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Abstract.

Background: Working memory (WM) training (WMT) is a popular intervention approach against cognitive decline in
patients with Parkinson’s disease (PD). However, heterogeneity in WM responsiveness suggests that WMT may not be
equally efficient for all patients.

Objective: The present study aims to evaluate a multivariate model to predict post-intervention verbal WM in patients with
PD using a supervised machine learning approach. We test the predictive potential of novel learning parameters derived from
the WMT and compare their predictiveness to other more commonly used domains including demographic, clinical, and
cognitive data.

Methods: 37 patients with PD (age: 64.09 & 8.56, 48.6% female, 94.7% Hoehn & Yahr stage 2) participated in a 5-week
WMT. Four random forest regression models including 1) cognitive variables only, 2) learning parameters only, 3) both
cognitive and learning variables, and 4) the entire set of variables (with additional demographic and clinical data, ‘all’
model), were built to predict immediate and 3-month-follow-up WM.
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Result: The ‘all’ model predicted verbal WM with the lowest root mean square error (RMSE) compared to the other models,
at both immediate (RMSE =0.184; 95%-CI=[0.184;0.185]) and 3-month follow-up (RMSE = 0.216; 95%-CI=[0.215;0.217]).
Cognitive baseline parameters were among the most important predictors in the ‘all’ model. The model combining cognitive
and learning parameters significantly outperformed the model solely based on cognitive variables.

Conclusion: Commonly assessed demographic, clinical, and cognitive variables provide robust prediction of response to

WMT. Nonetheless, inclusion of training-inherent learning parameters further boosts precision of prediction models which
in turn may augment training benefits following cognitive interventions in patients with PD.

Keywords: Parkinson’s disease, precision medicine, supervised machine learning, cognition, cognitive aging, working mem-

ory, internet-based intervention, clinical trial

INTRODUCTION

Cognitive decline is a common, debilitating non-
motor symptom in patients with Parkinson’s disease
(PD), which is the second most frequent neurodegen-
erative disorder of older age [1]. Working memory
(WM), executive functions, and attention are fre-
quently impaired cognitive domains across various
disease stages [2—4]. WM training (WMT) is the most
empirically investigated cognitive training approach
across the lifespan [5] due to the strong association
of WM with fluid intelligence [6] and daily func-
tioning [7]. WMT delivers reliable medium to large
direct training effects and elicits small to medium
near-transfer effects [5, 8, 9]. However, positive
far-transfer effects by WMT are strongly debated
nowadays as considerable heterogeneity in training
effects suggests that WMT may not be equally effi-
cient in all participants [8].

Recent randomized controlled trials (RCT) investi-
gating WMT in PD [10, 11], addressed heterogeneity
of WMT response by identifying potential predictors
of the treatment response including, e.g., cognitive
performance at baseline, age, and fluid intelligence.
However, large proportions of variance in training
response remain unexplained when using traditional
statistical methods [10, 12]. In the context of recent
machine learning studies, learning performance dur-
ing cognitive training has recently been used as a
behavioral proxy in combination with neuroimaging
to monitor response to cognitive training in psy-
chosis [13—15]. In healthy aging, higher gains in tasks
trained during WMT are associated with higher trans-
fer effects in both near- and far-transfer outcomes
[16-19], yet training recommendations to patients
with PD lack an individual signature needed to max-
imize patients’ benefit from WMT. The informed
identification of patients with a positive response to
WMT may allow early, personalized interventions
(“precision medicine’ instead of ‘one-size-fits-all’) to

delay the onset and progression of cognitive decline
in the domain of WM in PD [20].

However, it remains unclear to what extent
demographic and clinical characteristics, cognitive
performance at baseline, and training-inherent
learning performance are useful in predicting WMT
response in patients with PD. In this study we
aim 1) to elucidate the predictive pattern joining
data from several domains (demographic com-
bined with clinical variables, cognitive data, and
training-inherent learning performance) using a
random forest regression algorithm in a sample of
PD patients [11] and 2) to compare predictiveness
of single and combined data domains to identify
the most informative combination of features. The
latter may help to pave a more efficient path to the
real-world therapeutic setting, as the availability and
accessibility of information from these data domains
also highly varies between data domains.

