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Abstract.
Background: Although idiopathic Parkinson’s disease (IPD) is increasing with the aging population, there is no ade-
quate screening test for early diagnosis of IPD. Cardiac autonomic dysfunction begins in the early stages of IPD, and
an electrocardiogram (ECG) contains precise information on the heart.
Objective: This study is to develop an ECG deep learning algorithm that can efficiently screen for IPD.
Methods: Data were collected from 751 IPD patients (2,138 ECGs), 751 age and sex-matched non-IPD patients (2,673
ECGs) as a control group, and 297 drug-induced Parkinsonism (DPD) patients (875 ECGs) as a disease control group. ECG
data were randomly divided into training set, validation set, and test set at a ratio of 6:2:2. We developed a deep-convolutional
neural network (CNN) consisting of 16 layers with Bayesian optimization that classified IPD patients by ECG data. The
robustness of the deep learning model was verified through 5-fold cross-validation.
Results: The AUROC of the model for detection of IPD was 0.924 (95% CI, 0.913–0.936) in the test set. That for detecting
DPD was 0.473 (95% CI, 0.453–0.504). The sensitivities of the model according to Unified Parkinson’s Disease Rating Scale
III and Hoehn & Yahr scale were also similar.
Conclusion: In conclusion, the CNN-based deep learning model using ECG data showed quite good performance in identify-
ing IPD patients. Standardized 12-lead ECG test could be one of the clinically feasible candidate methods for early screening
of IPD in the future.
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INTRODUCTION

Idiopathic Parkinson’s disease (IPD) is one of
the most common neurodegenerative diseases world-
wide, with an incidence of 1 in 1000 during a lifetime
[1]. The prevalence is gradually increasing due to the
aging of the population and estimated to be about
1% in those over 60 years of age. Motor symp-
toms including tremor, rigidity, and bradykinesia are
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known as the main symptoms, and there is still no
clear test method for diagnosis yet, and a neurologist
makes a diagnosis by combining symptoms and other
test results.

Because the diagnosis of IPD relies on the subjec-
tive opinion of experts, its diagnosis can sometimes
be delayed. Recently, precise imaging tests, such as
dopamine transporter (DAT) scan, may be helpful in
differentiating from other diseases and diagnosing
IPD, but they are not accurate enough to be used as
a diagnostic method, require an imaging specialist’s
interpretation, and are very expensive. For this rea-
son, recent studies on deep learning algorithms for
early screening and diagnosis of IPD using various
data modalities have been widely performed.

According to previous studies, the average accu-
racy of the algorithm to detect IPD using voice
recording was approximately 90%, the average accu-
racy of the algorithm using movement data was 89%,
and the average accuracy of the algorithm using hand-
writing pattern was 87% [2]. In addition, algorithms
using precise image data such as magnetic reso-
nance imaging (MRI) and single-photon emission
computed tomography (SPECT), algorithms using
various biomarkers obtained from cerebrospinal fluid
(CSF), and algorithms integrating data of these vari-
ous modalities have been also studied [3].

Although IPD is a neurodegenerative disease, it
is closely related and affects the heart in a variety
of ways. For example, heart rate variability (HRV) is
decreased in IPD patients, which is known to be asso-
ciated with striatal dopaminergic depletion as well as
autonomic effects of IPD [4]. In addition, HRV is
known to be a major factor in predicting the risk of
developing IPD [5], and recently, a pilot study of 35
IPD patients was also reported to predict the risk of
IPD with the performance of AUC 0.85 using the fea-
tures extracted from the R-R interval of the ECG [6].
These findings suggest that ECG can be used to screen
or diagnose IPD at an early stage. The present study
developed a deep learning model that can distinguish
IPD using 5,247 12-lead ECG data including 2,186
ECG data from 756 IPD patients.

METHODS

Study design and dataset

The dataset was extracted from the electronic
health record database of Korea University Anam
hospital. The IPD group included 1) patients vis-
ited at least 4 times with ICD10 diagnostic code

for IPD (G20) as primary diagnosis from January
1, 2016 to December 31, 2021 and received IPD
medications for more than 90 days, or 2) patients
visited one or more with an ICD10 diagnostic code
for IPD (G20) over the same period and 18F-N-(3-
fluoropropyl)-2�-carbon ethoxy-3�-(4-iodophenyl)
nortropane positron emission tomography (18F-FP-
CIT PET) showed decreased dopamine transporter
(DAT) at posterior putamen. The patients with ICD10
diagnostic codes for multiple system atrophy (G23.2,
G23.3, G90.3) or progressive supranuclear ophthal-
moplegia (G23.1) were excluded. This study used the
12-lead ECG results after the first diagnosis of IPD.
The index date was the date of the first 12-lead ECG
after diagnosis of IPD.

We derived a control group from whole population
without a history of diagnosis of any type of Parkin-
son’s disease using a propensity score matching for
covariates. Considering the clinical importance of
differentiation from other diseases with similar phe-
notypes in the diagnosis and treatment of IPD, this
study added patients with drug-induced Parkinson’s
disease (DPD) (ICD 10 code: G21.1) as a disease
control. The medical records of all individuals were
reviewed to confirm the diagnosis of IPD or DPD.
Finally, 751 patients (2,138 ECG test cases) in the
IPD group, 751 patients (2,673 ECG test cases) in
the Control group and 297 patients (875 ECG test
cases) in the DPD group remained for deep learning
model development and further analysis.

This study was approved by the Institutional
Review Board of Korea University Anam hospital
(IRB No. 2022AN0375). Written informed consent
was waived considering the retrospective nature of
the study using anonymized data with minimal risk
to study subjects. The study also complied with the
Declaration of Helsinki.

Electrocardiogram (ECG) data

ECG data were composed of general metadata,
analyzed parameters, ECG diagnosis, and digital
waveform data obtained from the Marquette Uni-
versal System for Electrocardiography (MUSE; GE).
General metadata included subject id, age, sex, sam-
pling rate and device information. ECG parameters
included heart rate, PR interval, QRS duration, QTc
interval, P axis, R axis, and T axis. ECG diagno-
sis consisted of 130 standardized ECG diagnoses
mapped from computerized ECG diagnosis [7]. Digi-
tal waveform data obtained at a sampling frequency of
500 Hz for 10 s consists of 5000 digits per lead. Data
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Fig. 1. Deep learning model architecture.

of the first 1 s and the last 1 s were excluded due to rel-
atively higher artifact frequency within these regions.
Finally, 2-dimensional data of 12 × 4000 from each
ECG was used in this study.

Deep learning architecture

Convolution neural network (CNN) is a represen-
tative feed-forward neural network and is effectively
applied in supervised learning models because it
extracts useful features from nonlinear relationships
between input and output variables. CNN is easy
to train compared to other deep and unidirectional
neural networks because there are less parameters
for optimization. In addition, it has the advantage
of being effective in extracting features for vari-
ous data types, so it is widely used in the study of
deep learning [8, 9]. The CNN structure consists of
input variables, output variables, convolutional layer,
batch normalization layer, pooling layer, flatten and
fully-connected layer [10]. Figure 1 represents the
architecture of the classification model used in this
study, and the classification model was designed with
the structure of a deep CNN consisting of 16 layers
to classify Parkinson’s disease.

The proposed deep-CNN is built on the basis of
1D CNN and is mainly composed of two types: CNN
and fully-connected [8]. The CNN layer provides an
output feature map by performing dot-product oper-
ation of input variables through convolution kernels.
The pooling layer was used in the CNN network
to reduce the number of parameters without affect-
ing the features of the input variables. Then, the
output of the pooling layer was converted into a
one-dimensional vector using flatten to be trans-
mitted to the fully connected layer. In addition, a
dropout layer was added between the CNN and the
Flatten layer to prevent overfitting after the param-

eter extraction process by CNN [10]. The feature
parameters of the ECG acquired from the CNN net-
work were transmitted to the fully-connected layer
to predict disease by sigmoid regression. In addi-
tion, a Bayesian optimizer was applied to optimize
the hyperparameters of the deep-CNN model. The
Bayesian optimizer is a methodology that automati-
cally determines hyperparameters by optimizing the
objective function based on prior knowledge using the
Gaussian process [9, 11]. The tuning of Hyperparam-
eter can expect high-accuracy results even through
manual optimization, but there is a limitation that
it should depend on experience. However, Bayesian
optimization has advantages in that the number of
iterations is small, the convergence speed is fast,
and the hyper parameter determination is accurate.
Therefore, the deep-CNN model applied Bayesian
optimization to determine the correct hyperparam-
eters. The hyperparameters in the deep-CNN model
were as follows: The number of CNN filters = 4 to
16; The number of kernel size = 4 to 16; The number
of dropout ratio = 0.2 to 0.6; The number of learning
rate = 1E–6 to 1E–1; The number of batch size = 4 to
16. The activation function of CNN = ReLU, ELU,
SeLU. The Bayesian optimization for hyperparame-
ter selection was run 25 iterations. Eight ECG signals
of 4000 frames (lead I, lead II, V1-V6) were used as
input variables of the deep-CNN model, and binary
values set to 0 and 1 according to disease were used
as output variables. As for the data set used for model
development, the training set, validation set, and
test set were randomly split into 6:2:2, respectively.
The proposed model was implemented using python
3.7.13 with Tensorflow 2.3.0 and Keras library.
And model was trained on a server with Intel(R)
Xeon(R) Silver 4210 R CPU @ 2.40 GHz proces-
sor, 256 GB DDR4 memory, and GeForce RTX 3090
GPU.
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Statistical analysis

