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Abstract.
Background: Among motor symptoms of Parkinson’s disease (PD), including rigidity and resting tremor, bradykinesia is
a mandatory feature to define the parkinsonian syndrome. MDS-UPDRS III is the worldwide reference scale to evaluate
the parkinsonian motor impairment, especially bradykinesia. However, MDS-UPDRS III is an agent-based score making
reproducible measurements and follow-up challenging.
Objective: Using a deep learning approach, we developed a tool to compute an objective score of bradykinesia based on the
guidelines of the gold-standard MDS-UPDRS III.
Methods: We adapted and applied two deep learning algorithms to detect a two-dimensional (2D) skeleton of the hand
composed of 21 predefined points, and transposed it into a three-dimensional (3D) skeleton for a large database of videos of
parkinsonian patients performing MDS-UPDRS III protocols acquired in the Movement Disorder unit of Avicenne University
Hospital.
Results: We developed a 2D and 3D automated analysis tool to study the evolution of several key parameters during the
protocol repetitions of the MDS-UPDRS III. Scores from 2D automated analysis showed a significant correlation with
gold-standard ratings of MDS-UPDRS III, measured with coefficients of determination for the tapping (0.609) and hand
movements (0.701) protocols using decision tree algorithms. The individual correlations of the different parameters measured
with MDS-UPDRS III scores carry meaningful information and are consistent with MDS-UPDRS III guidelines.
Conclusion: We developed a deep learning-based tool to precisely analyze movement parameters allowing to reliably score
bradykinesia for parkinsonian patients in a MDS-UPDRS manner.
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France, CNRS, INSERM, Université PSL, Paris, France. E-mail:
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INTRODUCTION

The diagnosis of Parkinson’s disease (PD) is based
on the presence of a parkinsonian syndrome, i.e., the
association of rigidity and/or rest tremor to bradyki-
nesia, this latter being mandatory for the diagnosis
[1]. Bradykinesia is defined as a motor slowness
associated with a decrease in the amplitude and/or
speed of movement [2–4]. Currently, the evaluation
of motor impairment of PD is based on part III
(motor) of the Movement Disorder Society-Unified
Parkinson’s Disease Rating Scale (MDS-UPDRS)
composed of 18 items rated from 0 (normal) to 4
(severe), which assess the severity of bradykine-
sia, rigidity and tremor [5, 6]. This score is used
worldwide for patient follow-up in outpatient clin-
ics but also in clinical research and more specifically
in therapeutic trials. However, the semi-quantitative
assessment of parkinsonian symptoms by the MDS-
UPDRS III score suffers from a certain subjectivity
and the reproducibility of the measurements arising
from assessors is questionable especially in case of
non-parkinsonian expertise [7–13]. This may con-
tribute to the difficulty in the follow-up of PD patients
and also to induce some biases in clinical research due
to the multiplicity of assessors and clinical centers,
and variability across longitudinal iterative visits.

Although digital tools have been recently devel-
oped in an attempt to improve bradykinesia scoring
by providing quantitative measures [14–16], they
exhibit limited use in practice because they rely on
wearable sensors on patients [17, 18] in a dedicated
room or need specific conditions [15, 18–20]. More
recent studies aimed to circumvent these material
issues by developing video-based only tools [12,
21–24]. First, machine learning-based automatic rat-
ing for rest tremor and finger tapping was investigated
to measure bradykinesia [12]. The authors showed
that it was feasible, reliable when compared to move-
ment disorders specialist ratings, and more accurate
than a non-trained one. The analysis was based on
the periodicity of the repeating task videotaped, i.e.,
the frequency of the movement, to predict a sever-
ity score, but the outcomes did not fully reflect the
MDS-UPDRS guidelines in which decreases in speed
and amplitude of movement over time were also con-
sidered [12]. The global PD severity was assessed
by applying deep learning approach to automatically
score the severity level by compiling 7 of the 18
items of the MDS-UPDRS III [22]. MDS-UPDRS
III bradykinesia was investigated for upper limbs
tasks but with the constraint of fixed webcam record-

ings and with different assessment guidelines from
MDS-UPDRS [21, 22]. In the same way, Guo et al.
[25] demonstrated that a computer-vision approach
to obtain finger tapping 3D acquisition is feasible in
patients with PD. Such approaches have also been
developed to successfully study gait of parkinsonian
patients [23, 24]. Although these studies bring inter-
esting approaches, tools still need to be developed
to establish metrics closer to the MDS-UPDRS III
guidelines for a better assessment over time of move-
ment parameters of bradykinesia.

