrity.
Abnormal accumulation of these molecules disrupts
most normal organ system processes [9,22,25,29,32].
Depending on the degree of enzymatic defect, the MPS
disorders can be characterized by a large spectrum of
clinical involvement. Multiple organ system involve-
ment is typical and includes central nervous system,
cardiopulmonary solid organ,ocular and musculoskele-
tal disease. The skeletal disease manifestations range
from mild platyspondyly with or without epiphyseal
dysplasia to severe, life-threatening spinal deformities
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and crippling hip deformities [9,19,47]. Both joint stiff-
ness and ligamentous laxity are associated with MPS
disorders, compounding the problems associated with
the skeletal deformities.

Dysostosis multiplex, the constellation of radio-
graphic abnormalities classically seen in MPS, results
from defective endochondral and membranous growth
throughout the body, including the hips, knees and
spine [5,8,31]. Additional findings include enlarge-
ment of the skull, a thick calvarium, J-shaped sella tur-
cica, broad clavicles and ribs. The molecular physiol-
ogy of this problem is not yet completely understood.
Dysregulation of many structurally related cytokines
has been described in MPS animal models, including
MMP-13, FGF-2 and elastin binding protein [10,27,
35]. Examination of the physes from MPS I animal
models and human biopsy specimens reveals growth
plates that are wider than normal, with the widening
being dispersed over all anatomic zones [5,31,34]. The
quality of cells appears grossly normal in the reserve
and proliferative zones, but electron microscopy re-
veals enlarged, vacuolated cytoplasm. The zone of hy-
pertrophy is hypercellular and demonstrates increasing
disorganization. The zone of provisional calcification
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Fig. 1. Proteoglycan depletion in the articular cartilage of MPS VI
rats. Longitudinal sections of 6-month-old MPS VI (A) and normal
(B) rat proximal tibia were stained with safranin-O to visualize pro-
teoglycans. BM, bone marrow; E, epiphyses; AC, articular cartilage.
Note that the epiphyses of the MPS VI rats stained less intensely than
those of normal rats of the same age. Magnification, x 40. (Figure
taken from Simonaro et al., Lab Invest 81(9) (2001), 1319–1328).

is also enlarged and disorganized. Incomplete break-
down of the physeal cartilage matrix, leads to disor-
ganized ossification with islands of remnant cartilage
and erratic cortical bone formation in the primary spon-
giosa. These processes become more pronounced with
maturity and ultimately result in the observed skeletal
dysplasia [31].

Articular cartilage is also abnormal in MPS disor-
ders. This has been demonstrated by arthroscopy in
patients with MPS IVand in animal models with MPS
VI [15,37]. Histopathology and biochemical analysis
demonstrate proteoglycan and collagen depletion in ar-
ticular cartilage matrix. This is thought to be the re-
sult of dermatan sulfate induced nitric oxide (NO) and
tumor necrosis alpha (TNF-α) release, and subsequent

chondrocyte apoptosis [37]. These findings likely re-
sult in the subchondral delamination that has been ob-
served arthroscopically (Fig. 1).

Because musculoskeletal deformities account for
greater than 40% of the presenting signs for some MPS
disorders [45], familiarity with these disorders is crit-
ical, not only for recognition and diagnosis, but for
treatment of these devastating diseases. Early diagno-
sis allows time-sensitive medical treatment, particular-
ly in those disorders responsive to hematopoietic stem
cell transplantation (MPS IH and MPS VI) [4,17,28,
33]. Hematopoietic stem cell transplant (HSCT), while
often life-saving through the alleviation of disease for
the majority of major organ systems, does not alter the
course of progressive skeletal disease, although some
normalization of articular cartilage and linear growth
may occur [5]. Enzyme replacement therapy (ERT) on
the other hand, has been shown to reduce the burden of
skeletal disease in MPS VI cats treated from birth [2].

Regardless of the method of specific treatment, it has
become increasingly clear that children with even the
most severe forms of MPS are now living into adoles-
cence, and conceivably beyond. If left untreated, these
skeletal problems usually become functionally limit-
ing and often painful [8]. The goals of surgical proce-
dures for the spine, hips, knees and hands should be to
promote optimal function and gait. Surgical and non-
surgical management of the musculoskeletal manifes-
tations of MPS are discussed here.

2. Cervical spine

Issues involving the cervical spine are extremely
common in children with MPS, and may be potential-
ly life-threatening. Atlantoaxial instability with resul-
tant myelopathy and spastic quadriparesis is well de-
scribed in MPS IV and MPS VI [12,19,40,43] (Fig. 2a,
b). Quadriparesis is a known cause of premature death
in affected individuals [19]. In addition, GAG accu-
mulation behind the odontoid process may result in
progressive stenosis and resultant compression of the
spinal cord at the occipital-cervical junction [38]. Con-
sequently, prophylactic fusion, often with decompres-
sion, has been recommended in all individuals affected
by MPS IV [19,30]. In MPS I, growth of the odontoid
process may normalize after HSCT, but enlargement
of the odontoid process continues [11,13,47]. Thus,
spinal instability and spinal cord compression may still
occur, but may be less common.
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(a) (b)

Fig. 2. CT scan (a) and MRI (b) from a two year-old child with MPS VI seen 6 months after a fall backwards from standing. The patient
was partially quadriparetic, but had recovered most function at the time of evaluation. He subsequently underwent C1 decompression and
occipital-cervical fusion. Images show anterior displacement of C1 on C2 with resultant stenosis on CT scan. Myelomalacia is appreciated at the
same level with the posterior arch of C1 impinging on the spinal cord.

(a) (b)

Fig. 3. Dynamic fluoroscopic images taken of the cervical spine in this eight year old MPS I patient, while awake, demonstrate subtle motion
between the occiput and C1, and posterior widening between C1 and C2. This patient had received a matched cord blood transplant.

Atlanto-axial instability is often not demonstrated on
flexion-extension cervical spine films [48]. It is unclear
whether this lack of hypermobility is a failure of ade-
quate imaging due to patient splinting. Dynamic fluo-
roscopy on an awake patient can unmask instability not
seen on static flexion-extension plain films [49] (Fig. 3).
The pathophysiology of cervical stenosis in MPS may
result from delayed ossification of the odontoid pro-

cess. The persistent cartilaginous anlage is prone to
repetitive trauma, and at times, fracture [30,38]. This
odontoid trauma results in two distinct problems that
contribute to spinal cord injury. The first is atlanto-axial
instability, which results from dens fracture and associ-
ated ligamentous instability. This is commonly demon-
strated on flexion-extension radiographs. The second
is cartilage/fibrocartilage reactive hypertrophy around
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Fig. 4. An MRI from the same MPS I patient (from Fig. 4) shows sig-
nificant stenosis between a retroverted odontoid process with over-
lying hypertrophic cartilage and the foramen magnum.

the odontoid process, as demonstrated on pathology
samples by Ashraf et al. [1,24], compounded by thick-
ening of the dura and ligamentum flavum hypertrophy,
both of which have been demonstrated by imaging and
pathology specimens [13,24]. This process results in
cervical stenosis and cord compression from a combi-
nation of odontoid fibrocartilage hypertrophy, ligamen-
tous laxity and soft tissue thickening [1,38].

Atlantoaxial instability has been reported in MPS
VI (Maroteaux-Lamy) and in severe, untreated MPS I
(Hurler) [6,42,43]. Children with MPS I, who have un-
dergone hematopoietic stem cell transplant (HSCT) of-
ten have normalization of their odontoid process [11].
Many of these patients however continue to demon-
strate deposition of GAGs in the subarachnoid space
directly behind the C2 vertebra [11,13], and some have
required surgical treatment of cervical spine disease af-
ter HSCT (Fig. 4). Even the more attenuated forms
of MPS I (Hurler-Scheie and Scheie) develop surgical-
grade cervical stenosis with myelopathy in the upper
cervical spine and require careful monitoring for this
process [45].

Multilevel cervical stenosis has also been reported in
MPS VI (Maroteaux-Lamy), in addition to atlantoaxial
instability [1]. Imaging in these patients reveals pos-
teriorly prominent intervertebral discs, thickened du-
ra and hypertrophy of the ligamentum flavum. This
finding is also demonstrated in the MPS VI cat model
(Mark Haskins, personal communication). Pathology

(a) (b)

Fig. 5. A typical thoracolumbar kyphosis (a) is seen in this nine year
old girl with MPS I after matched unrelated bone marrow transplan-
tation. She also developed a significant double major scoliosis. She
continues to be observed without any interventions.

samples taken at the time of durotomy show the classic
MPS cellular pathology with cells filled with enlarged
lysosomes due to GAG accumulation [13]. In the ab-
sence of instability, cervical decompression without fu-
sion may be appropriate.

Several authors have recommended prophylactic de-
compression and fusion of the occipital cervical junc-
tion at an early age for MPS IV [19,30,38]. Current
recommendations are for decompression and fusion of
asymptomatic patients when the space available for the
cord is < 14 mm or there is cervical instability > 8 mm.
Patients with 5 to 8 mm of cervical instability, with clin-
ical evidence of spinal cord impingement, and all pa-
tients with a deteriorating neurological condition also
warrant surgical treatment [48].

It is recommended that all children with MPS should
avoid “high risk” activities such as contact sports, gym-
nastics, etc. In addition, these children should be treat-
ed with caution when undergoing positioning for anes-
thesia, and at least one set of flexion and extension lat-
eral radiographs of the cervical spine is recommended
prior to anesthesia in all affected individuals to evaluate
for atlantoaxial instability.

3. Thoracolumbar spine

The hallmark orthopedic feature in MPS is thora-
columbar kyphosis or the gibbus deformity, and has
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historically played a significant role in the diagnosis
of MPS [3,45]. Gibbus deformities occur in nearly all
children with severe MPS I, and are commonly found
in other MPS disorders [8] (Fig. 5a). The kyphosis de-
velops from poor bone growth in the anterior-superior
aspect of the upper lumbar vertebrae. This process re-
sults in anterior wedging, retrolisthesis of the apex ver-
tebrae and anterior herniation of the intervetebral discs
at the thoracolumbar junction [18]. Surgical stabiliza-
tion to halt the progression of the kyphosis is relatively
common in MPS I and in MPS VI, even after HSCT [8,
9,47]. Scoliosis has been observed in MPS I, II, III,
but is rarely significant enough to require surgery [9]
(Fig. 5b).

There is no clinical evidence to support the use of
bracing in MPS. Bracing may slow the progression of
both spinal kyphosis and scoliosis, delaying surgery,
but not preventing surgery. Bracing can be uncomfort-
able for children, and they rarely tolerate it, especial-
ly young children due to their stature and abdominal
girth. Consequently, bracing is only recommended in
young children with progressive deformity who are not
otherwise candidates for surgery. One must consider
the psychosocial implications for the patients and their
families.

Indications for surgery vary, depending on the needs
of the child and the desires of the family. Generally, a
kyphosis of more than 70◦ or scoliosis greater than 50◦

are relative indications for surgery. (James Ogilvie,
personal communication) The presence of myelopathy
is clearly an indication for surgery. Often the medi-
cal complexity of these patients can be a factor against
surgical intervention. Surgery for kyphosis or scoliosis
may be necessary as young as two years of age, and
usually before adolescence. Published reports put the
average age at about eight years [8]. Current experience
suggests that, if possible, delaying spinal surgery al-
lows maximal growth of the spine and further develop-
ment of already osteopenic and small, dysplastic bone,
thus reducing the technical difficulty of the procedure.

Anterior and posterior fusion for kyphotic deformi-
ties is recommended, followed by postoperative brac-
ing for 3–6 months. Early experience suggests that
treatment of kyphosis by posterior instrumentation and
fusion only may lead to an increased risk of failure and
the need for re-operation. (James Ogilvie, personal
communication) In general, when these guidelines are
followed, there does not seem to be in increased risk
of pseudoarthrosis (failure for bones to fuse) in this
patient population. Treatment of scoliosis follows tra-
ditional indications for intervention in complex defor-

(a)

(b)

Fig. 6. An anteroposterior view of the hips (a) in a patient with MPS I,
after matched unrelated bone marrow transplantation, demonstrates
significant hip dysplasia with a poorly developed acetabulum, coxa
valga, and apparent subluxation of the femoral heads. An arthro-
gram taken three years previously demonstrates a well developed
cartilaginous enlage which failed to ossify.

mity, including the recommendation for anterior fusion
in less mature children in order to prevent crankshaft
phenomenon.

4. Hips/pelvis

Hip concerns are present in nearly all individuals
with MPS, and can be divided into two major cate-
gories: hip dysplasia and osteonecrosis-like epiphyseal
dysplasia [8,16,20,41,47]. In MPS-related hip dyspla-
sia there is a poorly developed acetabulum, underdevel-
opment of the medial portion of the proximal femoral
epiphysis, and coxa valga. There appears to be de-
layed ossification of the lateral acetabular corner, leav-
ing a significant cartilaginous anlage as demonstrated
by arthrogram (Fig. 6a, b). In our experience, MRI
images confirm these arthrography findings. This com-
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bination of bone defects results in progressive hip in-
stability and late dislocation. This can be functionally
limiting by adolescence or early adulthood [8].

Epiphyseal dysplasia, which has the appearance of
osteonecrosis, or Perthes Disease, is seen in MPS III,
IV and VI (Fig. 7a). This process may represent an
inflammatory mediated apoptosis [36]. Surgical recon-
struction will not correct these deformities; however
the role of containment surgery has not been investigat-
ed, and may be appropriate in selected cases. Ultimate-
ly, prosthetic replacement of the hip may be required
(Fig. 7b). This is an extremely challenging procedure in
patients with MPS, and should be reserved for individu-
als with incapacitating hip pain, and performed by sur-
geons versed in complex hip reconstructive surgery. In
the future, early medical treatment with intra-articular
anti-inflammatory medications may reduce the theoret-
ical apoptosis and subsequent osteonecrosis-like pro-
cesses [35].

Hip dysplasia to some degree is found in nearly all
children with severe MPS I, and can also be found in
children with attenuated MPS I, MPS II, MPS VI, and
less often MPS IV [16,41,49]. Abduction bracing in
young children with MPS has not been studied, but is
likely ineffective and may actually result in worsening
muscle weakness and delay of physical development.
Hip dysplasia has not been shown to respond to stem
cell transplant or enzyme replacement therapy although
very early treatment after birth has not been well stud-
ied, and most children with MPS I after HSCT eventu-
ally require corrective hip surgery. Surgery on the hips
is performed more easily at a younger age, around age
5–7, for an optimal outcome, but has been reported in
children as young as 2 years of age. Technically, suc-
cessful surgery becomes much more difficult at older
ages (after triradiate cartilage closure).

Surgical reconstruction for hip dysplasia (primarily
in MPS I) is a combination of osteotomies intended to
reposition the bones and optimize hip mechanics [16,
41]. A pelvic osteotomy such as described by Salter,
or Dega (as modified by Mubarak et al.) is required
to reduce the global acetabular deficiency [21,46]. A
proximal femoral osteotomy is also required to reduce
the significant valgus deformity of the femoral neck.
On occasion, capsulorrhaphy is required when the hip
is dislocated. It should be noted that the hip capsule
can be extremely thick and difficult to work with (up to
10 mm thick, personal communications, James Oglvie)
Without hip surgery, there may be progressive pain and
stiffness, and eventually frank dislocation of the hips,
with a dramatic reduction in walking ability [8]. Thus
far, the results of hip surgery in MPS are promising,
resulting in improved motion and independent walking.

(a)

(b)

Fig. 7. Severe epiphyseal dysplasia with erosion and collapse of the
femoral heads and subsequent subluxation in a twenty-four year old
woman with MPS IV. She sustained a right femoral neck fracture
which was stabilized with a screw (a). Due to severe pain symptoms,
she underwent left total hip arthroplasty (b).