METHODS
Study design

The original study [11] was designed as a single-
blind RCT to evaluate the efficacy of a 5-week
computerized WMT compared to a waiting list con-
trol group (CG). Clinical and cognitive assessments
took place at baseline, the week after the 5-week train-
ing/waiting period (POST), and at 3-month follow-up
(FU).

The study protocol was approved by the local ethics
committee of the Medical Faculty of the University of
Cologne (vote-no.16-043), conducted in compliance
with the Helsinki Declaration of 1975, as revised in
2008, and registered with the German Clinical Trials
Register (drks.de, DRKS00009379). All participants
gave written informed consent before participation.
The reporting of the original RCT [11] followed the
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CONSORT (Consolidated Standards of Reporting
Trials) guidelines.

Farticipants

Participants were recruited at the University Hospi-
tal of Cologne, Germany, as well as through regional
neurologists and PD support groups. Participants of
the present study met the following inclusion crite-
ria: 1) age between 45 and 85 years, 2) diagnosis
of idiopathic PD according to UK brain bank criteria
[21], and 3) normal or corrected-to-normal vision and
hearing. Exclusion criteria were 1) cognitive dysfunc-
tions according to the Level-II diagnostic criteria for
PD-MCI [22] or PD dementia [23], 2) severe depres-
sive symptoms measured by the Geriatric Depression
Scale (GDS > 11) [24], and/or 3) deep brain stimu-
lation and other reported psychiatric, neurological,
and life-threatening diseases. Included patients were
randomized to either the WMT group (n=37) or
CG (n=39). 37 patients of the WMT group and 38
patients of the CG completed the POST assessment,
35 patients of the WMT group, and 37 patients of the
CG completed the FU assessment.

For the present predictive analyses, we included all
patients who successfully completed the WMT, i.e.,
all n=37 patients of the WMT group. On average,
the patients attended 24.27 (SD =1.59) out of max.
25 training sessions, with a minimum of 19 train-
ing sessions. They were 64.09 (SD = 8.56) years old,
48.6% female, with a disease onset 6.13 (SD =4.39)
years ago and most patients showing mild to moderate
motor impairment (94.7% Hoehn & Yahr [25] (H&Y)
stage 2, part 3 of the Unified Parkinson’s Disease Rat-
ing Scale (UPDRS-IIT) M =28.70, SD =7.97). Scores
in the Montréal Cognitive Assessment (MoCA) [26]
ranged from 24 to 30 (M=27.03, SD=1.71). Fur-
ther descriptives of both WMT group and CG can be
obtained from Table 1.

WMT intervention

The computerized WMT was compiled on the basis
of the online multi-domain cognitive training pro-
gram NeuroNation (https://www.neuronation.com,
Synaptikon GmbH, Berlin, Germany) and consisted
of five WM tasks per one daily training session
selected out of a total of nine different WM tasks (for
a detailed description of the tasks, see Supplemen-
tary Material 1). The nine WM tasks can be classified
according to the underlying WM paradigm, e.g., sim-
ple and complex span tasks, as well as n-back tasks

[27], which hold different requirements on processing
resources. According to this classification, three tasks
can be regarded as simple span tasks, one task was a
pure n-back task, and five tasks were complex span
tasks, especially addressing the executive component
of WM processes (see Supplementary Material 1).
The WMT was accessed online and administered at
home for 30 min a day, five days a week, over five
weeks and adapted to user performance across train-
ing sessions. The patients did not have access to the
training platform between POST and 3-month FU
assessments and they were instructed not to engage
in any additional cognitive training activities during
this time.

Learning, neuropsychological, and clinical
parameters

Training-inherent learning performance was
tracked via NeuroNation for each of the five trained
tasks per training day. For each task, a performance
score was given, which represented the sum of all
correct answers given within the exercise adjusted
for the initial difficulty of the exercise during the
training session (the higher the initial difficulty, the
more points are given). For the present analyses,
we used the min-max normalized scores of the
NeuroNation output, which allow to compare task
performance across the different WM exercises and
training sessions, as the initial performance scores
are transformed to a similar range across exercises.
Three equally weighted composite scores were built
according to the previously described classification
of WM paradigms into simple span, complex span,
and n-back tasks (see Supplementary Material 1).
As applied in previous research [16], two learning
parameters per composite score of trained task
performance were extracted for each participant
based on a linear model fitted to the trained task
performance: the ‘intercept’ corresponding to the
initial performance level in the first training session
and the ‘slope’ corresponding to the change in
performance over time (Fig. 1).