In this emerging context of computer-based tools
and given the importance of bradykinesia evaluation
in the PD diagnosis, we developed a tool based on
hand-pose estimation and movement analysis to com-
pute an objective score of bradykinesia with multiple
medically-relevant parameters using a deep learn-
ing approach in accordance with MDS-UPDRS III
guidelines [26].

MATERIALS AND METHODS

Participants and videos

We included only PD patients according to MDS
clinical criteria [1], with the exception of one MSA
patient [27] and another one with undetermined
atypical parkinsonian syndrome. All patients were
consecutively seen in an outpatient clinic by a move-
ment disorder specialist (BD) at Avicenne University
Hospital between June 2019 and December 2020. All
patients were video-recorded, using standard smart-
phones (rescaled to 720 × 1280 pixels with 30 or 60
fps), for the items 3.4, 3.5, and 3.6 of the MDS-
UPDRS III corresponding to the assessment of finger
tapping, hand movements, and pronation-supination
movements of the hands, respectively.

The videos were then stored in a secure database,
according to the French data protection authority
(Commission Nationale de l’Informatique et des Lib-
ertés) recommendations. All participants gave their
written informed consents for videos and their anal-
yses. The study was approved by the local ethics
committee (CLEA-2019-83) and registered in Clini-
calTrials.gov (NCT04974034).

MDS-UPDRS III ratings of the video recordings

Two movement disorders specialists certified for
MDS-UPDRS (BD, MM) and three neurologists
trained for movement disorders, but not certified for
MDS-UPDRS scoring (CD, QS and BG), rated all the
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videos for both hands according to the items 3.4, 3.5,
and 3.6 of the MDS-UPDRS III [5]. Assessors were
blinded to the ON or OFF state of patients.

The python package pinguin was used to compute
the Intraclass Correlation Coefficient (ICC), with
options nan policy = ’omit’. ICC values below 0.50,
between 0.50 and 0.75, between 0.75 and 0.90 and
above 0.90 are considered as poor, moderate, good,
and excellent, respectively.

Hand-pose estimation using deep learning
algorithms

We analyzed videos using two deep learning algo-
rithms in order to extract interesting temporal features
of the movement. We used a first network, DeepLab-
Cut [26], to extract predefined points of interest
in 2D from images. Using an associated software
(https://www.mackenziemathislab.org/deeplabcut),
we roughly labelled 5 images per video with 22
different points (5 for each finger, one for the wrist,
one for the center of the palm) and the network
was trained to detect the 22 joints [28] using the
DeepLabCut toolbox. After the 2D hand coordinates
detection, several algorithms (see next section)
were applied to filter and smooth the movement
trajectories. We defined a bounding box around the
patient’s hand from the 2D coordinates obtained with
DeepLabCut for each timestep, and each frame was
cropped along this box. The cropped image was pro-
cessed through a second network, HandGraphCNN
[29], which without specific training predicted 2D
and 3D positions of the 21 points (all the previous
ones, except center of palm). We then processed and
analyzed all trajectories (2D DeepLabCut, 2D & 3D
HandGraphCNN) to study the temporal evolution
of the movement for each protocol. We realized
training and inference using Python 3.X, tensorflow
and Pytorch on a GPU Nvidia Geforce GTX 1080 Ti.
The deep-learning algorithms inferred the positions
of the hand points frame by frame, and the detection
was achieved correctly for a large majority of the
frames. However, sometimes the hand position was
not correctly inferred for a single frame, usually at
unrealistic coordinates. We detected and excluded
such outliers in our analysis.

Processing of 2D and 3D coordinates

The 2D trajectories extracted from DeepLabCut
went through different post-processing processes: (i)
using an iterative algorithm, outlier points, where

the speed of movement was above a defined thresh-
old, were deleted; (ii) using the score maps for
each point given by DeepLabCut, we took out all
coordinates for which the probability was below a
defined threshold (fixed at p = 0.8); (iii) the trace
was smoothed using a Savitzky-Golay filter (with
parameters window length = 11, polyorder = 5) from
the scipy library. For (i) and (ii), we used linear inter-
polation to infer the coordinates of deleted points,
with numpy interp function.

For the 2D and 3D coordinates from Hand-
GraphCNN, we reproduced step (i) and (iii) of the
post-processing algorithm.

Analysis of bradykinesia protocols using 2D and
3D coordinates

Using the 2D and 3D trajectories, we computed
different metrics, specific for each protocol in order
to evaluate bradykinesia symptoms as recommended
by the MDS-UPDRS III guidelines.

