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Abstract.
Background: Parkinson’s disease (PD) is the most prevalent neurodegenerative movement disorder and a growing health
concern in demographically aging societies. The prevalence of PD among individuals over the age of 60 and 80 years has
been reported to range between 1% and 4%. A timely diagnosis of PD is desirable, even though it poses challenges to medical
systems.
Objective: This study aimed to classify PD and healthy controls based on the analysis of voice records at different frequencies
using machine learning (ML) algorithms.
Methods: The voices of 252 individuals aged 33 to 87 years were recorded. Based on the voice record data, ML algorithms
can distinguish PD patients and healthy controls. One binary decision variable was associated with 756 instances and 754
attributes. Voice records data were analyzed through supervised ML algorithms and pipelines. A 10-fold cross-validation
method was used to validate models.
Results: In the classification of PD patients, ML models were performed with 84.21 accuracy, 93 precision, 89 Sensitivity,
89 F1-scores, and 87 AUC. The pipeline performance improved to accuracy: 85.09, precision: 92, Sensitivity:91, F1-score:
89, and AUC: 90. The Pipeline methods improved the performance of classifying PD from voice record.
Conclusions: Our study demonstrated that ML classifiers and pipelines can classify PD patients based on speech biomarkers.
It was found that pipelines were more effective at selecting the most relevant features from high-dimensional data and at
accurately classifying PD patients and healthy controls. This approach can therefore be used for early diagnosis of initial
forms of PD.
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INTRODUCTION

Parkinson’s disease (PD) is the second most com-
mon neurodegenerative disease after Alzheimer’s
disease [1]. The prevalence of PD is 1% among peo-
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ple over the age of 60 years and 4% among those
over the age of 80 years [2]. Approximately one to
two people out of every 1,000 suffer from PD [3]. The
number of PD patients is increasing in parallel with
the increase in the elderly population. Globally, the
number of PD patients has doubled between 1990
and 2015, with approximately 6.2 million individ-
uals affected [4]. Since 1990, the age-standardized
prevalence rate (ASR) increased by 21.7% [5].
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PD is a progressive neurodegenerative disorder
characterized by motor impairment [6] and by the
presence of bradykinesia, rest tremors, rigidity, as
well as changes in posture and gait. Disturbances in
motor function led to progressive disability, impair-
ment of daily activities, and worsening in quality of
life. Nearly all patients with PD suffer from a variety
of non-motor symptoms (NMS), such as hypos-
mia, constipation, urinary dysfunction, orthostatic
hypotension, memory loss, depression, pain, and
sleep disturbances [7]. PD most commonly affects
elderly people, although cases of young patients are
not uncommon.

Voice problems usually are among the earliest
symptoms. They are followed by other disorders
occurring later and more gradually, such as prosody,
difficulties in word articulation, and fluency. Most
PD patients have hoarse voice quality, soft voice,
breathiness monotone, and imprecise articulation
which may affect their oral communication [8, 9].
A well-integrated speech needs normal respiration,
phonation, and articulation. The breakdown of those
subsystems and their combination results in speech
disorders [10, 11].

Early detection and treatment are important for
patients with PD. There is no reliable diagnostic test
currently, and PD identification is based primarily
on clinical criteria [12–14]. Traditionally, the early
diagnosis of PD is based on interviews with the
patient followed by careful neurological examina-
tions [15, 16]. So far there is no intelligent computing
approach collecting different symptoms for speeding
up the diagnosis of the disease. Telediagnosis and
telemonitoring approaches recently introduced repre-
sent non-intelligent methods for diagnosing PD and
these systems are unable to solve complex problems
based on data-intensive learning. It could therefore
be useful to develop automated systems to help in the
early diagnosis of PD.

Acoustic testing can help to identify PD because
patients may have some subtle irregularities in their
speech that might not be perceived by an audience.
Recent studies have developed methods for analyz-
ing and classifying the speech of PD patients [17, 18].
Machine learning (ML) has been extensively used in
a variety of applications requiring data collected in
some specific format. Data-intensive problems can
be solved using statistical models and learning-based
solutions. Healthcare applications have also success-
fully adopted these approaches [15, 19, 20].

Studies published in the area of PD diagnosis
have mainly investigated the impact of a particu-

lar subset of features on the accurate diagnosis of
PD [21]. A few review articles have examined the
ML algorithm performance, whereas others have
examined heuristic and meta-heuristic algorithms’
influence on the accurate diagnosis of PD [22–24].
ML algorithms generally perform less well when pro-
gressively more features/dimensions are fed to them
[25]. Data collected from PD patients consists of hun-
dreds of dimensions, making it impossible to use ML
algorithms to classify PD. Hence, for an accurate
diagnosis of PD, problems should be analyzed with
high dimensionality.

The primary objective of this paper was to utilize
supervised ML techniques to classify PD patients
based on speech recording data. Our work was
divided into two steps. In the first step, we evalu-
ated supervised ML classifiers that could identify PD
patients. In the second step, we applied the feature
selection technique from the model (support vector
machine) and then classified PD patients based on
those selective features with the combination of ML
machine learning algorithms that we have identified
in the first part. To facilitate the selection and classifi-
cation of features, a pipeline approach was developed.
To identify the most effective model, we compared
traditional classifiers and pipeline performance in the
results section.

MATERIALS AND METHODS

The graphical representation of work is in Fig. 1.
Below sections we briefly described all materials and
methods used in this work.

Data set description

The data used in this study was collected by the
Department of Neurology at Istanbul University’s
Cerrahpaşa [26]. Overall, 252 individuals were sur-
veyed (130 males and 122 females), and each subject
had three records. There were 756 instances and 754
attributes, and one binary decision variable. The sam-
ple included 188 patients with PD (107 men and 81
women), aged between 33 and 87 years and their
mean age 65.1 ± 10.9. The 64 healthy individuals
were 23 men and 41 women, and their ages ranged
from 41 to 82 years with the mean of 61.1 ± 8.9.
The microphone used was set to 44.1 kHz during
the data collection process. They shared this dataset
to the machine learning repository UCI (Univer-
sity of California Irvine) [27]. Students, educators,
and researchers throughout the world have access to
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Fig. 1. Framework to classify Parkinson’s disease.

UCI databases, domain theories, and data generators
which are used in machine learning applications.

In the dataset description, there was no mention
of the duration and stage of the patients’ dis-
ease. However, in their more recent work [28], the
authors estimated the severity of PD using the same
voice recording dataset, employing the motor Unified
Parkinson’s Disease Rating Scale (UPDRS) score as
the evaluation metric. In this study, UPDRS scores
were available for 86 PD patients (comprising 49
males and 37 females) out of the total 188 participants
in the study. The mean duration since PD diagnosis
was found to be 5.55 years with a standard deviation
of 4.72 years. When we further stratify the data by
gender, we find that males had an average diagno-
sis duration of 5.12 years with a standard deviation
of 4.23 years, while females had an average diagno-
sis duration of 6.13 years with a standard deviation
of 5.31 years. Upon a thorough examination of this
work, we now understand that the sample primarily
consisted of early-stage PD patients.

After the physician’s examination, three repeti-
tions of sustained phonation of the vowel “a” were
recorded from each subject. A variety of speech sig-
nal processing algorithms have been applied to the
recordings of PD patients to extract clinically use-
ful information for assessing PD symptoms. These
included Time-Frequency Features, Mel Frequency
Cepstral Coefficients (MFCCs), Wavelet Transform
based Features, Vocal Fold Features, and Tunable
Q-factor wavelet transform (TWQT) features. “Base-
line features” include jitter, shimmer, recurrence
period density entropy (RPDE), fundamental fre-
quency parameters, Detrended Fluctuation Analysis
(DFA), harmonicity parameters, and Pitch Period
Entropy (PPE) [22–24, 29, 30]. The data set contained
756 recorded observations (rows), and 755 features
(columns), of which 752 have real values, 1 has val-
ues between 0 and 2, and two have binary values. The
last column of this data set represents a binary value
indicating PD or health status, also known as deci-
sion variables. ML classifiers can use class variables
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Table 1
Parkinson’s disease speech biomarkers data set descriptions

Features Name Description No. of Columns Column Range

ID Numeric 1 Col 1
Gender Binary 1 Col 2
Baseline Features Real 21 Col 3 to Col 23
Intensity Parameters Real 3 Col 24 to Col 26
Formant Frequencies Real 4 Col 27 to Col 30
Bandwidth Parameters Real 4 col 31 to Col 34
Vocal Fold Real 22 Col 35 to Col 56
MFCC Real 84 Col 57 to Col 140
Wavelet Features Real 182 Col 141 to Col 322
TQWT Features Real 432 Col 323 to Col 754
Class (Depended Variable) Binary 1 Col 755

ID, Identity; MFCC, Mel Frequency Cepstral Coefficients; TQWT, Tunable Q-factor wavelet
transform.

to extract pertinent information on PD patients. In
Table 1 an overview of each attribute of the dataset.

Data preparation

The data set selected for analysis is a secondary
and processed set. The data set does not contain any
missing or null values. Therefore, no data process-
ing performs to deal with missing and/or null values.
To classify PD from this dataset, we split the data
into train and test, balanced the dependent value, and
selected the features according to the model’s require-
ments. Data preparation details are discussed in this
section.

Splitting data

ML classifiers provide biased results (overfitting)
when trained with a complete data set without test-
ing with unseen data. To overcome this problem,
a cross-validation model evaluation method usually
recommended when developing a ML classification
model was used. Data were divided into subsets based
on pre-defined ratios, and each subset is used to train
and evaluate a ML classification model. To generalize
the performance of the model concerning classifica-
tion accuracy, the average error rate is calculated. A
standard procedure uses 70% of the data for train-
ing and 30% for testing. ML classifiers are trained
on the training data. These classifiers were evaluated
and validated on the test set. It is indeed challeng-
ing to split medical data. The dataset consists of 756
records of 252 patients. Each patient has three obser-
vations. In the case of a random split, the same patient
records can appear on both the train and test sets.
To avoid this scenario, the data set is sorted by the

number of patients. The ID value is unique to each
patient. Before splitting, the patient’s position was
randomized so that there is a random patient record
on the train set, not from the serial. There are 188 PD
patients and 64 healthy or control. 80% (151 PD and
51 healthy) of patients in each group are divided into
train sets, while 20% (37 PD and 13 healthy) are test
sets.

Balancing data

This data set is balanced by gender (males:130 and
females:122). 564 (188 X 3) of the records are from
PD patients and 192 records (64 X 3) are from healthy
patients, so the variable “class” is not balanced.
Table 2 indicates the number of male and female
PD and subjects examined. A SMOTE: synthetic
minority over-sampling technique [31] is applied to
the target value “class” to balance the data set. In
SMOTE, examples that are close to the feature space
are selected, a line is drawn between them, and a new
sample is drawn along the line.

First, a random example from the minority class
is picked. For each example, k nearest neighbors is
found (typically k = 5). Based on the selected neigh-
bor and a randomly chosen to point between them in
feature space, a synthetic example is created.

Table 2
Number of male and female subjects [Parkinson’s disease (PD)

and healthy individuals] examined in the present study

Gender Class Number

Male Healthy 23
PD 107

Female Healthy 41
PD 82
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Feature scaling

Feature scaling is a preprocessing step in data anal-
ysis that normalizes features to a particular range
without affecting the essence of the data. ML clas-
sifier’s time consumption can also be reduced by
feature scaling. Sklearn’s Standard Scaler [32] is used
to scale the values in the data set to address the prob-
lem of sparsity in the data set, as well as to accelerate
the calculations of ML classifiers. Standard Scaler
removes the mean and scales to unit variance. A stan-
dard score of samples a is calculated according to the
formula s = (a-u)/c. where u represents the mean of
the training samples or zero if with mean = false and c
represents the standard deviation of the training sam-
ples or one if with std = false. Based on the samples
in the training set, each feature is centered and scaled
independently. Mean and standard deviation are then
stored for later use with transform.

Model design

The ‘class’ column represents the target variable
(y). The remaining columns are inputs (x). Super-
vised learning algorithms were used since the results
of this task were already available. Support Vector
Machine (SVM), Logistic Regression classifier (LR),
K-Nearest Neighbors (KNN), Decision Tree (DT),
Random Forest classifier (RF), AdaBoost and Gradi-
ent Boosting and Multi-Layer Perception (MLP) are
the classifier algorithms used in this work. The dataset
has 756 features. All the features are not relevant to
the classification of PD patients, and it is difficult to
handle more input features. To minimize the number
of input features and find the more relevant features
to the target value the feature selection technique was
applied. The features selected from the model tech-
nique were used. The pipelines were developed on
selected features.

Logistic regression classifier (LR)
LR is a simple and efficient algorithm for binary

and linear classification problems (the target is cate-
gorical). An LR uses a logistic function to model a
binary output variable [33]. LR employs a nonlinear
log transformation and does not require linear rela-
tionships between inputs and outputs. In the equation,
x is the input variable. Logistic Function = 1

1+e−x

Maximum likelihood estimation (MLE) is a condi-
tional probability function used in LR as a loss func-
tion. Probabilities greater than 0.5 are categorized as
class 0. Otherwise, they are classified as class 1.

LR parameter setting
The parameters are penalty = ‘L1’,

solver = ‘liblinear’, and random state = 0 and
tol = 1e–6. The rest of the parameters are set to
default. Due to the size of the dataset, the solver
chose to use ‘liblinear’. We set the penalty ‘L1’ as
the dataset has many features and ‘L1’ regulariza-
tion. The model was also validated with 10-fold
cross-validation.

Support vector machine (SVM)
The SVM algorithm is to find a hyperplane in

an N-dimensional space. Many possible hyperplanes
can be chosen to separate the two classes of data
points. To find the maximum margin, we must find the
maximum distance between points of both classes.
Hyperplanes serve as decision boundaries that help
to classify the data points. By increasing the mar-
gin distance, future data points can also be classified
with greater confidence. The data points on either
side of the hyperplane can be assigned to different
classes. The dimensions of the hyperplane are also
determined by the number of features. In the case
of two input features, the hyperplane is just a line.
The hyperplane becomes two-dimensional if there
are three input features. If there are more than three
features, it becomes hard.

SVM parameter setting
Linear kernel chose to classify with SVM, Regular-

ization parameter is set C = 0.01 and other parameters
set by default. To validate the model 10-fold cross-
validation was also performed.

K-Nearest neighbors (KNN)
A supervised machine learning algorithm is used to

solve classification and regression problems. Select
K neighbors (K = 5) and calculate the Euclidean dis-

tance (ED): AB (x, y) =
√∑n

i=1 |xi − yi|2 between
them to classify a data point [34]. A Euclidean dis-
tance can also be referred to as an L2 normalization.
Based on these K neighbors, count the number of data
points in each category. Add the new data points to
the category with the most neighbors.

KNN parameter setting
Number of neighbors K = 5, uniform weights, algo-

rithm, and leaf size is set as default value.
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Decision Tree
The decision tree (DT) is a non-parametric super-

vised learning technique used for classification and
regression. We are attempting to develop a model
that predicts the value of a target variable by learning
simple decision rules based on the characteristics of
the data. In general, a tree can be considered as an
approximation of a constant piecewise function.

DT parameter setting
The classification criteria used criterion=‘gini’,

mathematically H (Qm) = ∑
k pmk (1 − pmk). The

‘best’ splitter is used to split the node. Minimum
samples split and leaf is set as 2 and 1 respectively.

Random forest classifier
Random forests (RF) consist of several decision

trees that predict the outcome. In a random forest
classification technique, a class is selected based on
the input information. The random forest will deter-
mine whose class has the highest number of values
once all trees have concluded.

RF parameter setting
The RF model was built using 300 estimators. Was

control the randomness of bootstrapping and sample
selection to build a tree.

AdaBoost classifier
AdaBoost is a technique for ensemble learning. A

classifier and an additional copy of the classifier are
fitted to the original dataset. By adjusting the weights
of incorrectly classified instances, subsequent classi-
fiers can focus more on difficult cases.

AdaBoost parameter setting
Our model is built using 100 estimators and ran-

domness control, like the RF model.

Gradient boosting classifier
It is interesting to note that Gradient Boosting

works by fitting a new predictor to the residual errors
of the previous predictor rather than fitting it to the
data at each iteration. A major objective of gradient
boosting is to reduce the errors of its predecessor by
reducing errors its predecessor.

Gradient boosting parameter setting
The model is constructed by setting the number

estimator to 100, the learning rate to 1, and the
maximum depth to 1. In addition, we control the
randomness of the model.

Multi-Layer Perception
Multi-Layer Perception (MLP) Classifier stands

for MLP classifier. It is a feedforward artificial neural
network model that maps inputs into outputs. MLPs
consist of multiple layers that are fully connected. In
all layers, except for the input layer, the nodes are
neurons with nonlinear activation functions. There
may be one or more nonlinear hidden layers between
the input and output layers.

Figure 2. shows MLP architecture with input, hid-
den, and output layers.

MLP parameter setting
The number of hidden layers is set to

(256,128,64,32), the activation function is set
to “relu”, and the solver is set to “adam”. The
regularization parameter is set to 1.e–1 and the
cross-entropy loss function. The MLP-trained model
was also validated with 10-fold cross-validation.

Pipeline
Each pipeline was developed with a Linear Sup-

port Vector Classifier (LinearSVC) and a supervised
ML algorithm. LinearSVC uses the select form model
technique for feature selection. The estimator for Lin-
earSVC is set to “l1: penalty”, loss: squared hinge,
regulation parameter “C = 2.0”, number of iterations
5000. The selected features are then passed on to
the ML algorithm described earlier. A total of eight
pipelines were developed using LinearSVC, Logistic
Regression (LR), K-Nearest Neighbors (KNN), Deci-
sion Trees (DT), Random Forests (RF), AdaBoost,
and Gradient Boosting and Multi-Layer Perception
(MLP).

Confusion matrix

The confusion matrix was used to evaluate the per-
formance of ML classifiers. Table 3 provides details
of this approach. “True Positive” (TP) accurately
indicates that a condition is present. “True Negative”
(TN) correctly suggests that a condition is absent.
“False Positive” (FP) incorrectly indicates that a
condition is true. “False Negative” (FN) incorrectly
implies the absence of a condition.

Model performances were measured through per-
formance metrics. Based on the confusion matrix
table, we were able to determine performance met-
rics. The confusion table was also used to prepare the
classification report. Below are some performance
metrics that we used to check the evolution of the
model based on the confusion table.
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Fig. 2. Multi-Layer Perception Classifier layers.

Accuracy is the number of true values (TP+TN)
divided by the total number of the dataset.

Accuracy = TP + TN

TP + TN + FP + FN

Precision or Positive Predictive Value (PPV) is the
ratio of correctly classified values (TP) to the total
predicted positive values (TP+FP).

Precision =
TP

TP + FP

F1 score is also called the F Measure. F1 scores
indicate the balance between precision and Sensitiv-
ity.

F1 Score =
2 ∗ Precision ∗ Sensitivity

Precision + Sensitivity
= 2TP

2TP + FP + FN

Table 3
Confusion Matrix Table

Actual value Negative Positive

Negative True Negative False Positive
Positive False Negative True Positive

Predicted Value

Sensitivity is the ratio of true positive values
divided by the number of true positives and false
negatives. Also called True Positive Rate (TPR) and
Recall. Sensitivity perception comes from how many
patients were classified as having the disease.

Sensitivity =
TP

TP + FN

This study employs a binary classification prob-
lem for which Sensitivity is the significant and valid
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Fig. 3. Confusion Matrix representation. SVM, Support vector machine classifier; LR, Logistic Regression classifier; KNN, K-Nearest
Neighbors Classifier; DT, Decision Tree Classifier; RF, Random Forest Classifier; MLP, Multi-Layer Perception Classifier.

evaluation metric. It captures as many positives data
as possible from the PD data set used for training.
When there is uncertainty in the unseen data about
the existence of a disease, it is crucial to capture the
assertion that one exists. Sensitivity evaluates what
positives are predicted to be positives in the PD data
set. It is also important to consider the other evalu-
ation scores when evaluating the robustness of ML
classifiers.

RESULTS

Supervised models confusion matrix

Figure 3 illustrates the confusion matrix of Super-
vised ML models. A confusion matrix is used to
assess the model’s performance metrics. It also shows
the confusion matrix of models. In this figure pre-
dicted values are shown in horizontal lines and true
values are shown in vertical lines. The confusion
matrix in the top right corner is derived from SVM,
followed by clockwise LR, KNN, and DT on the first
line. RF, AdaBoost, Gradient Boost, and MLP model
confusion matrix are shown in the second row from
the left. A total number of correctly classified patients
when the actual value is also positive is true positive
(TP). MLP has the highest TP value of 152, Gradi-
ent Boost has 150, and RF and AdaBoost both have
149. SVM, LR, and DT have TP of 139, 145, and
146, respectively. The KNN model indicates that 92
TP is the minimum. True negative (TN) is correctly
classified when the actual class is negative. Three
models SVM, DT, and MLP imply a 35 TN value. The

rest models KNN, AdaBoost, Gradient Boost, LR,
and RF represent 50, 43, 37, 40, and 34 TN values.
False positives (FP) refer to misclassified patients.
The MLP, DT, and SVM all show 22 FP. KNN has
the lowest FP, AdaBoost, LR, Gradient Boost and RF
indicate 7,14,17, 20, and 23 FP, respectively. A false
negative (FN) occurs when the actual value is pos-
itive, but the prediction is negative. The highest is
79 FN by the KNN model. Models SVM, LR, and
DT implied 32, 26, and 25 FN, respectively. RF and
AdaBoost reported the same FN 22, while Gradient
Boost reported FN 21. Based on the graph the MLP
model indicated the lowest 19 FN.

Supervised models accuracy report

The classifier train, validation, and test score are
presented in Table 4. The models were trained on the
training data set. The trained models were validated
with 10-fold cross-validation. In this table, we repre-
sent the mean value of the validation score. After the
validation process, the model is tested on the test data
set. The AdaBoost model outperformed others with
an 84.21% test accuracy score. Both the MLP and
Gradient Boost accuracy scores are 82%. The low-
est test accuracy achieved by the KNN model was
62.28%.

Supervised models classification report

The precision, Sensitivity, and F1-Score were used
to generate the classification report. Table 5 showed
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Table 4
Supervised models Accuracy Table

Classifier Name Train Validation Test
Accuracy % score (mean) % Accuracy %

Support vector machine (SVM) 100.00 90.00 76.32
Logistic Regression (LR) 100.00 91.00 81.14
K-Nearest Neighbors (KNN) 90.45 81.00 62.28
Decision Tree (DT) 100.00 84.00 79.39
Random Forest (RF) 100.00 91.00 80.26
AdaBoost 100.00 91.00 84.21
Gradient Boost 100.00 91.00 82.01
Multi-Layer Perception (MLP) 99.75 93.00 82.02

Table 5
Supervised Models Classification Report

Classifier Name Precision Sensitivity F1-Score

Support vector machine (SVM) 0.86 0.81 0.84
Logistic Regression (LR) 0.90 0.85 0.87
K-Nearest Neighbors (KNN) 0.93 0.54 0.68
Decision Tree (DT) 0.87 0.85 0.86
Random Forest (RF) 0.87 0.87 0.87
AdaBoost 0.91 0.87 0.89
Gradient Boost 0.88 0.88 0.88
Multi-Layer Perception (MLP) 0.87 0.89 0.88

the model’s detailed performance report. KNN mod-
els have the best precision score of 0.93 compared
to other models, but an exceptionally low Sensitiv-
ity of 0.54 and F1-score of 0.68. Gradient Boost and
RF model have remarkably similar score. Their pre-
cision, Sensitivity, and F1-score are 0.88 and 0.87
respectively. The SVM model has the lowest pre-
cision score of 0.86 among other models with 0.81
Sensitivity and 0.84 F1-score. The AdaBoost model
has the second-best precision score of 0.91 and the
best F1-score of 0.89, its Sensitivity score is 0.87.
MLP and DT precision scores are the same 0.87. The
Sensitivity score of the MLP model is 0.89 which is
higher than other models with a 0.88 F1-score. DT
Sensitivity and F1-score are 0.85 and 0.86. The preci-
sion, Sensitivity, and F1-score of LR model are 0.90,
0.85, and 0.87.

Supervised models AUC-ROC curve

The AUC-ROC curve is one of the most widely
used evaluation metrics for classifying models.
Receiver operating characteristic curves (ROCs) are
used to visualize the performance of classification
models. An area under the curve (AUC) represents
the area beneath the entire ROC curve. False positive
rates (FPR) and true positive rates (TPR) are plotted
on the ROC curve. FPR on the x-axis and TPR on
the y-axis. As shown in Fig. 4, the AUC-ROC curve
measures the model’s AUC score.

The AdaBoost classifier outperformed other mod-
els with an AUC score of 0.87. AUC scores for RF
and Gradient Boost classifiers were both 0.85. For
the MLP and LR models, AUC scores were 0.84 and
0.83, respectively. KNN and SVM models both have
an AUC score of 0.76. The AUC score of 0.73 of the
DT models is the lowest among them.

Pipelines confusion matrix

This section discusses the performance of the
pipeline developed for this study. A confusion matrix
of pipelines is illustrated in Fig. 5. The predicted value
is shown horizontally and the actual value vertically.
The first diagram illustrates the pipeline developed by
combining LinearSVC and RF. In this case, TP = 167,
TN = 24, FP = 21 and FN = 16. The pipelines con-
structed using LSVC and LR have TP = 155, TN = 25,
FP = 20, and FN = 18. According to LSVC and KNN
pipelines, TP is 121, TN is 35, FP is 10 and FN is 62.
The DT classifier combined with LSVC resulted in
TP = 148, TN = 24, FP = 21 and FN = 35 in the con-
fusion matrix table. In the second line, the confusion
matrix table is obtained from the pipeline built by
AdaBoost and LSVC. According to this pipeline,
there was TP = 164, FP = 15, TN = 30, and FN = 19.
Based on the results of the LSVC and gradient Boost
pipeline, TP = 164, FP = 20, TN = 25 and FN = 19 are
shown in the confusion matrix table. A final pipeline
is built using LSVC for the selection of features
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Fig. 4. Area Under the Curve (AUC)- Receiver Operating Characteristic (ROC) Curve.

Fig. 5. Pipelines confusion matrix. LSVC, Linear Support vector classifier; LR, Logistic Regression classifier; KNN, K-Nearest Neighbors
Classifier; DT, Decision Tree Classifier; RF, Random Forest Classifier; MLP, Multi-Layer Perception Classifier.

and MLP for the classification of patients. Accord-
ing to the confusion matrix table, TP = 160, FP = 15,
TN = 30, and FN = 23.

Pipelines accuracy

To evaluate the performance of the pipeline, the
values of TP, TN, FP, and TN are taken from the
confusion matrix table. The accuracy table and clas-
sification report table provide information regarding
pipeline evaluation metrics. The first column of the
accuracy Table 6 values indicates the name of the
model usindicate design pipeline. The accuracy of

pipeline trains is shown in the second column. To
validate each of the pipelines, a 10-fold validation
method is used. In the validation score column, the
values represent the mean value of a 10-fold vali-
dation. A pipeline test accuracy value is displayed in
the accuracy column. LSVC and Ada Boost pipelines
achieve the highest test accuracy of 85.09%. An
83.33% accuracy was recorded for the LSVC+MLP
pipeline. A pipeline based on LSVC and KNN has
the lowest accuracy of 68.42%. The test accuracy of
the pipeline developed by LSVC and RF, LR, DT,
and Gradient Boost is 83.77, 78.95, 75.44, and 82.89,
respectively.
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Table 6
Pipelines Accuracy Table

Pipeline Name Train
Accuracy %

Validation
score (mean)
%

Test
Accuracy %

Linear support vector classifier (LSVC)
and Random Forest (RF)

100.00 91.00 83.77

Linear support vector classifier (LSVC)
and Logistic Regression (LR)

100.00 90.00 78.95

Linear support vector classifier (LSVC)
and K-Nearest Neighbors (KNN)

83.73 76.00 68.42

Linear support vector classifier (LSVC)
and Decision Tree (DT)

100.00 84.00 75.44

Linear support vector classifier (LSVC)
and AdaBoost

100.00 89.00 85.09

Linear support vector classifier (LSVC)
and Gradient Boost

100.00 88.00 82.89

Linear support vector classifier (LSVC)
and Multi-Layer Perception

99.74 91.00 83.33

Pipeline classification report

A pipeline classification report Table 7 displays
precision, Sensitivity, and F1-score values. The
pipeline name is included in the column titled
“Pipeline”. Each pipeline’s precision, Sensitivity, and
F1-score values are represented by columns and rows.