Outcome raters were blinded for group allocation,
patients were not. The WM domain as a near-transfer
measure was assessed by several single tests with
parallel test forms, if available, including both paper-
pencil assessments and computer tests. Two WM
composite scores were computed as the average of
the corresponding equally weighted single test z-
scores based on published normative data of age-,
sex-, and education-matched healthy controls. Verbal
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Table 1
Overview and descriptives of features in the four random forest regression models ‘all’, ‘cog/learning’,
‘cog’, and ‘learning’

2

5 4

S E

= & & 3

Feature < |} &} — WMT (n=37) CG (n=38)
Cognition
Verbal working memory PRE X X X —-0.07 (0.60) 0.26 (0.61)
Non-verbal working memory PRE X X X —-0.20 (0.56) —-0.05 (0.58)
Executive functions PRE X X X 0.31 (0.56) 0.43 (0.46)
Attention PRE X X X 0.40 (0.73) 0.52 (0.58)
Verbal memory PRE X X X -0.04 (0.79) 0.16 (0.68)
Visuo-cognition PRE X X X —-0.59 (0.90) —-0.08 (0.99)
Fluid intelligence PRE (LPS-4) X X X 0.38 (1.06) 0.43 (0.83)
Montréal Cognitive Assessment PRE X X X 27.03 (1.71)
Learning
Intercept simple span* X* X* X* 4069.66 (1220.86) -
Slope simple span X X X 100.17 (59.63) -
Intercept complex span X X X 3010.25 (1720.92) -
Slope complex span X X X 157.93 (71.55) -
Intercept n-back X X X 3080.94 (1473.00) -
Slope n-back X X X 145.98 (65.14) -
Demographic
Age X 64.09 (8.56) 63.88 (8.39)
Sex X 48.6% female 44.7% female
Education X 15.23 (2.96) 15.83 (2.56)
Clinical
Years since PD diagnosis* X* 6.13 (4.39) 6.59 (6.06)
Drug therapy years X 6.11 (4.41) 6.46 (6.00)
LEDD X 674.50 (420.46) 588.13 (423.57)
Self-efficacy expectancy PRE (SWE) X 49.11 (9.57) 53.64 (11.24)
Depression PRE (GDS) X 2.08 (1.74) 2.29 (2.38)
PD motor symptoms PRE (UPDRS-III) X 28.70 (7.96) 29.45 (8.73)

Data are mean (SD) of composite scores of cognitive domains unless indicated otherwise. Cognitive domain composite scores
were computed as the average of the corresponding equally weighted single test z-scores based on published normative data.
For details, refer to Ophey et al. (2020). CG, control group; GDS, Geriatric Depression Scale; LEDD, Levodopa equivalent
daily dose; PD, Parkinson’s disease; PRE, baseline examination; SWE, Skala zur Allgemeinen Selbstwirksamkeitserwartung
/ General Self-Efficacy Scale; UPDRS-III, Unified Parkinson’s Disease Rating Scale Part 3; WMT, working memory training
group. *excluded due to high collinearity to other predictors (Spearman’s rtho > 0.80; Supplementary Figure 2).

WM as the primary outcome of the present analyses
was assessed by the digit span forward and back-
ward task (Wechsler Memory Scale revised) [28],
and the n-back verbal task (Wiener Testsystem) [29].
For details on further cognitive composite scores
(non-verbal WM, executive functions, attention, ver-
bal memory, visuo-cognition), which were used as
predictors in the present analyses, see Ophey et al.
[11]. The reported composite scores can be inter-
preted as regular z-scores with M=0 and SD=1,
i.e., a score of O represents average performance,
negative scores represent worse performance and
positive scores represent better performance than the
normative population—independent of age, sex, and
education, respectively.

The Levodopa Equivalent Daily Dose (LEDD) [30]
and years of PD drug therapy, which can be regarded

as a proxy for disease duration, were recorded. Dur-
ing all assessments, patients were on their regular
dopaminergic PD medication, and the majority of
assessments was conducted in the patients’ medi-
cation “ON” state. Motor impairment was assessed
with the UPDRS-III [31] and the H&Y [25] scale.
Furthermore, patients’ questionnaires examining
depressive symptoms (GDS) [24] and self-efficacy
expectancy (SWE) (German version [32], English
version [33]) were considered in the set of predictors
(Table 1).

Predictive modeling

We built four single models based on single or com-
bined cognitive, learning, clinical, and demographic
data domains to evaluate their individual contribution
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Fig. 1. Linear models fitted to learning performance of each participant for each composite score. To extract the learning parameters for
each individual, we fitted a linear model to the learning performance curve of each participant (different colors) for training sessions 1, 4, 6,
9, 11, 14, 16, 19. Individual slope and intercept parameters were used as predictors in the random forest regression models.

to the prediction of verbal WM at POST and FU. The
‘cog’ model consists of variables assessing baseline
performance in verbal and non-verbal WM, executive
functions, attention, verbal memory, visuo-cognition,
fluid intelligence, and global cognition. The ‘learn-
ing’ model includes slope and intercept parameters
for each composite score (simple span, complex span,
n-back). The ‘cog/learning’ model describes the com-
bination of the ‘cog’ and ‘learning’ variables and the
‘all’ model additionally includes clinical and demo-
graphic information (Table 1). The ‘cog’ model could
be estimated based on a standard face-to-face cog-
nitive assessment performed by a neuropsychologist
and the ‘learning’ model could be estimated entirely
remotely during the WMT. The ‘all’ model could be
estimated based on an elaborated face-to-face clinical
and cognitive assessment performed by physicians
and neuropsychologists additionally including data
from the remote WMT.

We used random forest regression as implemented
in the R package ‘ranger’ [34] (version 0.13.1) to
build the prediction models and to evaluate their
performance. In the random forest regression, deci-
sion trees are generated based on random subsets
of observations in the data set (=bagging). In each
decision tree the algorithm repetitively splits the high-
dimensional data set at each node based on their
most predictive variable within a random subset of

the predictors until a certain criterion is reached.
A prediction is achieved by integrating the individ-
ual predictions of each decision tree. We specified
the number of trees generated (N=1000; sample
fraction=1; sampling with replacement) and the
number of possible splitting variables at each node
(mtry = square root of number of predictor variables;
minimum node size=5) in accordance with previ-
ous recommendations [35]. Predictors were inspected
for collinearity to reduce feature space and to avoid
biases in model interpretation (Supplementary Fig-
ure 2) prior to random forest regression. We excluded
the variables ‘years since PD diagnosis’ and ‘inter-
cept simple span’ due to high collinearity to other
predictors (Spearman’s rho > 0.80).

Model performance was quantified by root mean
square error (RMSE) prediction error, which was cal-
culated by the root of the squared average difference
of predicted value based on the model and the actual
value. To assess the generalizability of the model,
we further calculated the out-of-bag (OOB) predic-
tion error OOB, which represents the performance
of the random forest model with respect to obser-
vations unseen during the model generation process
(for details, see Supplementary Material 2). For both
model performance metrics, RMSE and OOB, lower
scores represent a better fit of a given model to a
dataset.
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Fig. 2. Random forest regression analysis procedure. Random forest regression models were generated embedded in a resampling scheme
(left). For each iteration of the resampling that contained 80% of the total sample, variables were median imputed prior to running the
random forest algorithm. Each generated model was evaluated based on two model performance indicators and with respect to their feature

importance using the ‘impurity’ measure of the ranger package (right).

Predictors were ranked by importance as quantified
by the reduction in variance when this predictor was
used for splitting the data set [34]. Higher reduction
in variance suggests higher importance for regres-
sion. The feature importance was estimated using
the impurity approach implemented in ‘ranger’ [34].
To assess the stability of our prediction models we
used a resampling approach (Njteration =1000; with-
out replacement) selecting a random subset of 80%
(N =30) of the total sample per iteration. Missing data
across all predictor variables (~0.5%) was imputed
within each subset of the resampling scheme by
median as it shows less bias for extreme values.