Finger tapping (using 2D and 3D hand-pose esti-
mation): distance between the thumb and index
fingers tips.
Hand movements (using 2D and 3D hand-pose
estimation): averaged distance between each fin-
ger tip and the wrist point.
Pronation-supination movements of the hands
(using only 3D hand-pose estimation since we
need to measure angle): azimuthal angle from
spherical coordinates of the tip of the thumb (com-
puted with z-axis being the line between wrist and
start of the third finger).

Each parameter was evaluated for all timesteps,
smoothed using a Savitzky-Golay filter (with param-
eters window length = 9, polyorder = 3) and then nor-
malized between 0 and 1. Speed (in each direction)
was also computed, smoothed using a Savitzky-
Golay filter (with parameters window length = 5,
polyorder = 3) and normalized between –1 and 1.

The temporal evolution of the parameters was peri-
odic because the protocols consisted of 10 repetitions
of each movement. We used an algorithm based on
scipy.signal find peaks function to detect the 10 rep-
etitions. Note that we restricted the analysis to the
9 repetitions that were clearly detectable and which
did not depend on the initial position of the hand,
since the aim was to study the whole dynamics of
each sweep. The frequency F of the repetitions was
measured. These 9 sweeps were analyzed individ-
ually and the following properties were computed:

https://www.mackenziemathislab.org/deeplabcut
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(i) duration of the sweep (noted Tsweep[i] for each
sweep i); (ii) amplitude of the sweep (maximum
minus minimum values) (noted Asweep); (iii) speed
(amplitude divided by duration, noted Ssweep). The
three first/last sweeps properties were compared to
study if the movement was slowed down or altered in
any way during the protocol, i.e., we computed

�Xsweep = mean (Xsweep[i], i = 7, 8, 9)

mean (Xsweep[i], i = 1, 2, 3)
− 1

A fatigue parameter was also computed,

L = min(Asweep[i], i = 1, . . . , 9)/ max(Asweep[i],

i = 1, . . . , 9) − 1,

L represents the maximal change in amplitude dur-
ing the whole protocol, i.e., all the repetitions from 1
to 9.

To compute the deviation from a periodic trajec-
tory, we fitted the following function on each trace,
using the lmfit package:

f (t) = Ac + t × �Ac

− Am + t × Am

(1 + exp(γ sin((w0 + t × w1) × t + D) − c))α

From these fitted parameters, we computed:

• The period variation, which represents the
change in period computed from the fit parame-
ters,

�Tfit = w0

w0 + T × w1
− 1

where T is the duration of the whole 9 sweeps.

• The amplitude variation during the 9 sweeps,
which represents the change in amplitude com-
puted from the fit parameters,

�Afit = �Am

Am

× T

We used 7 parameters (F, �Tsweep, �Asweep,

�Ssweep, �Tfit, �Afit, L) for correlation with
MDS-UPDRS III scores.

Videos were discarded for three reasons: (i) the
algorithms DeepLabCut or HandGraphCNN failed to
perform hand-pose estimation, the automated analy-
sis failed (ii) to detect 9 sweeps or (iii) do the fitting
procedure. Overall, 67% (64/96) of the videos for the
tapping finger, 83% (78/94) for the hand movements,

43% (35/82) for the pronation-supination movements
were used for further analysis.

Impact of the measured parameters for
MDS-UPDRS scoring using statistical learning
algorithms

To evaluate the impact of the measured parameters
for MDS-UPDRS scoring, three classical algorithms
of machine learning were tested: (i) the linear regres-
sion, (ii) the decision tree with max depth = 2 and
(iii) the decision tree with max depth = 3, all from
the scikit-learn toolbox. We trained these algorithms
on the task of predicting the averaged MDS-UPDRS
III score, from the 7 previously defined parameters,
for each protocol.

The coefficient of determination after training was
computed with correct labels. Concurrently, we esti-
mated the distribution of coefficients of determination
obtained when training the algorithm on shuffled
MDS-UPDRS III scores: we computed the mean
and standard deviation on 100 different shuffles,
and approximated them with a normal distribution.
Using this control distribution, we estimated the
probability pshuffle that trained networks with shuf-
fled scores had higher coefficients of determination
than the one obtained with the correct MDS-UPDRS
scores. We used pshuffle to study the significance of
the predictions (∗pshuffle < 0.05, ∗∗pshuffle < 0.005,
∗∗∗pshuffle < 0.0005).

Individual correlations were computed between
the averaged MDS-UPDRS III scores and the 7 dif-
ferent parameters computed in the previous section,
using scipy.stats linregress and spearmanr functions.
Slopes and p-values are extracted for each case.
Results with p < 0.05 were considered statistically
significant (∗p < 0.05, ