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Abstract. Parkinson’s disease (PD) is an increasingly common neurodegenerative disease. It has been suggested that the
etiology of idiopathic PD is complex and multifactorial involving environmental contributions, such as viral or bacterial
infections and microbial dysbiosis, in genetically predisposed individuals. With advances in our understanding of the gut-
brain axis, there is increasing evidence that the intestinal microbiota and the mammalian immune system functionally interact.
Recent findings suggest that a shift in the gut microbiome to a pro-inflammatory phenotype may play a role in PD onset
and progression. While there are links between gut bacteria, inflammation, and PD, the bacterial products involved and
how they traverse the gut lumen and distribute systemically to trigger inflammation are ill-defined. Mechanisms emerging
in other research fields point to a role for small, inherently stable vesicles released by Gram-negative bacteria, called outer
membrane vesicles in disease pathogenesis. These vesicles facilitate communication between bacteria and the host and can
shuttle bacterial toxins and virulence factors around the body to elicit an immune response in local and distant organs. In this
perspective article, we hypothesize a role for bacterial outer membrane vesicles in PD pathogenesis. We present evidence
suggesting that these outer membrane vesicles specifically from Gram-negative bacteria could potentially contribute to PD by
traversing the gut lumen to trigger local, systemic, and neuroinflammation. This perspective aims to facilitate a discussion on
outer membrane vesicles in PD and encourage research in the area, with the goal of developing strategies for the prevention
and treatment of the disease.
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INTRODUCTION

Parkinson’s disease (PD) is a multifactorial disease
encompassing many body systems but is clinically
recognized as a debilitating neurodegenerative dis-
ease that affects motor function [1]. The cardinal
motor symptoms include tremor, bradykinesia, pos-
tural instability, and rigidity. Concurrently, there are
significant non-motor symptoms, including constipa-
tion, loss of a sense of smell, and sleep disturbances
[1]. There is no single definitive cause for idiopathic
PD (∼90% of cases), instead, it is hypothesized that a
mosaic of genetic and environmental risk factors coa-
lesces to initiate disease [2]. These factors include,
but are not limited to, exposure to environmental
insults (such as neurotoxins, infection, and pollu-
tants) and genetic susceptibility [3–7]. Ultimately, the
consequences of these exposures accumulate in the
aging body and are suggested to lead to neuroinflam-
mation, the initial loss of synapses in the striatum,
neuronal loss in the substantia nigra (SN), and the
aggregation of insoluble alpha-synuclein (�-syn) in
Lewy bodies, the pathological hallmark features of
PD [8].

A conceptual framework has been proposed to
characterize the contribution of known environmen-
tal and biological factors to disease pathogenesis [8].
This framework proposes there are three phases to
consider: triggers, facilitators, and aggravators [8].
Triggers (such as bacterial infections or exposure
to industrial toxins) enable disease initiation when
present alongside other facilitators [8–10]. Facili-
tators (such as peripheral inflammation, aging, or
genetic susceptibility) are proposed to spread the dis-
ease and impact the central nervous system (CNS) [8,
11]. Aggravators (such as neuroinflammation, oxida-
tive stress, and impaired autophagy) are hypothesized
to exacerbate and accelerate neuronal dysfunction
and /or further the spread of already initiated patho-
logical events [8, 12]. This framework incorporates
the multifactorial nature of PD and proposes a con-
tinuum of stages whereby factors may differentially
contribute to disease progression depending on the
disease stage. Inflammation is a consistent feature
throughout this framework [8, 13]. The gastrointesti-
nal (GI) tract is considered a site of inflammation in
PD [10, 14] with elevated levels of pro-inflammatory
bacteria and reduced levels of certain anti-
inflammatory bacteria observed in people with PD
(PwP) [15]. Researchers have hypothesized that this
dysbiosis contributes to the development of disease,
however, the mechanism is unclear [10, 14, 16, 17].

Here, we propose outer membrane vesicles
(OMVs) released by gut bacteria as facilitators and
aggravators of PD. We suggest they are a key mech-
anism by which gut bacteria mediate intercellular
communication and transfer of immunomodulatory
compounds around the body, contributing to systemic
and neuroinflammation, and consequently neurode-
generation.

INFLAMMATION AND ETIOLOGY OF PD

The etiological risk factors of PD are varied,
but many converge in their involvement in inflam-
matory processes [13, 18]. In the brain reactive
microgliosis and elevation of inflammatory mark-
ers are some of the most commonly described
features alongside neurodegeneration and �-syn
deposition [19–26]. Previously, neuroinflammation
was explained away as a mere consequence of neu-
rodegenerative processes; however, many research
groups have demonstrated in animal models that
inflammation itself can contribute to furthering dis-
ease processes especially when it becomes chronic
[27, 28]. Compellingly proinflammatory cytokines
such as tumor necrosis factor-� (TNF-�), interleukin-
1� (IL-1�), and IL-6, and important inflammatory
pathway proteins like nuclear factor-kappa B (NF-
κB) and inducible nitric oxide synthase (iNOS) are
found to be elevated in the periphery and CNS of
PwP [21, 24, 29–31]. Similar elevations of cytokines,
other inflammation-associated proteins, and immune
cell changes have also been recapitulated in Parkin-
sonian animal models [32–36]. A role in promoting
inflammation is a commonality between many of the
proposed etiological factors that are hypothesized to
trigger or facilitate PD.

Advanced age is the greatest risk factor for PD,
and during aging there is a dysregulation of inflam-
matory processes due to the life-long cumulative
effects of immune activation from various self- and
non-self-stimuli [11]. This can lead to the develop-
ment of sterile, low-grade, and chronic inflammation
as a person ages, which is delineated from normal
physiological inflammation and termed inflammag-
ing [37, 38]. Many of the common changes to
immune function that occur with age overlap with
PD-associated immune dysfunction, such as the
development of gut dysbiosis, reduced macrophage
activity, increased inflammasome expression, and
increased blood-brain-barrier (BBB) permeability
[38–40].
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Genetic variations that are associated with PD are
also known to regulate immune responses. Notably,
the leucine-rich repeat kinase 2 (LRRK2) gene
encodes a protein that is highly expressed in immune
cells and is known to have a role in response to bac-
terial infections and the innate immune system [41,
42]. Mutations in LRRK2 are suggested to lead to
chronic overactivation of microglia and neuroinflam-
mation [43, 44]. The gene SCNA encodes for �-syn,
a major component of Lewy bodies, and while the
physiological roles of �-syn remain unclear, data is
emerging that describes a role in immune regula-
tion due to antimicrobial, antifungal, and antiviral
effects [6, 44, 45]. PINK1, a protein kinase, and
parkin, an E3 ubiquitin ligase, control the elimina-
tion of dysfunctional mitochondria from the cell in a
process known as mitophagy. PINK1 and PRKN (the
genes encoding PINK1 and parkin, respectively) defi-
cient mice show minimal signs of neurodegeneration
unless exposed to a pro-inflammatory trigger such
as bacterial infection or lipopolysaccharide (LPS)
administration suggesting PINK1 and PRKNs roles in
protecting against inflammation-driven neurodegen-
eration [46, 47]. Both DJ-1 and ATP13A2 deficiency
attenuate the anti-inflammatory effects of astrocytes
[48, 49]. This suggests that these genetic changes
may contribute to PD by increasing one’s suscepti-
bility to pro-inflammatory stimuli. Furthermore, over
90 independent risk signals have been identified in
recent genome-wide association studies, of which the
risk factor gene’s functions are enriched in chemi-
cal signaling pathways involved with responding to
stressors [50].

Environmental exposure to toxins, mainly pes-
ticides, has been long linked with PD, with a
meta-analysis finding a 66% increased risk of devel-
oping PD after pesticide exposure [51]. Pesticides
like paraquat and rotenone, have direct toxic effects
by interfering with mitochondrial function, but have
also been shown to activate inflammatory pathways,
like cytokine release and microgliosis [52, 53].

Conversely, smoking (nicotine), caffeine con-
sumption, and the regular use of anti-inflammatory
analgesics have been proposed to confer protection
against the development of PD due to their anti-
inflammatory effects [54–58].

Bacterial, viral, and fungal infections are associ-
ated with an increased risk of PD [10, 59, 60]. Specific
examples of these infections include Helicobacter
pylori, hepatitis C virus, Malassezia, and Chlamy-
dophila pneumoniae [5]. The connection between
H. pylori and PD has long been discussed, in a way

even before the discovery of H. pylori, as a link
between peptic ulcers (of which H. pylori is a major
causal agent) and PD was discovered in the 1960 s
[61]. In more recent years H. pylori infection has
been found to be more prevalent in PD populations
and can affect PD motor symptoms, with the eradi-
cation of H. pylori improving PD motor dysfunction
[62, 63]. Some have posited that H. pylori infections
could be causal or at the very least a promoter of
the development of PD [64]. PwP have been shown
to also be more likely to be seropositive for several
other bacteria including Borrelia burgdorferi and C.
pneumoniae than healthy controls [65]. Furthermore,
individuals who have previously been hospitalized
for CNS infection [60] are at increased risk of PD as
are those who have experienced GI infections caused
by viral or bacterial pathogens [10].

While inflammations’ influence and perpetuation
of PD processes is generally well accepted, some
believe there is merit to inflammation as a disease
initiator. Garretti and colleagues demonstrated that
�-syn immunization of a specific HLA genetic mouse
model leads to many GI features of PD, includ-
ing constipation and enteric inflammation. These
effects were mediated by CD4+ T cells and therefore
the immune response promoted a PD-like pheno-
type [66]. Matheoud and colleagues described similar
autoimmune processes that could be initiating neu-
ronal dysfunction. They demonstrated in vivo that
infection triggers antigen presentation of mitochon-
drial self-proteins. This presentation leads to the
development of mitochondria-specific cytotoxic T
cells in the periphery and brain, loss of synapses in
the striatum, and motor dysfunction [47]. These stud-
ies demonstrate how inflammation need not just play
a role in perpetuating the disease, but could initiate
PD.

THE MICROBIOTA-GUT-BRAIN AXIS IN
PD

The gut has long been of interest in PD research,
as several lines of clinical and preclinical evidence
converge upon a theory that the gut is a critical site of
PD etiopathogenesis for some PwP [16]. In the pro-
dromal stages of the disease (before the emergence
of motor symptoms) GI symptoms, in particular mild
constipation, are common [67, 68]. PD is associated
with inflammatory bowel diseases (IBD) as they share
common genetic risk factors, like LRRK2, CARD15,
and ABCB1; and some groups of people with IBD



230 T.F. Koukoulis et al. / Bacterial Vesicles and Parkinson’s Disease

are at a greater risk of developing PD [69, 70]. GI
inflammation has been shown to accelerate the onset
and exacerbate PD motor symptoms, influence �-syn
aggregation, promote neuroinflammation, and exac-
erbate dopaminergic cell death in the midbrain in PD
animal models [71–73].

Similarly to the pathological features of the CNS
in PD, inflammation and �-syn inclusions occur also
in the enteric nervous system [17, 74–83]. �-syn is
proposed to be capable of transsynaptic spreading,
trafficking via the vagus nerve to seed �-syn pathol-
ogy in the CNS, as demonstrated in several animal
model experiments [84–87]. These findings have led
to some researchers proposing that PD could begin
in the gut. The hypothesis revolves around the notion
that initial pathology is triggered by an infectious
agent or toxin, resulting in an inflammation-driven
process that promotes �-syn misfolding within the
gut and subsequent spreading of pathogenic �-syn
from the gut to the brain via the vagus nerve [85,
88, 89]. Other features of GI dysfunction are estab-
lished including increased gut permeability (or “leaky
gut”), increased bacterial invasion, and oxidative
stress, which could be contributing factors and con-
sequences of GI inflammation [83, 90]. While the
gut is a critical site of etiopathogenesis in PD,
whether disease begins in the gut is still a matter of
contention.

An altered microbiome in PD

Since 2015, our understanding of the microbiota-
gut-brain axis has evolved after several groups found
that PwP exhibit an altered gut-microbiota compared
to healthy controls [91–93]. Since then, at least 30
individual peer-reviewed studies have been published
confirming these results [14, 94–126]. Recent meta-
analyses taking into account many of these studies
support PD gut dysbiosis as a robust finding, even
when taking into account study design and geog-
raphy [127, 128]. The most consistent findings in
the PD gut microbiome are a lower abundance of
protective anti-inflammatory bacteria genera, such
as Roseburia, Blautia, and Faecalibacterium, and
a greater relative abundance of potentially deleteri-
ous bacteria genera like Akkermansia. [14, 15, 127,
128]. Several of these studies have found significant
correlations between elevated pro-inflammatory or
opportunistic pathogen genera, such as Escherichia,
Klebsiella, and Porphyromonas [124]. The cause of
intestinal microbial dysbiosis in PD is not fully under-
stood, but changes to the microbiota can be caused

by aging, diet, heavy metals, toxins, and pesticides;
which are also known environmental risk factors and
triggers for PD [129–133].

An altered microbiome is not considered to
be a simple consequence of the disease, but an
active contributor to its progression [112]. Animal
studies have demonstrated a role for the micro-
biota influencing gut permeability, local, systemic,
and neural inflammation, enteric nervous system
(ENS) and autonomic nervous system (ANS) sig-
naling, microglial development, BBB integrity, and
�-syn misfolding [134–137]. The reduction of anti-
inflammatory bacteria involved in the maintenance of
barrier integrity and immune regulation could lead to
a greater susceptibility to pro-inflammatory insults,
either from other harmful gut bacteria, pathogens,
or environmental toxins [128]. Furthermore, specific
changes to the gut microbiota have correlations with
the severity of PD [98, 105, 112].

Evidence of early changes in the microbiome fur-
ther supports a role for microbial dysbiosis as a
functional contributor to PD. Several studies investi-
gating recently diagnosed and drug-naı̈ve PwP have
confirmed that microbiotic dysbiosis is not a late phe-
nomenon and is not due to antiparkinsonian drugs
[95, 104, 121]. Most compellingly, studies that have
explored the gut microbiota of people with rapid eye
movement sleep behavior disorder (RBD), the most
specific symptom predictor of future PD diagnosis,
have shown that they also exhibit microbial dysbiosis
that is more similar in composition to people diag-
nosed with PD that it is to healthy persons [101,
126]. This again supports that microbial dysbiosis is
a feature of PD that manifests early.

Aside from changes to the gut microbiota as mea-
sured from fecal samples, small intestine bacterial
overgrowth (SIBO) is another form of dysbiosis that
is commonly diagnosed in PD [138]. SIBO is known
to impact on the absorption of levodopa, subsequently
impacting on motor function, and is associated with
greater disease severity [139, 140]. SIBO can pro-
mote GI inflammation and weaken barrier integrity,
which can expose the local and peripheral immune
system to harmful bacterial and non-bacterial agents
[141, 142]. The connections between PD and SIBO
highlight another way in which bacteria may be rel-
evant to facilitating disease processes.

In vivo studies have demonstrated the importance
of the gut flora to the development of disease, showing
that PD mouse models that would normally develop
motor deficits, �-syn aggregation, and microglial
activation do not develop these phenotypes when
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raised in a germ-free environment [135]. The same
group also showed that germ-free PD model mice
have restoration of the PD phenotype after coloniza-
tion of their GI tract with a microbiota derived from
PwP or healthy controls, however, the severity of the
PD phenotype was greater after the colonization with
PwP-derived microbes [135].

Inflammation and the microbiota-gut-brain axis
in PD

Although it is difficult to dispute that the micro-
biota plays a role in PD, the question remains: how
does a shift in intestinal microbial diversity facilitate
the progression of disease? In good gut health, most
gut bacteria act indirectly on host cells as they remain
in the gut lumen, separated from the epithelium by a
thick mucosal layer that protects against their inva-
sion [143, 144]. Being predominantly restricted to the
gut lumen, in order to communicate with host cells,
such as epithelial and immune cells, bacteria must act
indirectly via the release of secreted factors including
OMVs.

Bacterial metabolites and secreted factors such
as short-chain fatty acids (SCFAs) and toxins (such
as lipopolysaccharide (LPS)) have been investigated
as mechanisms by which microbiota affect global
changes in disease, in particular in PD [94, 113,
145–147]. LPS, the major component of the outer
membrane of Gram-negative bacteria and a potent
activator of the innate immune response, has been
shown to be increased in the blood of PwP [148,
149]. This finding is substantiated by research indi-
cating higher levels of the LPS binding protein
(LBP) in serum during the prodromal phase of
the disease [150]. This connection extends beyond
systematic effects, as demonstrated by increased
expression of the microbial-associated molecular
pattern (MAMPs) receptors, specifically toll-like
receptor 4 (TLR4) and toll-like receptor 2 (TLR2),
in postmortem PD brain tissue [151–153]. For many
years LPS has been used to model neurodegenerative
disease [147]. PD researchers use LPS (typically from
E. coli strains) to elicit a neuroinflammatory response
that ultimately leads to neurodegeneration of the
dopaminergic neurons of the SN [154–156]. This
response is mediated by the activation of microglia
and the subsequent release of pro-inflammatory
cytokines and destructive reactive oxygen species
[32, 154, 155, 157]. LPS injections directly into
the SN (and not other sites in the brain) elicit this
response, indicating that LPS can direct PD-specific

neurodegenerative processes [155, 156]. LPS admin-
istration has been shown to increase �-syn expression
in wild-type animal ENS and SN, exacerbate �-syn
aggregation in PD models, and make animals more
susceptible to neurotoxins [158–161]. When admin-
istered systemically at a low dose, LPS models the
neuronal features of PD, as well as GI features such as
increased intestinal permeability and increased �-syn
expression in the colon [160].

LPS found on E. coli strains and other Enter-
obacteriaceae members, are considered to be the
most immunogenic forms of LPS [162, 163].
Notably, Enterobacteriaceae have an increased pres-
ence in the gut microbiota of PwP along with other
Gram-negative LPS-producing families Veruccomi-
crobioaceae and Christensenellaceae [93, 94, 98,
102, 106, 110, 118, 123] and Klebsiella species,
and Porphyromonas asaccharolytica [124]. In the
field of neurodegenerative disease, there has been
a prevailing assumption that secreted, non-vesicle-
associated factors, such as free LPS, breach the
intestinal barrier and trigger an immune response
that contributes to disease progression. We propose
an expansion of this hypothesis to include a crucial
role for OMVs in this process. Bacterial OMVs have
yet to be investigated in the context of PD despite
being a major secretion and communication path-
way for bacteria, being highly immunogenic, and
able to deliver cargo across biological barriers like
the gut and BBB [164, 165]. For visual hypothesis
see Fig. 1.

BACTERIAL OUTER MEMBRANE
VESICLES

OMVs are nanosized membranous structures that
range from 20–200 nm and have known roles in
bacterial communication and survival [166]. These
vesicles are secreted as distinct entities to mediate
intercellular communication between bacteria and
their host cell tissues [167]. OMVs are complex
structures that are comprised of many different anti-
genic bacterial proteins, lipids, and nucleic acids on
their membrane surfaces and also as cargo within
their lumen. The extracellular vesicles released from
Gram-negative and Gram-positive bacteria are gen-
erally termed OMVs and membrane vesicles (MVs),
respectively; however, nomenclature variation exists
in the literature [166]. For the purpose of this review,
we will focus on the extracellular vesicles released
from Gram-negative bacteria, which we will refer to
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Fig. 1. The proposed hypothesis for the pro-inflammatory role of outer membrane vesicles (OMVs) in Parkinson’s disease (PD). A) In
states of microbial dysbiosis, OMVs and other microbial factors can cause damage to epithelial barriers, causing the translocation of OMVs
past the epithelium, where immune cells can be activated to promote gastrointestinal inflammation which increases intestinal permeability.
Information about gastrointestinal inflammation can be directly communicated to the brain via the autonomic nervous system (ANS), by
altering neural signaling or retrograde transport of pathogenic proteins (for example �-synuclein) or OMVs. B) OMVs reach the systemic
circulation whereby they promote systemic inflammation. OMVs could promote neuroinflammation indirectly via increasing systemic
inflammation, leading to weakening of the blood-brain barrier, entry of immune cells into the brain and increased cytokine signaling. OMVs
could also promote neuroinflammation directly by infiltrating the brain and activating microglia. This chronic inflammation can contribute
to neurodegeneration.

as OMVs; however, we do acknowledge the potential
relevance of Gram-positive MVs in disease also (for
a review, see [168]).

There are multiple mechanisms by which Gram-
negative bacteria shed OMVs, such as envelope

crosslink modulation, envelope component accumu-
lation, and insertion of particular lipids into the outer
membrane, the importance of this being that OMV
release is not a stochastic event, and highly regulated
by the cell (reviewed in [169]). Depending on their
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bacterial source, OMVs have varied functions that
are related to their composition, for example, deliv-
ery of toxins, horizontal gene transfer, and biofilm
formation (see review by Gilmore et al. for further
information [170]). Unlike the parental bacterium,
OMVs are not so restricted to the gut lumen and can
traverse tight junctions to deliver their payload over
long distances within the host, while protecting vesic-
ular contents from the external environment [171,
172]. Bacterial vesicles have been detected in a multi-
tude of tissues and fluids including blood and plasma
[173–175], cerebrospinal fluid [176, 177], gastric
mucosa [178], urine [179–181], saliva [179] and feces
[174, 175, 182–184], indicating their widespread
biodistribution, including in the brain [185, 186].

The role of OMVs in immune modulation

One major function attributed to gut-derived
OMVs that is relevant to PD is host immune sys-
tem modulation. OMVs, released by bacteria in the
gut, can trigger local and distant proinflammatory
immune activation by interaction with both innate and
adaptive immune cell types including, macrophages,
dendritic cells, neutrophils, and B cells [187–194].
Enclosed by a membrane, OMVs harbor many types
of inflammogens such as bacterial DNAs, RNAs,
peptidoglycan, lipoproteins, LPSs, and toxins, that
can result in a complex multimodal mechanism
of immune activation [195]. Porphyromonus gingi-
valis and Aggregatibacter actinomycetemcomitans
OMVs have been demonstrated to interact with neu-
trophils by coating their plasma membrane, and are
also internalized by macrophages and epithelial cells
[190]. Once bound to neutrophils P. gingivalis OMVs
induce cell activation but also degrade neutrophil
effector protein myeloperoxidase, which results in
greater survival of the P. gingivalis parent bacterium
[190]. OMVs from E. coli as well as total bacterial
extracellular vesicles from feces have been demon-
strated to cause sepsis-like inflammation in rodents
after intraperitoneal injection or intravenous infusion
[183, 196–198]. In high enough doses, the sepsis-like
effects caused by OMVs can be lethal, in contrast,
there is no lethality when the animals are adminis-
tered a dose of pure LPS that is more than double the
LPS dose contained in the OMV preparation [197].

While OMVs contain many MAMPs, a major
component is their LPS-rich outer membrane [164,
199]. OMVs, studded with LPS on their surface are
able to deliver LPS to many types of cells [200],
including microglia [28]. LPS predominantly acti-

vates immune cells by binding extracellularly to
TLR4/CD14/MD2 receptor complex, which results
in intracellular NF-κB signaling and thus the release
of pro-inflammatory cytokines, TNF-�, IL-1�, and
free radicals, nitric oxide and superoxide [201]. How-
ever, OMVs have been identified as a method of
delivering LPS intracellularly where they activate
caspases and the NLRP3 inflammasome [200]. Sev-
eral E. coli strains (enterotoxigenic and avirulent
strains) release OMVs that can be genotoxic, con-
tain a heat-labile toxin, and can confer protection to
the producer bacteria and others against some antibi-
otics [195, 202, 203]. E. coli OMVs have been shown
to induce mitochondrial dysfunction, mitochondrial
apoptosis, and activate inflammation, which is partic-
ularly relevant in PD, as mitochondrial impairment is
characteristic of the disease [204].

The finding of elevated pro-inflammatory Gram-
negative bacteria and elevated synthesis of LPS in
PwP may indicate that the gut microbiome in PwP
produces a greater amount of OMVs which con-
tain highly potent LPS. LPS has been shown to be
increased in the blood of PwP [148, 149], however
the methods employed in these studies did not differ-
entiate free monomeric LPS from LPS contained on
OMVs, suggesting LPS found in the bloodstream of
PwP could be OMV-associated.

OMVs interact with cells either by ligand binding
to externally expressed pattern recognition recep-
tors (PRRs) such as toll-like receptors (TLRs)
or intracellular receptors like nucleotide-binding-
oligomerization domain-containing proteins (NOD)
[188, 199, 205–207]. In the context of PD, the major
PRR families that are involved in sensing MAMPs,
(TLRs, and Nod-like receptors (NLR)), are impli-
cated in the disease [208]. Leukocyte TLR2 responses
are lowered in PD compared to controls. This could
indicate a reduced ability to respond to bacterial
lipoproteins and other TLR2 ligands [209]. Con-
versely, leukocyte TLR4 responses are increased in
young PwP. When stimulated with LPS, leukocytes
from these individuals have a more robust TNF�
cytokine release than healthy controls, indicating
that in PD there is an overactive proinflammatory
response early in the disease [209]. The expression
of TLRs is increased in the brain, (particularly in
the caudate putamen), blood, and GI of PwP [83,
153]. One study found that TLR2 expression is found
to be increased in the neurons of PwP, and in par-
ticular, neurons harboring aggregated �-syn [151].
Another study demonstrated that the SN, a brain
region highly susceptible to neuroinflammation, is
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one of the regions with the highest TLR4 expres-
sion [152]. NLR family proteins, such as NOD2
which detects peptidoglycan, and the NLRP3 inflam-
masome complex which detects a wide variety of
MAMPs (as well as damage-associated molecular
patterns) have also been implicated in PD [39, 210,
211]. Levels of NLRP3 are increased in the serum
and peripheral blood mononuclear cells of PwP and
these levels positively correlate with the level of
serum �-syn [39, 210]. Variant alleles in the gene
that encodes NOD2 (CARD15) are associated with
an increased risk of PD [211]. Both NLRP3 and
NOD2 detect OMVs and their components, for exam-
ple, NLRP3 detects E. coli OMV-delivered LPS and
NOD2 detects OMVs from A. actinomycetemcomi-
tans [200, 205].

The changes to TLR expression and other PRRs
could indicate that PwP may be differentially able
to detect bacterial components, like OMVs, and
that they may produce aberrant immune responses
which could contribute to disease as a result. TLRs
are mostly expressed in immune cells, including
microglia, but neurons, in both the gut epithelium
and brain, also express TLRs [212–214]. This nat-
urally leads to the implication that OMVs may be
capable of directly interacting with neurons (should
they come in contact), however, this has not yet been
investigated to the best of our knowledge.

OMVs and the epithelium

OMVs released in the gut lumen can pass through
the thick mucosal layer and associate with epithe-
lial cells, where they can initiate cytokine release,
affect cell growth, and affect tight junction protein
expression [178]. OMVs are known to pass through
the epithelium either paracellularly or transcellularly
to access the lamina propria, where they can inter-
act with local immune cells [164, 178, 215]. OMVs
from bacteria such as Desulfovibrio fairfieldensis,
Campylobacter jejuni, H. pylori, and P. gingivalis
have been found to reduce the expression of impor-
tant tight junction proteins, like occludin, zonulin-1,
and E-cadherin, which results in the weakening of the
epithelial barrier and could potentially promote their
own translocation from the lumen into deeper layers
of the gut and beyond [175, 216–219]. Tulkens and
colleagues demonstrated that there were increased
bacterial extracellular vesicles in the plasma of peo-
ple with intestinal barrier dysfunction compared to
healthy controls and that the bacterial extracellu-
lar vesicle concentration was associated with greater

plasma zonulin-1 levels (indicating intestinal barrier
dysfunction). They also demonstrated that in an in
vitro colitis model that bacterial extracellular vesi-
cle concentration was increased in the basal side as
zonulin-1 levels decreased, indicating paracellular
translocation from the apical side where they were
applied [175]. This role in affecting epithelial per-
meability is particularly relevant in PD as elevated
intestinal permeability and the translocation of bac-
terial products occur in PwP.

OMVs beyond the gut

It is unlikely that major OMV translocation beyond
the gut lumen is an innocuous event as OMV’s abil-
ity to influence the function of many cell types could
have flow-on effects. The ability of OMVs to travel
throughout the body allows for bacteria restricted to
the gut to elicit long-range effects indirectly, permit-
ting them to functionally interact with the important
sites of PD pathology, mainly the gut and potentially
the brain. A study investigating OMV biodistribu-
tion demonstrated that labeled OMVs administered
orally to mice are predominantly found in the GI tract
and liver and OMVs delivered intraperitoneally are
predominantly found in the liver, and less so in the
spleen, kidneys, and lungs (this study did not inves-
tigate the brain) [171]. This study was performed in
healthy mice and therefore supports that OMVs can
pass through the gut even without gut impairments
[171].

As described above OMVs are highly effective
immune activators and their presence in the cir-
culation and distant organs has major implications
for the facilitation of inflammation systemically. We
acknowledge the possibility that OMV transloca-
tion from the gut lumen may not occur in sufficient
quantities to affect systemic and neural inflammation
directly, however, it is plausible that infiltration of
OMVs into the lamina propria and submucosa may
promote local inflammation and alterations to ENS
signaling to an extent that results in a modulation
of the peripheral immune system and CNS signal-
ing. OMVs, in this case, need not traverse into the
vasculature or brain, while still contributing to PD
pathogenesis.

The presence of OMVs in the bloodstream and
urine has been established in other conditions and
biodistribution studies and this supports that OMVs
can pass through epithelial layers to traverse into the
vasculature [171, 173, 180, 181, 220]. It has been
demonstrated that individuals with GI barrier disrup-
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tion have a greater number of bacterial extracellular
vesicles in their circulation compared to healthy con-
trols [175]. Though this has yet to be tested in PwP,
it stands to reason that bacterial extracellular vesicles
could similarly be elevated in the circulation, because
of the evidence of increased intestinal permeability or
reduced gut tight-junction proteins in PwP [90, 221,
222].

OMVs and the brain

Several research groups have hypothesized that
OMVs can cross the BBB, especially in cases where
the BBB is impaired, theorizing based on the nanosize
of OMVs and citing evidence of bacterial compo-
nents such as bacterial nucleic acids and LPS being
found in brains, particularly of those with neurologi-
cal dysfunction [165, 223]. It has been demonstrated
that OMVs and LPSs, from species like E. coli and
P. gingivalis, can impair endothelial barriers includ-
ing the BBB, which would perhaps promote uptake
of OMVs or other toxic materials, allow bacterial
infiltration into the brain and also promote neuroin-
flammation via peripheral immune cell infiltration
[224–230]. The BBB in PD has been suggested to
be dysfunctional, as evidenced by positron electron
tomography hyperpermeability experiments, investi-
gations of cerebrospinal fluid-serum albumin ratios,
and also histological investigation of BBB integrity
markers [231–233]. While the cause of the BBB dys-
function is unknown in PD, these observations imply
that the BBB may be susceptible to OMV penetration.

There is the potential that OMVs could cross an
intact BBB, as eukaryotic EVs have been suggested
to do [234], or in a similar manner to how they
transcellularly cross epithelial and endothelial cells
[171]. Evidence for OMVs crossing the BBB in
animal models is beginning to emerge [185, 186,
226, 235–237]. A. actinomycetemcomitans OMVs
can cross the BBB, deliver bacterial RNA, and
induce the release of cytokines following intrac-
ardial administration [235]. In a follow-up study,
OMVs were shown to be taken up by microglia
and meningeal macrophages [186]. Orally-gavaged
OMVs from Paenalcaligenes hominis are delivered to
the hippocampus via the autonomic nervous system
resulting in cognitive impairment more potently than
orally-gavaged LPS [238]. To the best of our knowl-
edge, this study is the first to experimentally link
OMVs and neuronal dysfunction in the CNS, show-
ing retrograde delivery from the gut to the brain via
the vagus nerve, which is believed to be an important

conduit between the gut and the brain in PD and links
the gut to key sites of PD pathology, such as the dorsal
motor nucleus [238–240]. It also highlights the possi-
bility of a route for gut-to-brain trafficking of OMVs
that bypasses the circulation and thus avoids the chal-
lenges of evading the peripheral immune system and
crossing the BBB.

In another study, which provided evidence of OMV
passage into the brain, H. pylori-derived OMVs were
shown to pass into the brain through the transcellu-
lar method [185]. This study also demonstrated that
by orally delivering OMVs to Alzheimer’s model
mice, the OMVs are taken up by astrocytes. Notably,
OMVs increased plaque load, inflammation, neu-
ronal dysfunction, and also accelerated cognitive
decline [185]. H. pylori-derived OMVs have also
been demonstrated to traffic to the mouse brain
following venous and oral administration, where
they activate astrocytes and cause neuronal damage
[237]. As previously discussed, there is are connec-
tion between H. pylori infection and PD, therefore
an investigation into H. pylori-specific OMVs in
PD has sufficient merit. A separate study investi-
gating Alzheimer’s disease demonstrated that after
oral gavage of P. gingivalis OMVs into middle-
aged wild-type mice, the OMVs reached the brain,
impaired expression of tight junction proteins, were
able to induce inflammation, and impaired learning
and memory [241].

While the studies described above use non-
physiological quantities of OMVs in acute animal
models, throughout the lifetime of a person, minute
insults from gut-derived OMVs could contribute to
PD by fueling a state of chronic inflammation, ulti-
mately contributing to neurodegeneration over the
course of decades.

CONCLUDING REMARKS

The etiology and pathogenesis of PD are multi-
factorial, and the interaction between age, genetic
susceptibility, environmental influence, and micro-
bial function all appear to contribute to PD
pathogenesis. There is increasing appreciation of
the importance of the microbiome in health and
disease. A greater understanding of bidirectional gut-
brain axis functions will allow for more sophisticated
examinations of the interaction between gut and brain
health in systemic diseases such as PD.

A multitude of studies demonstrate that mod-
els using inflammogens, like LPS, recapitulate the
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neuroinflammation and neurodegeneration seen in
PwP. There is an abundance of evidence supporting
changes in the GI tract of PwP including increased
intestinal permeability, microbial dysbiosis, and evi-
dence of increased LPS in blood. Thus, a hypothesis
has formed that people with GI dysfunction have
greater amounts of LPS reaching their circulation,
which promotes systemic inflammation and promotes
neurodegeneration. OMVs are a physiological mech-
anism by which MAMPs are released from bacteria
to promote immune responses. Considering their
presence in the bloodstream and potential ability to
cross the BBB, we propose a more likely hypothesis,
that OMVs released from bacteria in the gut trigger
inflammation to contribute to the progression of PD.

The implication of this hypothesis opens new
avenues for therapeutic interventions in PD and
potentially other diseases where OMV-induced
inflammation plays a role. This is because OMVs
elicit distinct host immune responses so therapeutic
approaches specifically tailored for soluble LPS for
example, may prove inadequate in addressing inflam-
mation triggered by OMVs [242]. Re-establishing
a healthy microbiome and strengthening gut bar-
rier integrity could be one mechanism for reducing
OMV-induced inflammation. TLR4 and other OMV-
detecting PRR antagonists could prevent increases
in inflammatory processes. Lastly, OMVs could pro-
vide a new avenue for biomarker development with
the difference in the relative abundance of plasma
OMVs used as a complementary diagnostic tool for
PD.
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López-Álvarez M, Mulder Lianne M, Gscheider C, Haider
Rubio A, Huitema M, Becher D, Heeringa P, van Dijl Jan
M (2022) Coating and corruption of human neutrophils
by bacterial outer membrane vesicles. Microbiol Spectr
10, e00753-00722.

[191] Vidakovics ML, Jendholm J, Morgelin M, Mansson A,
Larsson C, Cardell LO, Riesbeck K (2010) B cell acti-
vation by outer membrane vesicles–a novel virulence
mechanism. PLoS Pathog 6, e1000724.

[192] Lee EY, Bang JY, Park GW, Choi DS, Kang JS, Kim HJ,
Park KS, Lee JO, Kim YK, Kwon KH, Kim KP, Gho YS
(2007) Global proteomic profiling of native outer mem-
brane vesicles derived from Escherichia coli. Proteomics
7, 3143-3153.

[193] Sartorio Mariana G, Valguarnera E, Hsu F-F, Feldman
Mario F (2022) Lipidomics analysis of outer membrane
vesicles and elucidation of the inositol phosphoceramide
biosynthetic pathway in Bacteroides thetaiotaomicron.
Microbiol Spectr 10, e00634-00621.

[194] Sjostrom AE, Sandblad L, Uhlin BE, Wai SN (2015) Mem-
brane vesicle-mediated release of bacterial RNA. Sci Rep
5, 15329.

[195] Horstman AL, Kuehn MJ (2000) Enterotoxigenic
Escherichia coli secretes active heat-labile enterotoxin via
outer membrane vesicles. J Biol Chem 275, 12489-12496.

[196] Shah B, Sullivan CJ, Lonergan NE, Stanley S, Soult MC,
Britt LD (2012) Circulating bacterial membrane vesicles
cause sepsis in rats. Shock 37, 621-628.

[197] Park K-S, Choi K-H, Kim Y-S, Hong BS, Kim OY, Kim
JH, Yoon CM, Koh G-Y, Kim Y-K, Gho YS (2010) Outer
membrane vesicles derived from Escherichia coli induce
systemic inflammatory response syndrome. PLoS One 5,
e11334.

[198] Svennerholm K, Park KS, Wikstrom J, Lasser C,
Crescitelli R, Shelke GV, Jang SC, Suzuki S, Bandeira E,
Olofsson CS, Lotvall J (2017) Escherichia coli outer mem-
brane vesicles can contribute to sepsis induced cardiac
dysfunction. Sci Rep 7, 17434.

[199] Kaparakis M, Turnbull L, Carneiro L, Firth S, Cole-
man HA, Parkington HC, Le Bourhis L, Karrar A, Viala
J, Mak J, Hutton ML, Davies JK, Crack PJ, Hertzog
PJ, Philpott DJ, Girardin SE, Whitchurch CB, Ferrero
RL (2010) Bacterial membrane vesicles deliver peptido-
glycan to NOD1 in epithelial cells. Cell Microbiol 12,
372-385.

[200] Vanaja SK, Russo AJ, Behl B, Banerjee I, Yankova M,
Deshmukh SD, Rathinam VAK (2016) Bacterial outer
membrane vesicles mediate cytosolic localization of LPS
and caspase-11 activation. Cell 165, 1106-1119.

[201] Ciesielska A, Matyjek M, Kwiatkowska K (2020) TLR4
and CD14 trafficking and its influence on LPS-induced
pro-inflammatory signaling. Cell Mol Life Sci 78, 1233-
1261.

[202] Tyrer PC, Frizelle FA, Keenan JI (2014) Escherichia coli-
derived outer membrane vesicles are genotoxic to human
enterocyte-like cells. Infect Agent Cancer 9, 2.

[203] Kulkarni HM, Nagaraj R, Jagannadham MV (2015) Pro-
tective role of E. coli outer membrane vesicles against
antibiotics. Microbiol Res 181, 1-7.

[204] Deo P, Chow SH, Han M-L, Speir M, Huang C, Schit-
tenhelm RB, Dhital S, Emery J, Li J, Kile BT, Vince JE,
Lawlor KE, Naderer T (2020) Mitochondrial dysfunction
caused by outer membrane vesicles from Gram-negative
bacteria activates intrinsic apoptosis and inflammation.
Nat Microbiol 5, 1418-1427.

[205] Thay B, Damm A, Kufer TA, Wai SN, Oscarsson J (2014)
Aggregatibacter actinomycetemcomitans outer membrane
vesicles are internalized in human host cells and trig-
ger NOD1- and NOD2-dependent NF-kappaB activation.
Infect Immun 82, 4034-4046.

[206] Marion Chad R, Lee J, Sharma L, Park K-S, Lee C, Liu
W, Liu P, Feng J, Gho Yong S, Dela Cruz Charles S (2019)
Toll-like receptors 2 and 4 modulate pulmonary inflamma-
tion and host factors mediated by outer membrane vesicles
derived from Acinetobacter baumannii. Infect Immun 87,
e00243-19.

[207] Jun SH, Lee JH, Kim BR, Kim SI, Park TI, Lee JC, Lee YC
(2013) Acinetobacter baumannii outer membrane vesi-
cles elicit a potent innate immune response via membrane
proteins. PLoS One 8, e71751.

[208] Yu L, Wang L, Chen S (2010) Endogenous toll-like recep-
tor ligands and their biological significance. J Cell Mol
Med 14, 2592-2603.

[209] Rocha Sobrinho HMd, Silva DJd, Gomides LF, Dorta
ML, Oliveira MAPd, Ribeiro-Dias F (2018) TLR4 and
TLR2 activation is differentially associated with age dur-
ing Parkinson’s disease. Immunol Invest 47, 71-88.

[210] Chatterjee K, Roy A, Banerjee R, Choudhury S, Mon-
dal B, Halder S, Basu P, Shubham S, Dey S, Kumar H
(2020) Inflammasome and alpha-synuclein in Parkinson’s
disease: A cross-sectional study. J Neuroimmunol 338,
577089.

[211] Bialecka M, Kurzawski M, Klodowska-Duda G, Opala G,
Juzwiak S, Kurzawski G, Tan E-K, Drozdzik M (2007)
CARD15 variants in patients with sporadic Parkinson’s
disease. Neurosci Res 57, 473-476.

[212] Barajon I, Serrao G, Arnaboldi F, Opizzi E, Ripamonti G,
Balsari A, Rumio C (2009) Toll-like receptors 3, 4, and
7 are expressed in the enteric nervous system and dorsal
root ganglia. J Histochem Cytochem 57, 1013-1023.

[213] Burgueno JF, Barba A, Eyre E, Romero C, Neunlist M,
Fernandez E (2016) TLR2 and TLR9 modulate enteric
nervous system inflammatory responses to lipopolysac-
charide. J Neuroinflammation 13, 187.

[214] Heidari A, Yazdanpanah N, Rezaei N (2022) The role of
Toll-like receptors and neuroinflammation in Parkinson’s
disease. J Neuroinflammation 19, 135.

[215] Krsek D, Yara DA, Hrbáčková H, Daniel O, Mančı́ková A,
Schüller S, Bielaszewska M (2023) Translocation of outer
membrane vesicles from enterohemorrhagic Escherichia
coli O157 across the intestinal epithelial barrier. Front
Microbiol 14, 1198945.

[216] Elmi A, Nasher F, Jagatia H, Gundogdu O, Bajaj-Elliott
M, Wren B, Dorrell N (2016) Campylobacter jejuni



244 T.F. Koukoulis et al. / Bacterial Vesicles and Parkinson’s Disease

outer membrane vesicle-associated proteolytic activity
promotes bacterial invasion by mediating cleavage of
intestinal epithelial cell E-cadherin and occludin. Cell
Microbiol 18, 561-572.

[217] Turkina MV, Olofsson A, Magnusson KE, Arnqvist A,
Vikstrom E (2015) Helicobacter pylori vesicles carrying
CagA localize in the vicinity of cell-cell contacts and
induce histone H1 binding to ATP in epithelial cells. FEMS
Microbiol Lett 362.

[218] He Y, Shiotsu N, Uchida-Fukuhara Y, Guo J, Weng Y,
Ikegame M, Wang Z, Ono K, Kamioka H, Torii Y, Sasaki
A, Yoshida K, Okamura H (2020) Outer membrane vesi-
cles derived from Porphyromonas gingivalis induced cell
death with disruption of tight junctions in human lung
epithelial cells. Arch Oral Biol 118, 104841.

[219] Nie Y, Xie XQ, Zhou L, Guan Q, Ren Y, Mao Y, Shi
JS, Xu ZH, Geng Y (2022) Desulfovibrio fairfieldensis-
derived outer membrane vesicles damage epithelial barrier
and induce inflammation and pyroptosis in macrophages.
Cells 12, 89.

[220] Jones E, Stentz R, Telatin A, Savva GM, Booth C, Baker
D, Rudder S, Knight SC, Noble A, Carding SR (2021) The
origin of plasma-derived bacterial extracellular vesicles in
healthy individuals and patients with inflammatory bowel
disease: A pilot study. Genes (Basel) 12, 1636.

[221] Clairembault T, Leclair-Visonneau L, Coron E, Bour-
reille A, Le Dily S, Vavasseur F, Heymann M-F, Neunlist
M, Derkinderen P (2015) Structural alterations of the
intestinal epithelial barrier in Parkinson’s disease. Acta
Neuropathol Commun 3, 12.

[222] Schwiertz A, Spiegel J, Dillmann U, Grundmann D,
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