Pipeline ROC-AUC curve

Figure 6 shows the ROC-AUC curve for pipelines.
LSVC and Ada Boost achieved the best AUC score
of 0.90. LSVC and RF achieved an AUC score of
0.84. The MLP pipeline achieved an AUC score of
0.83. The LR and Gradient Boost pipelines developed
from LSVC selected features achieved an AUC score
of 0.80. The KNN and DT pipelines achieved AUC
scores of 0.82 and 0.67, respectively.

Comparison of supervised models and pipelines

As described in the previous section, traditional
machine learning models and pipelines can be com-
pared. A comparison of train validation and test
accuracy scores for models and pipelines is presented
in Tables 4 and 6. A total of 756 input features
were used in this study. Table 4 summarizes the per-
formance of the models with all the input features
based on the feature selection technique from model
LSVC, whereas Table 6 shows the performance of
the pipeline after it has been reduced to only the most
relevant features of the input. In this study, we con-
struct seven pipelines with the same classifier used
in the previous part. In most cases, the classifier per-

formance is significantly improved based on the test
accuracy score. The RF classifier test accuracy was
80.26 whereas the pipeline combination of LSVC
features selection and RF classification accuracy sig-
nificantly improved to 83.77. The pipeline with KNN
accuracy increased from 62.28 to 68.48. Ada Boost
pipeline test accuracy increased to 85.09 from 84.21.
Gradient Boost pipeline accuracy grew up to 82.89
from 82.01. The accuracy of the pipeline created with
MLP is boosted to 83.33 from 82.01. Two pipelines’
performance does not improve compared to their pre-
vious accuracy score. The pipelines of LR and DT
accuracy dropped from 81.14 and 79.39 to 78.95 and
75.44, respectively.

The precision, sensitivity, and F1-score of ML
models and pipelines were exemplified in Tables 5
and 7. Based on the values summarized in these
tables, we can conclude that the pipelines outper-
formed the traditional ML models. The pipelines
created by selecting features from the model and
using a conventional classifier achieved better preci-
sion, Sensitivity, and F1-score. The AUC score from
the ROC-AUC curve significantly improved because
of the pipelines.

DISCUSSION

The present work has reviewed and compared the
most relevant studies on PD classification by consult-
ing reliable literature repositories. The methodology
for PD classification and the challenges involved in
each study were considered. Most of the research
published was focused on identifying the factors that
cause disease to diagnose or monitor it.
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Table 7
Pipelines Classification Report Table

Pipeline Name Precision Sensitivity F1-Score

Linear support vector classifier (LSVC)
and Random Forest (RF)

0.89 0.91 0.90

Linear support vector classifier (LSVC)
and Logistic Regression (LR)

0.89 0.85 0.87

Linear support vector classifier (LSVC)
and K-Nearest Neighbors (KNN)

0.92 0.66 0.77

Linear support vector classifier (LSVC)
and Decision Tree (DT)

0.88 0.81 0.84

Linear support vector classifier (LSVC)
and AdaBoost

0.92 0.90 0.91

Linear support vector classifier (LSVC)
and Gradient Boost

0.89 0.90 0.89

Linear support vector classifier (LSVC)
and Multi-Layer Perception

0.91 0.87 0.89

Fig. 6. ROC-AUC of Pipelines. For the significance of other abbreviations, see legend to Fig. 5.

Using diffusion tensor imaging (DTI), an ensem-
ble learning framework based on two layers of
stacking was developed. This study has evaluated
four traditional classifiers: support vector machines
(SVM), K-nearest neighbors (KNN), random forests
(RF), and artificial neural networks (ANN). At the
second layer, a logistic regression classifier (LR)
is used to classify PD [35]. Another work has
used electroencephalography (EEG) data to classify
PD with SVM and K-NN classifiers. Patients with
PD commonly experience cognitive symptoms. To
classify PD patients, they analyze EEG features col-
lected from daily clinical activities [36]. Both studies
included medical images and collected data from
fewer than 120 individuals. In contrast, our chosen
data set contained voice records from PD patients and
healthy controls with more instances and attributes.

The goal of another work was to determine which
deep brain stimulation (DBS) parameters are optimal

for PD using functional magnetic resonance imaging
(fMRI) and ML. Their model predicts optimal and
non-optimal DBS settings based on fMRI patterns
collected from patients with PD [37]. Another inves-
tigation examined the DBS parameters of PD patients
over three to twelve months. The data were recorded
and analyzed using SVM to diagnose the patients.
These results suggest that ML models can accurately
predict levodopa states based on personally classified
engineered features [38].

A Naive Bayes ML model with feature selec-
tion was developed by another study. The team
uses Fisher score feature selection, correlated fea-
ture selection, and mutual information-based feature
selection strategies to create the collaborative fea-
ture bank. The Naı̈ve Bayes model achieved good
results when it was combined with the collaborative
feature [39]. As part of this work, voice data from
PD patients were analyzed using naive Bayes algo-
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rithms. The present study has used other supervised
algorithms to select the best algorithms to analyze
high-dimensional data.

It has been hypothesized that relevant lipidomics
can predict PD severity. ML model was used to
analyze blood samples from PD patients to iden-
tify lipid signatures predicting motor severity [40].
A ML approach was used to identify lipid signatures
which capable of predicting motor severity in PD.
Another analysis was centered on voice record data.
PD patients were categorized using classification and
regression trees (CART), support vector machines
(SVM), and artificial neural networks (ANN). Par-
ticipants included 31 subjects and 195 records (23
PD and 8 control) [41].

A novel web-based approach was proposed to
detect Parkinsonians from web search engine users
(Google, Bing). Based on mouse and keyboard inter-
action with a search engine, supervised ML classifiers
are capable of showing the faster progression of
Parkinson’s-related signs in individuals who have
screened positive [42]. To identify the best combi-
nations of clinical features to predict motor outcome
(MDS-UPDRS-III) in PD, another investigation has
evaluated 204 PD patients with 18 clinical features in
multiple randomized arrangements. With automated
hyperparameter tuning and optimal use of FSSAs and
predictor algorithms, it was demonstrated excellent
prediction of motor outcomes in PD patients [43].

In the advanced stages of PD, more than half of
the patient’s experience freezing of gait (FOG). The
methodology involved segmenting the angular veloc-
ity signals and subsequently extracting features in
both the time and frequency domains. FOG and pre-
FOG episodes were detected using several machine
learning classifiers [44]. Policy iteration of Markov
decision processes (MDP) was used to analyze clini-
cally relevant disease states and to determine optimal
medication combinations. They examined combina-
tions of PD medications as well as motor symptom
severity. After following PD patients for 55.5 months,
reinforcement learning (RL) was used to develop a
sequential decision-making rule to minimize motor
symptoms. A machine-physician system based on
evidence-based medicine may help improve PD man-
agement through this study [45].

The present study has developed a model of early
PD progression incorporating intra-individual vari-
ability and medication effects was also developed.
This study supports nondeterministic models and
suggests that static subtype designations may not
fully capture the PD spectrum. Four hundred and

twenty-three patients with early PD and 196 healthy
controls were studied for up to seven years. The
disease states are defined using contrastive latent
variables followed by hidden Markov models. An
analysis of seven key motor or cognitive outcomes not
included in the learning phase was conducted [46].

Several investigations have used ML models to
classify PD. A well-trained model would be able to
diagnose PD accurately and support clinical systems.
In the above discussion we have analyzed differ-
ent methods to classify. In these studies, different
types of data have been analyzed and conclusions
have been drawn. These studies did not mention a
methodology for diagnosing PD patients based on
high-dimensional daily activity data. In the present
work supervised ML models and pipelines were
developed, trained, and evaluated their performance
on high dimensional data set.

The primary limitation of this study restricts the
dataset itself, which lacks comprehensive informa-
tion regarding the disease stage, treatment, and
duration for the included patients. This limitation
is attributable to the utilization of openly accessi-
ble data. Since we solely relied on publicly available
data and were not involved in the data collection pro-
cess, we are unable to directly mitigate this constraint.
Regrettably, we are unable to address this limitation
without the cooperation of the data owner.

CONCLUSIONS

This study has evaluated several supervised
machine learning classifiers and multilayer classi-
fiers (MLP). Model performance was evaluated using
evaluation metrics. AdaBoost classifiers were the
most accurate at 84.21%, while KNN classifiers
were the least accurate at 62.28%. The AdaBoost
algorithms also achieved the highest precision and
F1-scores of 0.91 and 0.89, respectively. The highest
sensitivity or sensitivity score was obtained by MLP,
which was 0.89.

Pipelines were designed using ML classifiers and
MLP. Almost all algorithm accuracy scores improved
after implementing the pipeline, except for LR. The
best pipeline for accuracy was AdaBoost with LSVC,
which had 85.09% accuracy, which is significantly
higher than AdaBoost alone. In addition, the F1-
score, precision, and sensitivity of the AdaBoost
pipeline improved significantly from 0.89 to 0.91,
0.91 to 0.92, and 0.87 to 0.90, respectively. These
improvements were also observed for other pipelines
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as well. In terms of accuracy, precision, Sensitiv-
ity, and F1-score, the improved pipeline classifiers
outperformed the supervised machine learning clas-
sifiers.

Based on speech biomarkers, ML classifiers and
pipelines have been demonstrated to be capable of
classifying PD patients. The pipelines were more
effective at selecting the most relevant features of
high-dimensional data and at classifying PD more
accurately.

The current treatments for PD offer only tempo-
rary relief of motor symptoms through improving
the dopamine deficit or through surgical proce-
dures. To diagnose neurodegenerative disorders
more accurately, and to identify populations at risk
for neuroprotective treatment, further research on
specific/differential biomarkers is required. The pro-
posed approach may represent a starting point for the
detection of early forms of PD.
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