Finally, we calculated pairwise permutation tests
to compare performance between the different pre-
dictor models generated by the resampling using
the ‘rcompanion’-package [36] in R and corrected
p-values for multiple comparisons using Bonfer-
roni correction [37]. Cohen’s d was reported as the
effect size of the pairwise permutation tests indi-
cating small (d > 0.2), moderate (d > 0.5), or strong
(d = 0.8) effects. The random forest regression anal-
ysis procedure is visualized in Fig. 2.

RESULTS

Details on prior analyses regarding the general effi-
cacy, as well as neural correlates of WM and WMT

are reported in Ophey et al. [11], Giehl et al. [38],
and Giehl et al. [39]. Table 2 presents the descrip-
tive data for the cognitive domains across baseline,
POST, and 3-month FU assessments for the WMT
group and the CG. As reported in Ophey et al.
[11], repeated-measures, linear mixed-effects models
revealed positive training effects for the WMT group
compared to the waiting list CG in verbal WM with a
small relative effect size 0.39 (95%-Confidence Inter-
val CI=[0.05;0.76]) for the 3-months follow-up only.
No other reliable training effects on cognitive and
clinical variables were found for either point of time.

Predictive modeling

The ‘all’ model predicted verbal WM with the low-
est RMSE prediction error (‘all’ vs. ‘cog/learning’:
p<0.001) followed by the combination of the
cognitive and the ‘learning’ model (‘cog/learning’
vs. ‘cog’: p<0.001), the cognitive solely model
(‘cog’ vs. ‘learning’: p<0.001) and the ‘learning’
solely model (Fig. 3; Table 3). This result is com-
mon to both timepoints (POST, 3-month FU). The
RMSE prediction error of the ‘all’ model was
0.184 (95%-C1=[0.184;0.185]) at POST and 0.216
(95%-CI1=[0.215;0.217]) at FU. Results of the OOB
prediction error are presented in the Supplementary
Material 2 and visualized in Supplementary Figure 3.
RMSE prediction errors of the four evaluated mod-
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Table 2
Descriptive statistics of cognitive outcomes across the working memory training
PRE POST 3-month FU

WMT (n=37) CG (n=38) WMT (n=37) CG (n=38) WMT (n=35) CG(n=37)
Verbal working -0.07 (0.60) 0.26 (0.61) 0.10 (0.49) 0.39 (0.59) 0.25 (0.57) 0.31 (0.58)
memory
Non-verbal -0.20 (0.56) —-0.05 (0.58) -0.01 (0.51) 0.07 (0.57) -0.02 (0.50) 0.08 (0.60)
working memory
Executive 0.31 (0.56) 0.43 (0.46) 0.40 (0.41) 0.44 (0.44) 0.44 (0.52) 0.46 (0.46)
functions
Verbal memory -0.04 (0.79) 0.16 (0.68) 0.67 (0.84) 0.77 (0.74) 0.75 (0.95) 0.94 (0.65)
Attention 0.40 (0.73) 0.52 (0.58) 0.51 (0.65) 0.57 (0.62) 0.53 (0.59) 0.63 (0.55)
Visuo-cognition -0.59 (0.90) —-0.08 (0.99) -0.41 (1.04) -0.33 (1.06) -0.40 (1.02) -0.59 (0.98)
Fluid intelligence 0.38 (1.06) 0.43 (0.83) 0.46 (0.75) 0.14 (0.76) 0.52 (0.99) 0.50 (0.97)

(LPS-4)

Data are mean (SD) of composite scores of cognitive domains unless indicated otherwise. Cognitive domain composite scores were computed
as the average of the corresponding equally weighted single test z-scores based on published normative data. For details, refer to Ophey et
al. (2020). CG, control group; FU, follow-up; LPS-4, Leistungspriifsystem subtest 4: logical reasoning, version 50 + for patients aged > 50

years; WMT, working memory training group.

els at POST and FU, as well as predictor ranks
of variables in the ‘all’ model including clinical,
demographic, cognitive, and learning variables are
visualized in Fig. 3.