Baseline characteristics are shown as the
mean ± SD or n (%). Chi-square test were used to
compare the categorical variables and ANOVA test
or Kruskal-Wallis test was performed for continuous
variables between groups after normality test. If
the overall p-value was significant, a post hoc test
using Bonferroni adjust method was performed.
Statistical significance level is 0.05. To control
for potential confounding factors that may affect
deep learning model performance, we performed
1:1 propensity score matching for IPD group and
Control group using caliper 0.2. Covariates included
age, sex, alcohol, smoking, hypertension, diabetes,
dyslipidemia, chronic kidney disease (CKD), atrial
fibrillation (AF), systolic blood pressure, diastolic
blood pressure, and medications affecting ECG.
The standardized mean difference for all match-
ing variables was less than 0.15, indicating good
balance. The baseline characteristics before and
after matching between the IPD group and the
Control group were provided with supplemental
data.

The confusion matrix was analyzed to quantita-
tively verify the performance of deep-CNN to classify
Parkinson’s disease. The confusion matrix is used to
evaluate the performance of the classification model
by expressing the actual and predicted values as four
elements: true positive, false negative, true negative,
and false positive. The evaluation indicators derived
from the confusion matrix are accuracy, precision,
recall, and F1-score. Accuracy is the most common
and intuitive indicator as the number of accurate
predicted data divided by the total number of pre-
dicted data. In addition, the performance evaluation
of the binary classifier was performed by calculat-
ing the area under receiver operating characteristic
(AUROC). The AUROC presents the area under the
plot composed of the false positive rate on the x-
axis and the true positive rate on the y-axis, and
performance analysis of the model is possible for all
threshold values. The AUROC is between 1 and 0,
and the closer to 1, the better the classifier’s perfor-
mance. Precision is an indicator that quantifies the
ratio of true positives in among the predicted positive
value by the model, and the recall is an indicator of the
ratio that the model predicts as true among the actual
true value. F1-score is an indicator calculated as a
harmonic average of precision and recall, and is an
effective measure even for models with imbalanced
datasets.

In addition, sensitivity specificity, positive pre-
dicted value (PPV), and negative predicted value
(NPV) were also investigated. Sensitivity and speci-
ficity are methods of evaluating a model in terms of
actual values. Sensitivity is the probability of a pos-
itive test result considering that there is a true value.
Specificity is the possibility of negative test results
considering that there is negative value. When using
a prediction, we need to know how well the test result
predicts the actual value. The PPV is the probabil-
ity that a positive prediction result correctly predicts
the true positive value, NPV is the probability that a
negative prediction result correctly predicts the true
negative value. Also, bootstrapping was performed
for computing the 95% confidence interval of a ROC
curve with 2000 replicates. Additionally, the k-fold
cross-validation (CV) technique was applied to verify
the robustness of the Parkinson classification model.
In this study, the overfitting problem according to the
data set was verified using 5-fold CV, which is most
commonly used in the field of machine learning [12].
All variables of the models obtained through 5-fold
CV were used for classification model analysis by
calculating the average value. All analyses were per-
formed using SAS 9.4 (SAS Institute Inc., Cary, NC,
USA) program and R program (Ver 3.6.1).

RESULTS

Baseline characteristics of the study groups are
described in Table 1. Since the Control group matched
the IPD group, there were no significant variables
in baseline demographic characteristics. DPD group
was younger and more male than the IPD group and
Control group. The DPD group consumed less alco-
hol, and had lower prevalence of hypertension, and
diabetes than the IPD group and Control group. Sys-
tolic blood pressure in the DPD group was lower than
the Control group and the IPD group (123.9 ± 16.6
mmHg vs. 129.8 ± 17.6 mmHg, p < 0.01 for DPD
vs. Control; 123.9 ± 16.6 mmHg vs. 128.7 ± 15.9
mmHg, p < 0.01 for DPD vs. IPD).

In patients with IPD, Unified Parkinson’s Dis-
ease Rating Scale (UPDRS) and modified Hoehn
and Yahr (H&Y) stage, Schwab and England Activ-
ities of Daily Living (ADL) scale were investigated.
The mean of H&Y scale (1–5 scale), which indicates
the degree of Parkinson’s disease symptoms, is 2.5,
which means mild bilateral disease with recovery on
pull test. UPDRS consists of four Parts: part I (men-
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Table 1
Baseline demographic characteristics of the study groups

Total
population
(n = 1,799)

Control
(n = 751)

DPD (n = 297) IPD (n = 751) p Post hoc p
(IPD vs.
Control)

Post hoc p
(IPD vs. DPD)

Post hoc p
(DPD vs.
Control)

Age (y) 70.9 ± 14.8 74.6 ± 10.2 52.5 ± 21.2 74.4 ± 9.3 <0.01 – <0.01 <0.01
Male (n, %) 983 (54.6) 358 (47.7) 114 (38.4) 344 (45.8) 0.02 0.47 0.03 <0.01
Alcohol (n, %) 381 (21.2) 167 (22.2) 41 (13.8) 173 (22.9) <0.01 0.71 <0.01 <0.01
Smoking (n, %) 257 (14.3) 107 (14.3) 39 (13.1) 111 (14.8) 0.79 – – –
Hypertension (n, %) 1,131 (62.9) 503 (67.0) 140 (47.1) 488 (65.0) <0.01 0.41 <0.01 <0.01
Diabetes (n, %) 696 (38.7) 305 (40.6) 92 (31.0) 299 (39.8) 0.01 0.75 <0.01 <0.01
Dyslipidemia (n, %) 956 (53.1) 405 (53.9) 146 (49.2) 405 (53.9) 0.32 – – –
Chronic kidney disease (n, %) 461 (25.6) 200 (26.6) 69 (23.2) 192 (25.6) 0.52 – – –
Atrial fibrillation (n, %) 151 (8.4) 66 (8.8) 16 (5.4) 69 (9.2) 0.12 – – –
Hoehn-Yahr stage – – – 2.5 ± 0.9 – – – –
UPDRS scale I – – – 2.9 ± 2.8 – – – –
UPDRS scale II – – – 10.7 ± 9.0 – – – –
UPDRS scale III – – – 28.5 ± 14.6 – – – –
UPDRS scale IV – – – 2.7 ± 6.2 – – – –
Schwab and England ADL scale – – – 77.1 ± 21.2 – – – –
Systolic blood pressure (mmHg) 128.4 ± 16.8 129.8 ± 17.6 123.9 ± 16.6 128.7 ± 15.9 <0.01 0.31 <0.01 <0.01
Diastolic blood pressure (mmHg) 75.8 ± 12.4 75.8 ± 15.7 75.2 ± 11.0 76.1 ± 9.7 0.58 – – –
Anti-Parkinson drugs
Levodopa/COMT inhibitor (n, %) 170 (9.5) 0 (0.0) 4 (1.4) 166 (22.1) <0.01 – <0.01 –
Dopamine agonist (n, %) 63 (3.5) 1 (0.1) 4 (1.4) 58 (7.7) <0.01 <0.01 <0.01 <0.01
MAO-B inhibitor (n, %) 39 (2.2) 0 (0.0) 0 (0.0) 39 (5.2) – – – –
Amantadine (n, %) 12 (0.7) 0 (0.0) 0 (0.0) 12 (1.6) – – – –
Anticholinergics (n, %) 76 (4.2) 0 (0.0) 52 (17.5) 24 (3.2) <0.01 – <0.01 –

UPDRS scale I, mental examination; UPDRS scale II activities of daily living; UPDRS scale III, motor examination; UPDRS scale IV, complication of therapy. Schwab and England ADL scale,
Activities of Daily Living scale. COMT, catechol-O-methyltransferase; MAO-B, monoamine oxidase type B.
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tal examination), part II (activity of daily living), part
III (motor examination), and part IV (complications
of therapy). The higher the score in each item, the
higher the severity. Part I can be measured from 0 to
16 points, and the average was 2.9, and part II was
found to have an average of 28.5 out of 0–52 points.
Part III was found to be 28.5 out of 0 to 108, sug-
gesting that most IPD patients were in motor stage.
Part IV, which represents treatment complications,
was found to be 2.7 points. The Schwab and England
ADL scale, which evaluates the ability to perform
daily activities, uses a percentage to score and aver-
ages 77.1, which means that it takes more than twice
as long to work.

The proportion of anti-Parkinson drugs was low
in the IPD group since the initial ECG tests were
performed while mainly evaluating Parkinson’s dis-
ease. There was 1 patient taking ropinirole for restless
legs syndrome in the Control group. In the DPD
group, the proportion of patients taking anticholin-
ergics was 17.5%, which was higher than the other
two groups, and there were few patients taking the
other anti-Parkinson drugs.

Table 2 shows ECG parameters, ECG diagnosis,
and medications affecting ECG results exposed at the
time of the ECG tests. The heart rate of the IPD group
was higher than that of the Control group and less than
that of the DPD group. The QRS duration of the IPD
group was smaller than that of the Control group. The
QTc of the IPD group was higher than that of the Con-
trol and DPD group. Among the ECG diagnosis, the
percentage of normal sinus rhythm was similar in the
IPD group and the Control group, and the DPD group
had the highest rate of 37.2% among the 3 groups. In
the IPD group, the ranking of abnormal ECG diag-
nosis rates was in the order of abnormal T wave,
AV block, left ventricular hypertrophy (LVH), atrial
fibrillation, sinus bradycardia. In the DPD group, it
was in the order of abnormal T wave, sinus tachycar-
dia, QT prolongation, LVH, and sinus bradycardia.
In the Control group, it was in the order of AV block,
abnormal T wave, LVH, sinus bradycardia, and atrial
fibrillation.

The proportion of patients taking beta blockers was
higher in the IPD group than in the Control group
(18.9% vs. 22.5%, p ≤ 0.01), and the proportion of
patients taking non-dihydropyridine calcium channel
blocker (non-DHP CCB) was higher in the IPD group
than in the DPD group (3.7% vs. 2.1%, p = 0.01).
The proportion of patients taking other medications
affecting ECG results was higher in the IPD group
than in the Control group (14.5% vs. 20.7%, p < 0.01),

and much lower in the DPD group (46.2% vs. 20.7%,
p < 0.01).

The performances of the deep learning model using
12-lead ECG waveform were shown in Table 3 and
Fig. 2. The hyperparameter determined by Bayesian
optimization was filter size of 8, kernel size of 16,
dropout of 0.6, learning rate 0.0000773, and 8 for
batch size. The activation function was determined
to be ELU. Three test datasets were used to evaluate
the IPD and DPD classification performance of the
model. The first test set consists of IPD and Control,
and evaluates the ability to classify IPD. The second
set consists of DPD and Control, and detects DPD.
The last set classifies IPD from the data consisting
of DPD, and IPD. Performance values were calcu-
lated as the average of each CV performance values.
In Fig. 2, the sky-blue line is the ROC curve for each
CV value, and the deep-blue line is the ROC curve
for the average of CVs. The AUROC of the model for
detecting IPD was 0.924 (95% CI, 0.913–0.936) in
the test set 1. The AUROC of the model for detecting
DPD was 0.473 (95% CI, 0.453–0.504) in the test set
2. The AUROC of the model for detecting IPD was
0.946 (95% CI, 0.934–0.959) in the test set 3. The
negative predictive value of the model for detecting
IPD (test set 1) was more than 80% at the highly
sensitive operating point in the test set (Table 4).
Subgroup analysis stratifying by age, sex, alcohol,
smoking, diabetes, heart rate, the medication affect-
ing ECG and ECG diagnosis showed that AUROC of
the model was highest in the patients with a history
of diabetes (0.965, 95% CI, 0.948–0.981) and lowest
in the patients without a history of diabetes (0.881,
95%CI, 0.850–0.911) (Table 5).

Next, we explored whether the discrimination abil-
ity of the deep learning model changes depending
on the clinical severity and involvement level of
Parkinson’s disease (Fig. 3). Sensitivity analysis was
performed on each of the five CV sets, the number
of rejections among the five tests was confirmed. In
patients with high mental examination and high activ-
ity of daily living (UPDRS I & II) the sensitivity of
the model was numerically higher than in patients
with low score, but there were no statistical differ-
ence (the number of rejection is 0 and 1, respectively
among 5 times). Sensitivity was higher in patients
with low score than those with high UPDRS III &
IV, but there was no significant difference (the num-
ber of rejection is 0 and 2, respectively among 5
times). There was almost no difference in sensitivity
according to the Hoehn & Yahr scale and ADL scale
categories (81.6% vs. 80.5%, 79.4% vs. 79.5%). In
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Table 2
ECG parameters, ECG diagnosis and the exposure to medications affecting ECG results

Total population
(n = 5,686)

Control
(n = 2,673)

DPD (n = 875) IPD (n = 2,138) p Post hoc p
(IPD vs.
Control)

Post hoc p
(IPD vs.
DPD)

Post hoc p

(DPD vs. Control)

ECG parameters
Heart rate (beats/min) 76.5 ± 17.0 74.7 ± 16.5 79.5 ± 16.4 77.5 ± 17.5 <0.01 <0.01 <0.01 <0.01
PR interval (ms) 168.7 ± 29.6 171.3 ± 30.7 160.5 ± 26.2 169.3 ± 28.9 <0.01 0.04 <0.01 <0.01
QRS duration (ms) 94.1 ± 19.9 96.8 ± 22.7 89.8 ± 12.5 92.3 ± 18.0 <0.01 <0.01 <0.01 0.19
QTc interval (ms) 442.5 ± 34.4 441.6 ± 36.0 439.8 ± 32.3 444.8 ± 33.2 <0.01 <0.01 <0.01 <0.01
ECG diagnosis
Normal ECG (n, %) 1,763 (31.0) 825 (30.9) 326 (37.2) 612 (28.6) <0.01 0.09 <0.01 <0.01
Top 5 abnormal ECG diagnosis (n, %) Abnormal T

wave
(1,054,18.5%),

AV block (482,
18%),

Abnormal T
wave (171,
19.5%)

Abnormal T
wave (424,
19.8%),

– – – –

AV block (920,
16.2%),

Abnormal T
wave (459,
17.2%),

Sinus
tachycardia (89,
10.2%)

AV block (349,
16.3%),

LVH (775,
13.6%),

LVH (401,
15%),

QT prolongation
(84, 9.6%)

LVH (300,
14%),

Sinus
bradycardia
(603, 10.5%),

Sinus
bradycardia
(332, 12.4%),

LVH (74, 8.5%) Atrial
fibrillation (268,
12.5),

Atrial
fibrillation (547,
9.6%)

Atrial
fibrillation (269,
10.1%)

Sinus
bradycardia (67,
7.7%)

Sinus
bradycardia
(204, 9.5%)

Medication affecting ECG
Beta blocker (n, %) 1,165 (20.9) 505 (18.9) 179 (20.5) 481 (22.5) <0.01 <0.01 0.12 0.31
Non-DHP CCB (n, %) 207 (3.6) 109 (4.1) 18 (2.1) 80 (3.7) 0.02 0.55 0.01 <0.01
Other medication affecting ECG (n, %) 1,193 (21.0) 387 (14.5) 404 (46.2) 479 (20.7) <0.01 <0.01 <0.01 <0.01

LVH, left ventricular hypertrophy; RBBB, right bundle branch block. Other medication affecting ECG includes antipsychotics, antiarrhythmics, antidepressants, antihistamines, quinidine, and
macrolides.
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Table 3
Performance of the proposed deep learning model using 12-lead ECG waveform for detecting IPD

Accuracy Precision Recall F1-Score AUROC
(95% CI) (95% CI) (95% CI) (95% CI) (95% CI)

IPD 0.869 0.842 0.892 0.801 0.924
(Test set 1: Control + IPD) (0.848–0.889) (0.815–0.868) (0.863–0.921) (0.763–0.836) (0.913–0.936)
DPD 0.711 0.055 0.138 0.034 0.473
(Test set 2: Control + DPD) (0.694–0.729) (0.013–0.097) (0.044–0.253) (0.010–0.063) (0.453–0.504)
IPD 0.849 0.880 0.984 0.801 0.946
(Test set 3: IPD + DPD) (0.821–0.875) (0.821–0.875) (0.970–0.995) (0.816–0.837) (0.934–0.959)

CI, confidence interval; AUROC, area under the receiver operating characteristics curve.

patients with a positive head-up tilt table test sug-
gesting autonomic nervous system dysfunction, the
sensitivity of the model was numerically higher than
in patients with a negative result, but there was no sta-
tistical difference (82.2% vs. 67.3%, the number of
rejection is 2 among 5 times). The performance of the
model according to sidedness of decreased DAT den-
sity in the 18F-FP-CIT PET was numerically high
when the DAT density on the side of the posterior
putamen was lowered, but there was also no statisti-
cally significant difference (56% for decreased DAT
density in left sides vs. 61.4% for that in right side vs.
72.1% for that in both sides, the number of rejection
is 1 among 5 times).

Finally, we further developed deep learning mod-
els using each single-lead ECG data. The Parkinson’s
disease detection performance of the models devel-
oped only with single-lead ECG data was inferior to
that of the model developed with 12-lead ECG data.
The accuracy of a single-lead model for detecting
IPD in the test set was highest with V3 (0.763, 95%
CI 0.749–0.777) and lowest with V6 (0.730, 95% CI
0.714–0.746) (Table 6). The AUROC of the model
was highest with V3 (0.820, 95% CI 0.805–0.835)
and lowest with V6 (0.786, 95% CI 0.769–0.803).

DISCUSSION

Considering that clinical diagnosis of IPD is dif-
ficult and the prognosis may be poor if treatment is
not started early, it would be important to develop
a relatively easy and cost-effective screening tool for
detecting IPD patients. This study introduced a CNN-
based deep learning model using 12-lead ECG for
identifying IPD patients. The novelty of this study in
developing a deep learning model for IPD screening
are as follows: 1) This is the first deep learning model
using 12-lead ECG waveform data to identify IPD
patients; 2) This study used the largest number of IPD
patients (756 patients) with detailed clinical, imaging

and functional information; 3) Considering the clini-
cal importance of differential diagnosis between IPD
and DPD, data from DPD patients were included as
negative controls; and 4) The deep learning model
developed in this study showed robustness without
compromising performance in different patient sub-
groups.

As mentioned earlier, there is no appropriate
method to screen IPD patients early. The recommen-
dation guidelines for IPD do not mention how to
screen patients with IPD, only suggesting that people
with tremor, stiffness, slowness, balance problems,
or gait disorder should suspect IPD [13, 14]. Until
now, several studies have been attempted to screen
and diagnose IPD patients using various methods
such as voice, motion video, handwriting, precise
imaging tests such as MRI and positron emission
tomography (PET), and CSF tests. Apart from their
diagnostic accuracy, precise imaging tests are disad-
vantageous in terms of cost and potential radiation
hazard. CSF test is not widely used because it is inva-
sive. Voice, motion video, and handwriting data can
be easily obtained, but there is a disadvantage in that it
is difficult to standardize the data acquisition and pro-
cessing. On the other hand, 12-lead ECG is not only
non-invasive and radiation-free, but it is also one of
the basic routine tests performed in medical institu-
tions. The test method is also standardized, and it can
be easily performed. Moreover, considering that IPD
patients have a high risk of cardiovascular disease
[15], 12-lead ECG may have additional benefits as
the most fundamental test for cardiovascular disease.

Several ECG findings have been reported in associ-
ation with IPD. ECG findings of heart rate variability
have been reported to be associated with autonomic
dysfunction in patients with IPD [16]. QRS duration
was also correlated with disease duration and severity
of IPD [17]. QTc prolongation is relatively common
in IPD patients, and also correlated with disease dura-
tion and severity [18]. Although further studies are
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Fig. 2. ROC curves of the proposed 12-lead ECG deep learning
model. A) IPD detection from the IPD group and the control group
B) DPD detection from the DPD group and the control group C)
IPD detection from the IPD group and DPD group.

still needed, Malkiewicz et al. reported that male
gender are potential risk factors for QTc prolonga-
tion in patients with IPD [19]. The ECG findings of
this study showed that the QTc interval was longer in
the IPD group than in the age, sex-matched control
group (Table 2). This finding is consistent with previ-
ous studies, and interestingly, QT prolongation is also
commonly observed in the DPD group. QTc prolon-
gation may also be caused by other causes, such as
myocardial ischemia. Additional studies are needed
for the clinical significance of QTc prolongation in
IPD. In addition, abnormal T wave findings were also
more common in both IPD group and DPD group
than in Control group. Although DPD patients show
ECG characteristics similar to those of IPD patients,
IPD has its own pathophysiology that is different
from DPD. Cardiac autonomic dysfunction result-
ing from sympathetic or parasympathetic denervation
and postsynaptic receptor upregulation seems to play
a role in the cardiac pathology of IPD [20]. Indeed,
metaiodobenzylguanidine (123I-MIBG) scintigraphy,
which measures postganglionic cardiac autonomic
denervation, was included as a supportive criterion
for the clinical diagnosis of IPD [21].

Recently, Akbilgic et al. used Probabilistic Sym-
bolic Pattern Recognition (PSPR) method to extract
waveform features that can predict the progression
of IPD from 12-lead ECG of 35 prodromal or preva-
lent IPD patients [6]. PSPR features suggested that
there were high similarity of ECG waveform features
between the prodromal and prevalent IPD groups.
The PSPR features representing ECG waveforms of
125 ms in length were significantly different between
controls and IPD subjects. This suggests that ECG
waveform features in specific frequency bands may
help to distinguish IPD patients. The authors con-
ducted a follow-up study using CNN model, and the
AUROC of the CNN-based deep learning model was
0.67 (0.54–0.79) between 6 and 12 months before
IPD diagnosis [22]. Although our model identifies
prevalent IPD patients rather than prodromal IPD
patients, it performed better with AUROC of 0.924
(0.913–0.936). In other words, the better performance

Table 4
Performance of the proposed 12-lead ECG deep learning model for detecting IPD at operating points with high sensitivity in the test set

Sensitivity (%) Specificity (%) NPV (%) PPV (%) Accuracy (95% CI) AUROC (95% CI)

95 80.6 95.4 79.8 0.870 (0.847–0.891) 0.879 (0.855–0.896)
90 89.3 91.9 87.2 0.897 (0.876–0.916) 0.898 (0.878–0.917)
85 88.9 88.0 86.5 0.872 (0.849–0.892) 0.870 (0.849–0.891)
80 92.0 85.3 89.3 0.860 (0.845–0.888) 0.861 (0.839–0.883)

AUROC, area under the receiver operating characteristic curve; NPV, negative predictive value; PPV, positive predictive value.
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Table 5
Subgroup analysis of the performance of the proposed 12-lead deep learning model

for detecting IPD

AUROC 95% CI

Age (y) ≥75 0.928 0.906–0.949
<75 0.919 0.908–0.954

Sex Men 0.931 0.891–0.943
Women 0.917 0.891–0.943

Alcohol No 0.918 0.897–0.938
Yes 0.944 0.915–0.973

Smoking No 0.923 0.904–0.942
Yes 0.933 0.894–0.971

Diabetes No 0.881 0.850–0.911
Yes 0.965 0.948–0.981

Heart rate (beats/min) <100 0926 0.908–0.943
≥100 0.908 0.843–0.973

Medication affecting ECG No 0.914 0.892–0.936
Yes 0.944 0.917–0.970

ECG diagnosis Normal sinus rhythm 0.919 0.887–0.952
Others 0.926 0.846–0.946

UPDRS, unified Parkinson’s disease rating scale; Medication affecting ECG includes beta blockers,
non-DHP CCB, antipsychotics, antiarrhythmics, antidepressants, antihistamines, quinidine, and
macrolides.

Fig. 3. Sensitivity comparison of the deep learning model according to the clinical severity and subtypes of Parkinson’s disease.

of our model may be due to the identification of more
progressed IPD patients than prodromal IPD patients.

Our study has several limitations. First, this study
did not perform external validation using data from
other institutes although it was a large-scale study
conducted with a total of 5,686 ECG data, includ-
ing 751 IPD patients. Therefore, if the deep learning
model of this study is applied to other datasets, the

performance may be degraded compared to the results
of this study. However, the deep learning model of
this study showed robust performance in various
subgroups, and it will be possible to improve the
performance of the model by implementing trans-
fer learning in other studies. Second, ECG artifacts,
especially motion artifacts generated by Parkinson’s
disease, may have affected the performance of the
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Table 6
Performance of a single-lead ECG deep learning model for detect-

ing IPD

Lead Accuracy (95% CI) AUROC (95% CI)

V1 0.740 (0.724–0.756) 0.799 (0.783–0.815)
V2 0.752 (0.737–0.767) 0.812 (0.795–0.830)
V3 0.763 (0.749–0.777) 0.820 (0.805–0.835)
V4 0.736 (0.721–0.751) 0.765 (0.747–0.782)
V5 0.740 (0.725–0.756) 0.779 (0.762–0.795)
V6 0.730 (0.714–0.746) 0.786 (0.769–0.803)
I 0.736 (0.720–0.752) 0.791 (0.774–0.808)
II 0.740 (0.724–0.756) 0.799 (0.782–0.816)

AUROC, area under the receiver operating characteristic curve.

model. Nonetheless, this model showed an excel-
lent performance in distinguishing between DPD and
IPD. Therefore, the possibility of bias due to ECG
artifacts in this study is estimated to be small. Thus,
the effect of ECG artifacts on the model should be
considered. Third, it is difficult to explain the decision
of our model. The “black box” nature of deep learning
makes it difficult to accurately interpret which part of
ECG our model focuses on and which information it
extracts to identify IPD patients. This may be a subtle
or complex ECG feature that humans do not know. It
is necessary to overcome these “black box” charac-
teristics of deep learning in the future and increase the
possibility of explanation. Forth, this study used the
raw ECG signal of 500 Hz, but various features can
be extracted from the ECG waveform, and the perfor-
mance of deep learning can be further improved by
using these extracted features. This will be our next
research area. Fifth, since IPD patients in this study
were in the motor stage, the performance of the deep
learning model to screen asymptomatic IPD patients
in the prodromal stage would be limited. Finally,
machine interpretation was used for ECG diagno-
sis without cardiologist’s verification in this study.
Therefore, the analysis results of ECG diagnosis may
not be accurate in this study.

In conclusion, the CNN-based deep learning model
using 12-lead ECG had relatively accurate perfor-
mance in identifying IPD patients.
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