5. Knees

Almost all children with MPS IV, and about 50% of
children with MPS I post-HSCT, develop genu valgum
severe enough to require surgery [7,22,26]. Children
with MPS VI as well as the attenuated forms of MPS
I, can also develop knock-knees severe enough to war-
rant surgery. The published indication for surgery is a
tibial-femoral angle greater than 15◦. Hemiepiphyseal
growth modulation through the use of Blount’s staples
may be performed through a relatively small incision [7,
26] (Fig. 8). A newer technology, the tension band
plate (“8-plate”, Orthofix, Verona, Italy), is showing
great promise as an alternative to staples, particularly in
children too small for staple placement [39]. Occasion-
ally, these implants can dislodge. When this happens,
they are typically removed, and if necessary, new ones
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Fig. 8. The patient from Figure 6 also had significant genu valgum
and had Blount’s staples placed for growth modulation. In the time
period covered, she showed progressive improvement of her defor-
mity as demonstrated by the decrease in medial deviation from the
mechanical axis (shown as white arrows). Surgical intervention has
been recommended when the tibiofemoral angle exceeds 15◦ (also
shown in first figure to the left – α).

replace them. Osteotomies near the knee (tibia or fe-
mur) may be required. Although osteotomies are more
invasive and painful, staples or tension band plates will
not work in children who are physically too small to
have them placed, or those who do not have enough
growth remaining to modulate. Growth in MPS can be
difficult to predict, and as such criteria for intervention
can not necessarily follow those of normal children.
Experience with hip surgery has shown that children
with MPS heal osteotomies well. Advanced arthrosis
of the knee due to delamination of articular cartilage,
in adults with MPS, may be addressed with total knee
arthroplasty [7].

Children with MPS also suffer from stiff knees,
which prevent full straightening and result in a
crouched gait. Knee stiffness is improved with stem
cell transplant and enzyme replacement therapy, but
most children still require continued physical therapy
to optimize knee motion and walking function [14,23].
For those with fixed knee flexion contractures, exten-
sion osteotomy of the distal femur should be consid-
ered.

6. Upper extremities

Upper extremity function may be adversely altered
due to restricted joint motion, bony abnormalities, com-
pression neuropathies or tenosynovial thickening. ERT
has proven to be extremely beneficial in improving
joint range of motion of the shoulders and elbows [14,
23]. The full benefits of ERT in this regard may take

Fig. 9. Intraoperative view of a carpal tunnel decompression in a
child with MPS I. Note the hourglass appearance of the median nerve
adjacent to the large soft tissue accumulation sitting in the left half
of the incision.

several years, however, to manifest themselves. Fore-
arm pronation and supination are often limited by a
Madelung’s type deformity (most often seen in MPS
II) [49]. Carpal tunnel syndrome, either due to pri-
mary neuropathy or secondarily from tenosynovial ac-
cumulation of GAGs, is well described in MPS dis-
orders [44,50]. Median nerve neuropathy frequently
goes unrecognized in children with limited expressive
skills resulting in permanent loss of nerve function. As
such, regular electrodiagnostic studies (nerve conduc-
tion velocities performed every one to two years) are
recommended in children with MPS. Carpal tunnel re-
lease is required when median nerve disease exists or
is suspected. Tenosynovial accumulation of GAGs al-
so is known to result in “trigger digits” [44]. Surgical
release is recommended when this condition exists as
well, and can be done concomitantly with carpal tunnel
release (Fig. 9). Delayed treatment of trigger digits
may result in fixed flexion contractures.

7. Summary

Even with stem cell transplant or enzyme replace-
ment therapy, patients with MPS continue to have sig-
nificant muscular and skeletal disabilities, most com-
monly involving the spine, hips, knees and hands.
These are rarely catastrophic or life threatening, but
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frequently limit a child’s function, activity, and qual-
ity of life. Surgical intervention is often required, to
optimize long-term function. The timing and type of
surgery may vary among children and among surgeons.
Regardless, early evaluation is critical in determining
what treatments will be necessary to optimize the qual-
ity of life for a child with MPS.
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