The ten most important predictors for POST WM
comprised four cognitive baseline predictors (ver-
bal WM, non-verbal WM, executive functions, fluid
intelligence, rank 1-4), three learning parameters
(intercept n-back, intercept complex span, slope
simple span, rank 5-6, 9), two clinical variables
(dopaminergic medication, drug therapy years, rank
7+10), and one demographic characteristic (age,
rank 8). The ten most important predictors for FU
WM included three cognitive baseline variables (ver-
bal WM, non-verbal WM, attention, rank 1+ 3+6),
the same three learning parameters as for POST
WM (intercept n-back, intercept complex span, slope
simple span, rank 2 +4+8), three clinical variables
(dopaminergic medication, drug therapy years, motor
impairment, rank 7+9-10), and one demographic
characteristic (education, rank 5).

At POST and FU effect sizes between the ‘all’
model and the ‘cog/learning’ model were small
(Cohen’s ds <0.39), and medium to large in com-
parison to the ‘cog’ and ‘learning’ model (Cohen’s
ds > 0.56). The combined ‘cog/learning’ model sig-
nificantly outperformed the ‘cog’ model with a small
effect size at POST-test (Cohen’s d=0.29), however,
with a large effect size at FU (Cohen’s d =1.35).

DISCUSSION

The present study generated and compared multi-
variate models that aim to predict responsiveness to

WMT in patients with PD using learning parameters
in addition to cognitive, clinical, and demographic
characteristics. General WMT effects in our previ-
ous study [11] were limited to the domain of verbal
WM, while no other cognitive domains improved in
the WMT group relative to the passive waiting list
CG. For this reason, in the current study we applied
the random forest model to predict response to WMT
in patients with PD. The model using the entire set
of prognostic variables reached the best performance
among other models using the cognitive and/or learn-
ing subset only. While the learning model could not
outperform the combined model including all the
variables, the training-inherent learning characteris-
tics further refined the performance of the cognitive
model.

Cognitive variables at baseline, especially the ver-
bal WM score, had the highest feature importance
among the investigated set of predictors for verbal
WM immediate and 3-month FU intervention scores.
Moreover, executive functions at baseline and fluid
intelligence followed in the hierarchy of the fea-
ture importance at immediate FU, delineating how
general cognitive ability complements task-specific
requirements represented by verbal WM [6]. A recent
large-scale analysis of cognitive training data from
more than 36,000 individuals revealed a latent gen-
eral ability factor determining the improvement in
later stages of training, whereas several task-specific
factors determined initial training performance [40].
Notably, only the WM composites stay within the
most important feature ranks at 3-month FU, possi-
bly indicating a less strong predictiveness of general
cognitive abilities at 3-month FU.
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Fig. 3. Random forest regression model prediction for verbal working memory at POST and 3-month FU. We used random forest regression
to evaluate the predictive performance of different subsets of predictor variables: cognitive (‘cog’), ‘learning’, clinical, and demographic
(‘all’). The graph shows the performance of the models generated through resampling (N=1000) measured by root mean square error
(RMSE) and the feature importance (impurity approach) of the ‘all* model for the prediction of verbal working memory at timepoints (A)
POST and (B) 3-month FU. For both time points each Bonferroni-corrected pairwise model comparison was significant (pponferroni <0.001,
for effect sizes, see Table 3). PRE, baseline; WM, working memory.

Table 3

Comparison of model performance (RMSE) by pairwise permutation tests

Permutation Test Effect Size

POST 3-month FU POST 3-month FU

statistic p* statistic p* Cohen’s d Cohen’s d
“all’ vs. ‘cog/learning’ -5.68 <0.001 -8.49 <0.001 0.26 0.39
“all” vs. ‘cog’ -12.13 <0.001 -29.43 <0.001 0.56 1.75
“all’ vs. ‘learning’ -38.37 <0.001 -30.82 <0.001 3.34 1.90
’cog/learning’ vs. ‘cog’ —6.33 <0.001 -24.99 <0.001 0.29 1.35
’cog/learning’ vs. ‘learning’ -37.00 <0.001 -27.02 <0.001 2.94 1.52
’cog’ vs. ‘learning’ -36.07 <0.001 —4.78 <0.001 2.73 0.21

*Bonferroni corrected.
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In our analyses, we evaluated the single feature
importance of our investigated learning parameters,
i.e., intercepts and slopes of three composite scores
summarizing performance across training sessions
of nine training tasks. Our results reveal higher
importance of the composite intercepts than the cor-
responding slopes for both immediate and 3-month
FU WM. The intercepts may represent a general
proxy for WM performance at baseline, which is
why their feature importance appears comparable to
that of cognitive baseline scores. However, the inter-
cept parameters do not contain information about
the training improvement over time, which is inher-
ently represented in the slope parameters. Our results
indicate that baseline performance in either stan-
dard cognitive assessments or training-inherent tasks
can strongly predict immediate and 3-month FU
performance. In turn, it could be derived that the
improvement in performance of the training tasks
itself was less heterogeneous and therefore less
predictive across participants than their individual
baseline performance.

Importantly, the predictiveness of learning param-
eters seems to change over time. For immediate
and 3-month FU verbal WM performance, models
containing the entire set of behavioral predictors
yielded the best model performance, followed by
the model combining cognitive baseline performance
and learning parameters. While the model using cog-
nitive parameters alone and the model combining
cognitive and learning parameters show almost com-
parable predictive performance immediately after
the intervention, the combination of cognitive and
learning parameters largely outperformed the model
using cognitive baseline parameters alone at 3-month
FU. This indicates a stronger predictive importance
of learning parameters for long-term WMT out-
come compared to immediate WMT outcome, which
may indicate that task-general processes acquired
during WMT influence performance beyond the
training period [40]. The increased predictive value
of the learning parameters at FU is also reflected
in higher ranks of feature importance. This is in
accordance with findings of previous correlational
WMT analyses [12] that revealed how individual
differences in demographic, cognitive, and clinical
variables become less important from immediate to 3-
month FU examination. The present study including
learning parameters therefore may contribute to clos-
ing the gap in understanding the factors influencing
response to WMT in patients with PD by revealing
associative relationships between individual patient

characteristics and cognitive performance. Further-
more, in healthy aging, Biirki et al. [16] showed that
near- and far-transfer outcomes were linked to both
learning intercepts and slope beyond common prox-
ies for general functioning such as fluid intelligence
and the potential to engage in cognitive plasticity,
which is potentially reflected in age.

Among clinical variables, the dopaminergic med-
ication (measured as the LEDD [30]), years of drug
therapy, and PD motor impairment (measured with
the UPDRS-III [31]) were among the most important
features in the model including the entire set of fea-
tures. Cognitive functioning in general but also the
ability to engage in cognitive plasticity is to some
extent determined or even facilitated by centrally
active drugs including dopamine replacement therapy
in PD [41, 42]. As stated in the Dopamine Over-
dose Hypothesis, both dopamine depletion as well
as dopamine overdoses might lead to adverse effects
in cognitive tasks, resulting in an inverted U-shaped
relationship between dopamine levels and cognitive
performance [43, 44]. Following, dopaminergic treat-
ment may foster dopamine depleted neural circuits
but at the same time overdose relatively intact cir-
cuits, resulting in differential effects of dopaminergic
supplementation on different cognitive domains rely-
ing on different neural circuits [4, 45]. Furthermore,
along with the progression of neurodegeneration in
PD [44], the optimal level of dopamine replace-
ment therapy for cognitive functions may change
over the course of the disease, as it does for motor
and other non-motor symptoms [46]. The effects
of dopaminergic supplementation on learning and
the responsiveness to cognitive interventions in both
healthy older adults and patients with PD is heteroge-
neous as reviewed in Lebedev et al. [45] and requires
further investigation. The majority of studies on Lev-
odopa and training responsiveness in PD, however,
reveals a positive relationship between LEDD and
training outcome.

As the random forest regression does not allow
to evaluate the direction of the relationship between
predictor variables and outcome, e.g., if more or
less years of education are associated with higher
WM improvement, we analyzed the bivariate asso-
ciations between predictors and outcomes, which
should, however, be interpreted cautiously (Supple-
mentary Figures 4-6). The WMT literature suggests
two mechanisms leading to training effects, which
can be discussed in terms of the direction of the
relationship between predictor variables and training
outcome: on the one hand, compensatory mecha-
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nisms [47, 48], i.e., those individuals having more
room for improvement benefit most, and on the other
hand processes of magnification [47, 48] yielding
larger improvement for those with better prerequisites
in terms of cognitive and neurobiological reserve [ 10,
12, 49].

The main limitation of the present analyses is the
lack of a validation cohort, which is why the results
should be treated cautiously despite the methodolog-
ically strong and novel analytical approach. Due to
the low sample size we were not able to evaluate our
models within a cross-validation scheme as previ-
ously recommended [50, 51]. However, stability of
the model performances and the feature importance
of the investigated predictors was assessed within a
resampling approach which decreases the likelihood
that results were obtained by chance. Note, that one
cannot readily account for model complexity in (non-
likelihood-based) random forest regression analyses,
as the number of input parameters does not reflect the
effective degrees of freedom [52]. This phenomenon
is called “paradox of ensembles” by Elder [53].
Nevertheless, the advantage of random forest regres-
sion is that is does not make any prior assumptions
about the association between predictor variables and
response variable (e.g., normal distribution) [35], and
it is more suitable than traditional likelihood based
approaches such as multiple linear regression when
the number of predictors is large [54]. The second
limitation refers to the composition of the applied
cognitive test battery, including tests that might not
have been sensitive enough to monitor different
levels of improvements appropriately (e.g., ceiling
effects) [55]. Third, the 3-month FU period should be
extended by longer FU periods to evaluate predictors
of long-term preventive benefits of WMT. Another
limitation may be that patients were instructed not
to train between POST and 3-month FU; however, it
might also be possible, that our participants engaged
in further cognitive training activities despite our
recommendation.

Finally, future studies with PD patients may want
to apply our model to other cohorts and test its repro-
ducibility and generalizability. The present cohort
of patients with PD without cognitive performance
was not only well-specified regarding its cognitive
status, but rather homogeneous regarding motor PD
severity. Future research definitely needs to strike a
better balance between samples recruited according
to specific criteria and the generalizability to broader
patient population with PD. Future studies might also

apply and evaluate prediction models with predictors
from different domains in the context of far-transfer
training effects. The present analyses focus on the
prediction of verbal WM as a near-transfer measure
following WMT. However, in the context of single-
domain cognitive intervention approaches such as
WMT, those far-transfer effects are of special inter-
est, as training effects in WM are assumed to transfer
to other cognitive domains and potentially clinical
outcomes [8].

The consideration of WMT-inherent learning
parameters allows clinicians and researchers to
utilize the information of the WMT-inherent learn-
ing dynamics rather than focusing on a single
snapshot of cognitive performance obtained from
standard cognitive testing [40]. Especially the latter
might be biased in patients with PD, who fre-
quently suffer from both motor and—in this context
even more important—non-motor fluctuations [56].
Even though non-motor fluctuations may influence
training-inherent learning performance as well, their
influence will be more balanced across time and
patients with PD might have chosen ON phases
to train resulting in overall more reliable learning
parameters. Furthermore, utilizing the information
on training-inherent learning parameters directly
extracted from a computerized, remotely delivered
WMT, provides a low-threshold possibility to extract
a proxy of baseline levels of cognitive performance.
Prospectively, the collection of information on poten-
tial predictors of training outcome could potentially
be performed without resource-intensive face-to-face
cognitive assessments reaching even people in more
rural areas with less health-care infrastructure. Future
studies should evaluate how many training sessions
are needed to extract reliable and valid proxies for the
proposed learning parameters.

Conclusions

Using a supervised machine learning algorithm,
we were able to provide robust prediction of the
response to WMT using demographic, clinical, cog-
nitive, and learning data in patients with PD. The
consideration of training-inherent learning parame-
ters for the first time in PD research boosted the
precision of our prediction models. The applica-
tion and validation of such prediction models may
maximize training benefits following cognitive inter-
ventions in patients with PD.
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