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Abstract.
Background: Mutations in the Leucine Rich Repeat Kinase 2 gene are highly relevant in both sporadic and familial cases of
Parkinson’s disease. Specific therapies are entering clinical trials but patient stratification remains challenging. Dysregulated
microRNA expression levels have been proposed as biomarker candidates in sporadic Parkinson’s disease.
Objective: In this proof-of concept study we evaluate the potential of extracellular miRNA signatures to identify LRRK2-
driven molecular patterns in Parkinson’s disease.
Methods: We measured expression levels of 91 miRNAs via RT-qPCR in ten individuals with sporadic Parkinson’s disease,
ten LRRK2 mutation carriers and eleven healthy controls using both plasma and cerebrospinal fluid. We compared miRNA
signatures using heatmaps and t-tests. Next, we applied group sorting algorithms and tested sensitivity and specificity of their
group predictions.
Results: miR-29c-3p was differentially expressed between LRRK2 mutation carriers and sporadic cases, with miR-425-5p
trending towards significance. Individuals clustered in principal component analysis along mutation status. Group affiliation
was predicted with high accuracy in the prediction models (sensitivity up to 89%, specificity up to 70%). miRs-128-3p,
29c-3p, 223-3p, and 424-5p were identified as promising discriminators among all analyses.
Conclusions: LRRK2 mutation status impacts the extracellular miRNA signature measured in plasma and separates mutation
carriers from sporadic Parkinson’s disease patients. Monitoring LRRK2 miRNA signatures could be an interesting approach
to test drug efficacy of LRRK2-targeting therapies. In light of small sample size, the suggested approach needs to be validated
in larger cohorts.

Plain Language Summary.
We know that alterations in a gene called Leucine Rich Repeat Kinase 2 are important in both inherited and non-inherited
cases of Parkinson’s disease. We also know that treatments for Parkinson’s disease specifically targeting LRRK2 are currently
being developed. Challenges for developing such a treatment, however, are how to accurately identify patients who could
benefit from these therapies and to observe whether the treatment interacts with its target on a molecular level. In this study,
we tested whether individuals with an alteration in the LRRK2 gene display a distinct pattern of small RNA molecules, called
microRNAs. We measured the amount of 91 microRNAs present in blood of individuals with an alteration in the LRRK2
gene and compared their pattern to patients with a non-inherited form of Parkinson’s disease and healthy controls.
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We found that the amount of a specific microRNA called miR-29c-3p was different between individuals with or without
an alteration of the LRRK2 gene. Additionally, we developed models that could predict whether someone had a LRRK2
mutation based on the microRNA pattern in the plasma. Of course, we have easier methods to find these gene alterations,
but our findings suggest that changes of LRRK2 result in a shift of microRNA patterns in the blood. This could help us to
observe the effects of a LRRK2 specific treatment which tries to revert these changes. As we know that LRRK2 also plays
a role in some patients with a non-inherited form of Parkinson’s disease, this microRNA pattern could maybe even help us
to identify these individuals. It is important to note that our study involved a small number of individuals, so that further
research with larger groups is needed to confirm our findings.
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INTRODUCTION

The majority of familial Parkinson’s disease (fPD)
cases is caused by mutations in the Leucine Rich
Repeat Kinase 2 (LRRK2) gene [1, 2], with the
G2019S mutation being the most common [3].
Despite its apparent role in PD, LRRK2 expression
levels in the CNS are relatively low compared to
peripheral tissues such as the lung and the kidneys,
as well as blood monocytes [4, 5]. Increased kinase
activity is thought to be the cause of the disturbed
cellular homeostasis observable in cell models of PD
[6]. Most importantly, LRRK2 was shown to play a
role in sporadic cases, with non-coding variants in the
LRRK2 gene increasing the risk of PD [7]. Further,
sporadic PD (sPD) and fPD cases show overlapping
clinical features [8]. Studying fPD cases therefore
offers the opportunity to better understand the molec-
ular pathogenesis of both fPD and sPD cases.

Targeting multiple molecular pathways in selected
PD patients with an individually formulated com-
bination of drugs could be a potential strategy
for disease modification [9]. However, this strat-
egy necessitates not only the discovery of particular
druggable pathways, but also the careful selection
of patients who are most likely to benefit from a
given treatment, ideally at an early or even asymp-
tomatic stage in the course of their disease. While
aberrant LRRK2 activity represents such a molecular
target and LRRK2 inhibitors are approaching clinical
testing [10, 11], pre-selecting patients as well as mon-
itoring target engagement and drug efficacy remain
challenging. There are no established biomarkers
available that can aid in the early detection of
disease onset before significant neurodegeneration
occurs.

Recently, microRNAs (miRNAs), small non-
coding RNA molecules that are involved in the

posttranscriptional regulation of gene expression
[12], have been intensively studied as potential
biomarkers for neurodegenerative diseases, includ-
ing PD [13, 14]. So far, most biomarker studies
using miRNAs have focused on the differentiation
of sPD patients from healthy controls (HC), while in
the present proof-of-concept study we aimed to test
how well extracellular miRNAs can be used to reli-
ably differentiate between sPD patients and LRRK2
mutation carriers (LRRK2MC). Since the distinction
between fPD and sPD is possible by using more strin-
gent methods, such as sequencing, in the long run
we aim to identify individuals with relevant involve-
ment of LRRK2-dependent pathways among the sPD
population. However, in a first step we decided to
define what constitutes a molecular LRRK2 fin-
gerprint by comparing the extracellular miRNA
signatures of fPD and sPD cases. Given that LRRK2
was described to change the cellular miRNAome
[15], we hypothesized that mutations in the LRRK2
gene also alter the extracellular miRNA signature in
LRRK2MC.

MATERIALS AND METHODS

Experimental design

In a first step, we quantified the expression levels
of 91 extracellular miRNAs from a cohort of ten sPD,
ten fPD, and eleven HC in both plasma and CSF using
RT-qPCR (Fig. 1). After processing of raw Ct values
and calculation of log2 fold change values (log2fc), as
described in more detail in the respective method sec-
tion, we performed t-tests to identify single miRNAs
with the potential of discriminating between groups.
We further applied group sorting algorithms such as
principal component analysis (PCA), least absolute
shrinkage and selection operator (LASSO) and ran-
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Fig. 1. Study Design Overview. The experimental cohort compromised 31 patients categorized into three groups: individuals carrying a
LRRK2 mutation, sporadic PD patients and healthy controls. A total of 91 miRNAs, selected by reviewing relevant literature, were quantified
in CSF and plasma samples using reverse transcription and qPCR. Subsequently, the obtained raw Ct values were calibrated and fc and
log2fc values were calculated. miRNAs that were expressed only in subgroups were excluded. Group differences were then analyzed using
t-tests, PCA, Random Forest and LASSO regression. Created with BioRender.com.

dom forest (RF) using the calibrated Ct values of
all miRNAs that could be reliably detected through-
out the cohort. The ability to differentiate between
sPD patients and LRRK2MC with and without PD
was assessed for each sorting algorithm by evaluating
their sensitivity and specificity. Finally, we selected
those miRNAs that had a significant impact on the
performance of each model.

Ethics approval and consent to participate

The study was approved by the Hertie Institute for
Clinical Brain Research Biobank and the ethics com-
mittee of the medical faculty of the University of
Tübingen and University Clinic Tübingen (project
ID: 199/2011B01). All participants gave written,
informed consent.

Cohort design

For each LRRK2MC, one sPD and one HC was
added to the study cohort. To obtain homogenous
groups, individuals were selected based on age,
gender, and disease duration. As the histopatholog-

ical complexity of PD likely increases over time
and patients with long disease durations might
no longer display pathologies specific to muta-
tion status rather than showing features common
to all PD patients, disease durations were kept as
short as possible. The group of LRRK2MC ini-
tially included a PD patient carrying two LRRK2
variants (N1437S, S1647). Given that these poly-
morphisms were not reported to be pathogenic, we
finally decided to exclude this patient from the anal-
ysis. The final cohort therefore comprised three
groups (Table 1): Ten LRRK2MC (fPD patients: n = 6
(LRRK2 G2019S: n = 3; LRRK2 G2019S/G1819:
n = 1, LRRK2 R1441C: n = 1; LRRK2 I2020T: n = 1),
asymptomatic G2019 S mutation carriers: n = 4), ten
sPD patients and eleven HCs. After performing PCA
as described in more detail in the respective method
section, the data set of one of the asymptomatic
LRRK2MC appeared as a technical or biological out-
lier and was removed from the plasma dataset before
further analysis (Supplementary Figure 1). Clinical
features are reported in Table 1. The researcher per-
forming the experiments was blinded to the group
annotation.
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Table 1
Overview of clinical data

LRRK2 mutated Sporadic PD (n = 10) Healthy control (n = 11)
Disease status PD (n = 6) Asymptomatic (n = 4)

Age (y) 66.8 ± 8.7 52.3 ± 19.6 64.5 ± 10.9 60.1 ± 14.5
Gender (m:f) 1 : 5 0 : 4 2 : 8 2 : 9
DD (y) 8.8 ± 3.6 – 7 ± 4.1 –
MoCA 25 ± 4.1 (5/6) 28.5 ± 1.5 25.3 ± 3.7 (9/10) 28.3 ± 1.5 (4/11)
UPDRS-III 21.7 ± 8.2 1.0 ± 0.8 (3/4) 17.4 ± 10.1 (8/10) 0.7 ± 0.9 (3/11)
LEDD (mg) 612.8 ± 295.6 0.0 ± 0.0 357.5 ± 380.0 0.0 ± 0.0

DD, disease duration; MoCA, Montreal-Cognitive-Assessment; UPDRS-III, Unified Parkinson’s Disease Rating Scale; LEDD, L-Dopa
equivalent daily dose. Age, Disease duration, MoCA, UPDRS-III, and LEDD stated as mean value with standard deviation. MoCA and
UPDRS-III were not accessible for some patients and numbers in brackets give fraction of accessible data.

miRNA selection and qPCR panel design

We scanned the literature for miRNAs that were
previously reported to be dysregulated in the context
of LRRK2 mutations, functionally relevant to LRRK2
or generally dysregulated in the context of PD. Next,
we selected a total of 91 miRNAs to be included in our
customized qPCR panel (Supplementary Table 1).
Selection was based on a set of criteria, including
the number of relevant studies reporting dysregula-
tion and a preference for miRNAs assessed in CSF
and plasma samples over miRNAs reported in brain
tissue or animal models. Additionally, miRNAs asso-
ciated with LRRK2-linked PD were given priority
over those associated with sporadic PD or other neu-
rodegenerative diseases. For quality control purposes,
we included a set of spike-in controls. Those included
UniSpike 2 and 4 from the QIAGEN RNA Spike-In
Kit (Cat. No.: 339390, QIAGEN, Hilden, Germany),
which were used to monitor RNA isolation efficacy,
UniSpike 6 (included in the QIAGEN miRCURY
LNA RT Kit) to verify the efficacy of reverse tran-
scription (RT) and UniSpike 3 (pre-applied primers
on the custom qPCR plates) for inter-plate calibra-
tion. Additionally, a blank spot containing no primer
was included and functioned as a negative control.

Collection and storage of biofluids from study
participants

Blood and CSF samples were collected from indi-
viduals according to standardized protocols. Within
90 min after collection from the individual, the
collected material was brought from the medical
facilities to the Neuro-Biobank Tuebingen and imme-
diately processed. CSF and EDTA plasma were
centrifuged at 2000 g for 10 min. Samples were then
transferred to a 15 ml Falcon tube, mixed thoroughly

by vortexing, and aliquoted to cryotubes. Finally, both
CSF and plasma cryotubes were frozen and stored at
–80◦C in the biobank. Before RNA isolation, samples
were slowly thawed on ice.

RNA isolation

Extracellular RNA was isolated from plasma and
CSF using the QIAGEN miRNeasy Serum/Plasma
Advanced Kit (Cat. No: 217204, QIAGEN) and
following the vendor’s instructions with slight mod-
ifications. Briefly, 200 �l of plasma or 400 �l of
CSF were used as a starting volume and subsequent
reaction volumes were adjusted accordingly. After
addition of RPL buffer and incubation for three min-
utes, we added 1 �l of the spike-in mix provided in
the QIAGEN RNA Spike-In Kit (Cat. No.: 339390,
QIAGEN) to the tube, in order to monitor the efficacy
of the RNA isolation. Finally, RNA elution volume
was reduced to 7 �l of RNase-free water.

Reverse transcription

The RT reaction was performed using the QIA-
GEN miRCURY LNA RT Kit (Cat. No.: 339340,
QIAGEN). The reaction mix included 2 �l of 5x miR-
CURY SYBR® Green RT Reaction Buffer, 1 �l of
10x miRCURY RT Enzyme Mix, 4.5 �l of RNase-
free water, 0.5 �l of UniSpike 6 RNA spike-in and
2 �l of template RNA per sample. After brief cen-
trifugation, tubes were incubated at 42◦C for 60 min,
followed by 5 min of incubation at 95◦C, which inac-
tivated the RT reaction. Finally, samples were diluted
1 : 40 using RNase-free water.

qPCR

qPCR was performed using QIAGEN miRCURY
LNA miRNA Custom PCR Panels (Catalog No.:
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339330, QIAGEN) along with the QIAGEN miR-
CURY LNA SYBR Green PCR Kit (Cat. No.:
339347, QIAGEN). The reaction mix included 515 �l
of 2x miRCURY SYBR® Green Master Mix, 115 �l
of RNase-free water and 400 �l of the cDNA tem-
plate per sample. After pipetting 10 �l into each
reaction-well, which already contained the dried
primers, the plates were sealed and vortexed for
1 min. After brief centrifugation, plates were incu-
bated for 10 min at room temperature to allow primers
to resolve. Finally, plates were vortexed for 1 min and
briefly centrifuged. Amplification and quantification
were performed using a LightCycler® 480 instrument
(Roche, Basel, Switzerland). The cycling program
included a 2-min heat activation step at 95◦C, fol-
lowed by 45 cycles of denaturation at 95◦C for 10 s
and annealing at 56◦C for 60 s. To ensure specificity
of amplifications, melting points of the amplified
products were analyzed (Supplementary Tables 2
and 3).

Processing of raw data

Before applying statistical analysis, raw data
were processed and Ct and fold-change values (fc)
were calculated (Supplementary Figure 2): First,
raw data from the qPCR were converted using the
LC480Conversion software to make them readable
for LinRegPCR (Version 11.0, [16]), which was used
for calculating Ct values. Further processing and
analysis of data was performed in R (Version 4.2.2)
using RStudio (Version 2023.03.0 + 386) [17]. To
account for variations between plates, the Ct val-
ues were normalized using an interplate calibration
factor. The calibration factor for each plate was cal-
culated by subtracting the mean Ct value of UniSpike
3 reactions from all plates from the mean Ct value of
all UniSpike 3 reactions in a given plate. All Ct values
of the respective plate were then calibrated by sub-
tracting the respective calibration factor from all Ct
values in that plate. After calibration, Ct values > 40
were considered unspecific and excluded from the
dataset. If a miRNA was not specifically amplified in
more than one individual, it was removed completely
from the analysis, after confirming that missing val-
ues occurred equally over all groups (Supplementary
Figure 3). This resulted in 58 remaining miRNAs for
the plasma dataset and eleven miRNAs for the CSF
dataset.

Next, the fc and log2fc values were calculated
using the 2–��Ct method (Supplementary Figure 4)

[18]. In a first step, for each individual we inde-
pendently calculated the mean Ct by adding all Ct
values of every quantified miRNA and dividing it by
the number of quantified miRNAs, which resulted
in a meanCt for each individual. We then computed
�Ct for each miRNA and individual by subtract-
ing the meanCt of the respective individual from
every miRNA quantified in that individual. This
resulted in multiple �CtmiR-n per individual, where
n represents the specific miRNA. The entire group
of healthy controls was used as a reference group.
Subsequently, for each miRNA we calculated the
mean of �CtmiR-n , only using �CtmiR-n from the
HCs (mean �CtmiR-n-healthy ). Next, ��Ct for each
miRNA and individual was determined by subtract-
ing the mean �CtmiR-n-healthy from the patient’s
�CtmiR-n . Finally, the fold change was obtained
using the following formula: fold change = 2–��Ct.
To achieve a linear scale with symmetry around
zero, log2fc was used for the heatmaps and t-tests.
Data from the HCs were used only as a reference
for calculating the fold change values. Since the
focus of this study was put on the identification of
a LRRK2-driven molecular patterns and the discrim-
ination between fPD and sPD cases, in the subsequent
analyses, data from the HCs were not analyzed fur-
ther.

Data visualization

Heatmaps visualizing either the log2fc or cali-
brated Ct values were created using the pheatmap
package in R [19]. Log2fc and Ct values were
scaled row-wise to z-scores using the scale func-
tion while ignoring missing values. After confirming
normality of the data via assessing QQ-Plots, an
unpaired t-test using the log2fc values was performed
for each miRNA, comparing the sPD group with
the LRRK2MC. The p-value threshold to determine
significance was corrected for multiple testing by
dividing by the number of tests. The distribution of p-
values was examined and visualized via histograms.
For miRNAs that the t-test revealed to be signifi-
cantly differentially expressed between the groups,
ROC analysis was performed. PCA was performed
on calibrated Ct values using the built-in prcomp
function of R. As the function does not accept miss-
ing values, they were imputed by setting them to the
mean Ct value from all individuals. Two-dimensional
plots were generated by graphing PC1 and PC2
values.
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Least absolute shrinkage and selection operator
regression models

The caret package [20] was used for building the
LASSO regression models. For missing values, the
mean of the Ct values of all patients was used. We
selected sensitivity and specificity in differentiating
between the sPD and LRRK2MC group, determined
by Leave-One-Out-Cross-Validation (LOOCV) [21],
as our experimental read-outs.

Random forest prediction model

For building a RF model that predicts group affil-
iation to either the sPD or the LRRK2MC group, the
randomForest package [22] was used. To obtain mean
values of sensitivity and specificity along with 95%
confidence intervals, 100 models were constructed
with each model containing 200 trees. For the RF
model we did not use LOOCV, as sensitivity and
specificity of the classification is already tested on
out-of-bag samples reducing the risk of over-fitting.
Along with this, we generated proximity heatmaps
describing similarity of patient pairs based on the
number of trees that classify those two patients in the
same terminal node. Missing values were computed
using the rfImpute function. The Gini coefficient’s
mean decrease, which describes each decision node in
terms of classification accuracy, was used to evaluate
the importance of each variable. High purity of a node
results in a low Gini coefficient. Consequently, vari-
ables that are more crucial for distinguishing between
groups exhibit a greater mean decrease of the Gini
coefficient compared to others.

Integration of CSF and plasma data sets

To integrate the information from both the plasma
and CSF datasets, combined variables were com-
puted. First, Pearson’s correlation analysis was
performed between the Ct values of the eleven miR-
NAs reliably detectable in CSF (CtCSF) and the Ct
values of the corresponding miRNAs detected in
plasma (Ctplasma). A two-tailed p-value cut-off was
applied, and alpha was set to 0.05. All significant
combinations were used to form new variables by
multiplying the corresponding Ct values (Ctmultiplied).
This generated 20 new variables, which were subse-
quently used to create a heatmap, perform t-tests and
PCA and generate LASSO and RF models.

Identification of discriminatory miRNAs

In a final step, we wanted to select those miRNAs
that most accurately discriminated between groups.
This feature selection was performed for each of
the analyses using the following criteria: 1) p-values
resulting from the unpaired t-test were sorted in
ascending order and the top five miRNAs with the
smallest p-value were selected; 2) the loading scores
of PC1 were assessed and the top five miRNAs were
selected; 3) the five most influential miRNAs from the
RF model were selected based on the mean decrease
of the Gini coefficient; 4) the LASSO regression
model automatically selects discriminatory features
through shrinkage and elimination of less relevant
variables by introducing penalties; in this case, three
miRNAs were selected. As the CSF data set alone
had proven to not efficiently discriminate between
groups, these selection steps were only applied to the
Ctplasma and Ctmultiplied data sets.

Target prediction enrichment analysis

We used the miRDB database [23] to predict gene
targets of selected miRNAs. Next, for each miRNA
we selected the top 100 genes sorted by Target score
and performed Gene Ontology (GO) enrichment
analysis in R using the ontology class “biological
processes”, the database org.HS.eg.db and the clus-
terProfiler package [24].

RESULTS

Detection of miRNA expression patterns in
plasma and CSF

In plasma, a total of 58 miRNAs passed our selec-
tion criteria. 23 miRNAs showed stable expression
in 29/30 individuals while the remaining 35 miRNAs
were detected in all 30 individuals. When visu-
alizing log2fc values using a heatmap, the group
of LRRK2MC, which included both symptomatic
and asymptomatic mutation carriers, showed simi-
lar expression patterns and could be distinguished
from the sPD group (Fig. 2A). When using the cali-
brated Ctplasma data, the expression patterns became
less apparent but still noticeable (Supplementary Fig-
ure 5A). In contrast, in CSF only eleven miRNAs
survived our selection process, with five miRNAs
detected in all 31 individuals and six miRNAs in
30/31 individuals. Expression levels in CSF were
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Fig. 2. Visualizing miRNA signatures and group differences. A) Heatmap based on log2fc values from the plasma dataset, normalized per
row. Rows represent different miRNAs while columns represent patients. Grey cells represent missing values. Column sorting function was
inactivated to not interfere with group arrangement. The similarity indicated by the column dendrograms is not proportional between groups.
B) Heatmap based on log2fc values from CSF dataset, normalized per row. This heatmap includes a smaller amount of miRNAs (represented
in rows) as they were excluded from the CSF dataset due to missing values. C) Histogram showing the distribution of uncorrected p-values
obtained from the plasma and the D) CSF datasets after performing unpaired t-tests using log2fc values. E) Scatterplots display log2fc values
from sPD patients and LRRK2MC. Five miRNAs with the lowest p-value in the t-tests were selected. Thick line indicates mean while the
box indicates the standard deviation.

generally lower compared to plasma. In CSF, no
clear clustering was observable (Fig. 2B). Heatmaps
based on calibrated CtCSF also did not show any clear
observable group-specific clusters (Supplementary
Figure 5B).

Identification of single discriminatory miRNAs
through t-test

After performing unpaired t-test on log2fc val-
ues in plasma, a total of 17 miRNAs were below a
p-value threshold of 0.05 (Supplementary Table 4).
After correction for multiple comparisons by adjust-

ing the p-value threshold to 0.0009, miR-29c-3p
showed a significant difference (LRRK2MC: -0.39
(SD:±0.48); sPD: 0.62 (SD:±0.54), t(56) = 4.21,
p = 0.0007). ROC analysis of miR-29c-3p revealed
a sensitivity of 90% and specificity of 90% with
an AUC of 0.86 (95% CI: 0.67 – 1) (Supplemen-
tary Figure 6). In CSF, only miR-223-3p showed a
p-value below 0.05 (LRRK2MC: –0.49 (SD:±1.05);
sPD: 0.62 (SD:±1.20), t(9) = –2.2, p = 0.041) but due
to correction for multiple testing did not pass the
p-value threshold of 0.0045.

P-values in the plasma data set were not equally
distributed but concentrated at the lower end of the
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Fig. 3. PCA graphs and correlation of plasma and CSF data. A) PCA graph from plasma and B) CSF Ct values. Ellipses indicate 95%
confidence interval. Numbers indicate LRRK2 mutation (1: G2019S, 1*: G2019S + G1819, 2: R1441C, 3: I2020T). In the plasma PCA
graph, group ellipses overlap while the blue LRRK2MC ellipse trends to only include individuals of the LRRK2MC group. Based on PCA,
the LRRK2MC group could be interpreted as a subpopulation of all PD patients. C) Correlation matrix presenting statistically significant
(p < 0.05) correlations between Ctplasma and CtCSF values of the eleven miRNAs included in the CSF dataset.

scale (Fig. 2C), while the p-values in the CSF data
set appeared to be randomly distributed (Fig. 2D).
This indicates that the miRNA expression levels
measured in CSF alone seem to contain little infor-
mation on group discrimination, while in plasma
a subset of miRNAs could be used to identify
LRRK2MC. As a consequence, in the following anal-
yses we primarily focused on the plasma dataset. We
sorted p-values from the plasma data set in ascend-
ing order and identified the top 5 miRNAs with
the lowest p-value (Fig. 2E). These included miR-
128-3p (log2fc in LRRK2MC: –1.01 (SD:±0.66);
sPD: 0.03 (SD:±0.83), t(56) = 3.06, p = 0.0071),
miR-148a-3p (LRRK2MC: –0.60 (SD:±0.56); sPD:
0.38 (SD:±0.73), t(56) = 3.31, p = 0.0042), miR-
153-3p (LRRK2MC: –0.97 (SD:±1.19); sPD: 0.65
(SD:±0.69), t(56) = 3.58, p = 0.0035), miR-29c-3p
(LRRK2MC: –0.39 (SD:±SD:±0.48); sPD: 0.62
(SD:±0.54), t(56) = 4.21, p = 0.0007) and miR-
425-5p (LRRK2MC: –0.33 (SD:±0.38); sPD: 0.54
(SD:±0.55), t(56) = 4.01, p = 0.0010).

Detecting patient clusters using plasma miRNA
expression levels and PCA

PCA explained 82% of the overall variance in the
plasma dataset. PC1 (77.4% of variance) explained
the majority of the variance and appeared to dis-
criminate groups, while PC2 only explained 4.6%
of the overall variance (Fig. 3A). Interestingly,
all LRRK2MC clustered together while the vari-
ous LRRK2 mutations could not be distinguished
(Fig. 3A). PC1 discriminated LRRK2MC from sPD
with a sensitivity of 100% (9/9) and a specificity of
70% (7/10). PC1 and PC2 combined reached the same

sensitivity with a specificity of 80% (8/10) (Sup-
plementary Figure 7A). Next, we performed PCAs
including the healthy controls (Fig. 4). While clus-
tering was less clear when comparing HC to sPD,
for comparison of HC and LRRK2MC clear clus-
tering was observable (Fig. 4A, B). The clearest
clustering was achieved when comparing LRRK2MC
with sPD (Fig. 4C). When including all three groups
in the PCA, clustering becomes less clear, yet
LRRK2MC remains notably separated from sPD and
HCs (Fig. 4D). The PCA of the CSF data explained
84.2% of the overall variance, with both PC1 (75.4%
of variance) and PC2 (8.8% of variance) not able to
differentiate between the groups (Fig. 3B).

miRNA expression levels in CSF correlate to
plasma levels

A total of 20 miRNA combinations from Ctplasma
and CtCSF values showed significant correlation
(Fig. 3C) with R-values ranging from 0.36 to 0.51
(Supplementary Table 5). Significantly correlating
combinations were used to obtain new variables by
multiplication (Ctmultiplied).

Multiplied Ct values discriminate groups in t-test
and PCA

When creating a heatmap based on the Ctmultiplied
data, no clear group-specific clusters were notice-
able (Supplementary Figure 8A). In the t-test
ten miRNA-combinations reached a p-value below
0.05 (Supplementary Table 6). The combina-
tion of miR-29c-3p from plasma and miR-27a-3p
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Fig. 4. Plasma PCA plots comparing all groups. A) sPD and HC. B) LRRK2MC and HC. C) LRRK2MC and sPD. D) All groups. Arrows
point towards the respective mean of PC1 and PC2. In A, B, and C, clear separation can be observed as indicated my arrows pointing towards
opposing directions. When including all groups in D, clustering is less apparent but still observable.

from CSF passed the adjusted p-value threshold
of 0.0025 (LRRK2MC: 930.8 (SD:±61.6); sPD:
813.6 (SD:±55.9), t(18) = 4.2, p = 0.0007). PCA for
Ctmultiplied discriminated the groups while explaining
90.2% of the total variance (PC1 : 83.2%, PC2 : 7%)
(Supplementary Figure 8B). Groups were separated
based on PC1 with a sensitivity of 100% (9/9) and a
specificity of 80% (8/10). Combining PC1 and PC2
did not improve sensitivity or specificity (Supplemen-
tary Figure 7B).

LASSO regression and random forest models
predict group membership

LASSO regression and the RF model were per-
formed using the Ctplasma and the Ctmultiplied dataset
(Fig. 5A). Sensitivity of the LASSO model was
88.8% (8/9) for both Ctplasma and Ctmultiplied. Speci-
ficity was 70.0% (7/10) (Ctplasma) and 80.0% (8/10)
(Ctmultiplied), respectively (Fig. 5B). Predictions from
the RF models using Ctplasma had a mean sensitivity
of 84.2% (95% CI: 83.1% – 85.3%) and a mean speci-
ficity of 70.1% (95% CI: 69.9 – 70.2%). When using

Ctmultiplied mean sensitivity was 73.6% (95% CI:
72.5% – 74.6%) and mean specificity was 80 % (95%
CI: 80% – 80%) (Fig. 5B). When comparing the two
models using an unpaired t-test, sensitivity was sig-
nificantly better when using Ctplasma (t(98) = –13.8,
p < 0.001), while specificity was higher when using
Ctmultiplied (t(98) = 99, p < 0.001). Classifications per-
formed by the RF model were further analyzed by
looking into proximity scores of patient pairs. The
resulting heatmap for the Ctplasma dataset indicated
that patients within the same group exhibit greater
proximity to each other than patients from different
groups (Fig. 5C). This becomes even more appar-
ent in the model using Ctmultiplied (Fig. 5D). Next,
mean decrease of Gini scores were calculated for
both of these RF models (Fig. 5E, F) to assess
variable influence on classification accuracy. Interest-
ingly, in both RF models, miR-223-3p had the highest
score, indicating a great impact on the model perfor-
mance. This miRNA had already been observed in
the plasma t-test, where it indicated a potential for
group discrimination with an uncorrected p-value of
p = 0.051.
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Fig. 5. Group prediction with LASSO and Random Forest. A) Overview of performed analyses and respective read-outs. B) Sensitivity
and specificity values acquired by LASSO regression and Random Forest, using Ctplasma and Ctmultiplied. C) Heatmaps display the proximity
scores calculated in RF for all sPD patients (red) and LRRK2MC (blue) using Ctplasma or D) Ctmultiplied. Groups clearly separate along
mutation status. E) Mean Decrease Gini scores were calculated after building the respective RF models for both the Ctplasma and F) the
Ctmultiplied data set. Values were sorted in descending order and the top ten miRNAs are displayed. High decrease of the Gini coefficient
translates to a high impact on the performance of the respective RF model. G) From each analysis, most influential or discriminatory miRNAs
were extracted. Chord diagram displays the overlap of miRNAs selected from the different analyses. Numbers in brackets display set size
and grey connecting lines indicate miRNA overlaps.
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Table 2
miRNAs selected as most influential by the different models.

t-test selected PCA selected LASSO selected Random forest selected

miR-29c-3p miR-19b-3p miR-29c-3p miR-26a-5p
miR-128-3p miR-27a-3p miR-424-5p miR-106a-5p
miR-148a-3p miR-28-5p miR-532-5p miR-128-3p
miR-153-3p miR-30b-5p miR-223-3p
miR-425-5p miR-185-5p miR-424-5p

The table displays miRNAs that were identified as relevant from each model or test. miRNAs highlighted
in bold were identified in more than one analysis. Of note, miR-223-3p (italic) was extracted from both the
Ctplasma and the Ctmultiplied RF models.

Selection of discriminatory miRNAs identified by
multiple tests or models

Finally, for each test or model, we identified those
miRNAs, that showed the greatest potential for group
separation or prediction (Table 2). From the RF mod-
els, PCA and the t-tests, we extracted five miRNAs
each, while the LASSO model identified three miR-
NAs. Interestingly, of the selected miRNAs, three
were identified by more than one method; 1) miR-
29c-3p was identified in t-tests and LASSO, 2)
miR-128-3p in t-test and RF, and 3) miR-424-5p in
LASSO and RF (Fig. 5G, Supplementary Figure 9).
GO analysis was performed on the four miRNAs and
we identified associated biological functions and pro-
cesses (number of significant annotations identified:
miR-223-3p: 25, miR-29c-3p: 60, miR-128-3p: 0,
miR-424-5p: 3, see Supplementary Figure 10). Inter-
estingly, the annotations for miR-223-3p included
neuron death, regulation of neuron death and neuron
apoptotic process.

DISCUSSION

In this proof-of-concept study, we examined
the extracellular miRNA signatures in plasma and
CSF derived from LRRK2MC and sPD patients
for LRRK2-dependent patterns. We discovered that
plasma miRNA expression levels can distinguish sPD
from LRRK2MC. MiRNAs have been extensively
studied in PD, but to the best of our knowledge, this
is the first study to use machine learning and a broad
data set of miRNA expression levels to distinguish
genetic from sporadic PD.

Our results show that PCA separated LRRK2MC
from most individuals with sPD without differ-
entiating between the various LRRK2 mutations.
Separation was also observable in PCA compar-
ing LRRK2MC and HC as well as in an analysis
comparing all three groups. This indicates that the
LRRK2 mutation status has a measurable effect on

the extracellular miRNA signature in LRRK2MC.
Some sPD individuals clustered in proximity to the
LRRK2MC individuals. We therefore hypothesize,
that this method could be used to identify patients
who would benefit from a LRRK2 targeted therapy.
However, this question needs to be addressed using
larger cohorts in the context of LRRK2-inhibitor
trials. Regular assessment of the identified miRNA
signatures could help monitor treatment efficacy in
therapies targeting LRRK2, where a shift in miRNA
expression levels could indicate target engagement.

We extracted discriminatory miRNAs from each
analysis and found that some miRNAs were
overlapping between models, namely miR-29c-3p,
miR-128-3p, miR-424-5p, and miR-223-3p.

miR-29c-3p has been reported to play a role in
disease modulation by mediating neuroinflammation
and has been found to be involved in apoptotic pro-
cesses [25]. It has further been proposed as a PD
specific marker in several studies, but contradicting
findings on expression levels compared to controls
exist: studies report either downregulation [26, 27]
or upregulation [28] in serum of sPD patients com-
pared to HCs. One study found upregulation in serum
of sPD patients, but no dysregulation in LRRK2 asso-
ciated PD [29].

miR-223-3p has been reported to be upregulated
in midbrain dopamine neurons [30] and serum of PD
patients [31]. It was shown to be involved in the mod-
ulation of inflammasome activity [32]. LRRK2 has
long been suspected to play a role in inflammation
and, e.g., was shown to affect microglial activa-
tion and pro-inflammatory cytokine production [33].
Further, the GO annotations identified for miR-223-
3p included processes specific to neurodegeneration
underlining a possible influence in neurodegenerative
disorders such as PD.

miR-128-3p has previously been identified as a
potential treatment target due to its ability to protect
neurons from apoptosis. The upregulation in the sPD
group could therefore be reflective of a compensatory
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mechanism, that might not be relevant in individuals
carrying a LRRK2 mutation.

miR-424-5p was shown to be increased in the fore-
brain of PD patients, while being associated with
FOXO1 [34]. FOXO1 activity is induced by LRRK2
[35] and thereby links altered miR-424-5p levels to
LRRK2 activity.

The low RNA abundance in CSF compared to
plasma made miRNA detection difficult, resulting in
the exclusion of many miRNAs from CSF analyses.
This reduced the complexity of miRNA signatures
we could assess in CSF, which may explain the poor
performance of CSF-based analyses. An alternative
explanation could be that LRRK2 protein expression
levels are known to be low in the CNS [4, 5] despite
their apparent relevance in the pathophysiology of
PD. In contrast, peripheral organs such as the lung and
the kidney display higher expression levels, which
could also explain the increased accuracy of mod-
els based on Ctplasma miRNA profiles in identifying
LRRK2MC. We have further analyzed the relation of
miRNA expression levels in CSF and plasma and
found that for most miRNAs, these two biofluids
seem to display very different signatures. However,
through correlation analysis we have identified a sub-
set of miRNAs whose expression levels in the CNS
and the periphery seem related. We convoluted cor-
related miRNA data sets in order to test whether
Ctmultiplied would provide RF models with signifi-
cantly higher sensitivity or specificity, which was not
the case. While RF models based on Ctmultiplied still
performed well and slightly different than RF models
based on Ctplasma, when facing the discussed classi-
fication problem there seems to be no clear benefit
from adding CSF data to the model.

In summary, this proof-of-concept study showed
promising results and deepens our understanding of
LRRK2-associated PD, but it has limitations we want
to address. First, the number of individuals included
in the present study is relatively small. When utiliz-
ing group sorting algorithms for classification, larger
sample sizes improve robustness and replicability.
Ideally, the data set should be divided into a training
and a testing data set to avoid overfitting. Addition-
ally, a completely independent data set should then
be used to replicate the predictions. While we did
perform cross-validation using LOOCV or out-of-
bag samples, this cannot fully replace validation in
a testing or replication cohort. The results therefore
have to be considered with caution until replicated
in larger cohorts. Further, we selected miRNAs to
be included in our qPCR panel based on the liter-

ature and therefore only considered miRNAs that
have already been reported as dysregulated in PD
or other neurodegenerative diseases. This may have
introduced a bias and preventing discovery of novel
contributing miRNAs. Finally, we found no evident
advantage to employing multi-layered or composited
readouts over standard t-tests. While we still believe
that in diseases as complex as PD basing classifica-
tions on multiple variables is an interesting approach,
this concept has still to be improved and repeated in
larger and more complex cohorts.

Conclusion

In conclusion, in this proof-of-concept study we
showed that LRRK2 mutation status impacts the
extracellular miRNA signature measured in plasma
and shows promise to separate LRRK2MC from sPD.
Monitoring changes of the extracellular miRNA sig-
natures upon e.g. LRRK2 inhibition could be used to
study drug efficacy or target engagement. We further
hyopthesize that multi-layered approaches could be
applied to identify sporadic PD patients with a rele-
vant role of LRRK2-related pathways, but this needs
to be thoroughly assessed in larger cohorts.
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Höglinger G, Müller U (2016) Parkinson’s disease: SNCA-
, PARK2-, and LRRK2- targeting microRNAs elevated in
cingulate gyrus. Parkinsonism Relat Disord 33, 115-121.

[48] Nair VD, Ge Y (2016) Alterations of miRNAs reveal a
dysregulated molecular regulatory network in Parkinson’s
disease striatum. Neurosci Lett 629, 99-104.

[49] Marques TM, Kuiperij HB, Bruinsma IB, van Rumund A,
Aerts MB, Esselink RAJ, Bloem BR, Verbeek MM (2017)
MicroRNAs in cerebrospinal fluid as potential biomarkers
for Parkinson’s disease and multiple system atrophy. Mol
Neurobiol 54, 7736-7745.

[50] Li L, Ren J, Pan C, Li Y, Xu J, Dong H, Chen Y, Liu W
(2021) Serum miR-214 serves as a biomarker for prodromal
Parkinson’s disease. Front Aging Neurosci 13, 700959.

[51] Khoo SK, Petillo D, Kang UJ, Resau JH, Berryhill B, Linder
J, Forsgren L, Neuman LA, Tan AC (2012) Plasma-based
circulating microRNA biomarkers for Parkinson’s disease.
J Parkinsons Dis 2, 321-331.

[52] dos Santos MCT, Barreto-Sanz MA, Correia BRS, Bell R,
Widnall C, Perez LT, Berteau C, Schulte C, Scheller D, Berg
D, Maetzler W, Galante PAF, Nogueira da Costa A (2018)
miRNA-based signatures in cerebrospinal fluid as potential
diagnostic tools for early stage Parkinson’s disease. Onco-
target 9, 17455-17465.

[53] Han K (2017) The diagnostic efficacy of serum miR-103a,
miR-30b, miR-29a relative expression levels for Parkinson’s
disease. Shadong Med J 57, 72-74.
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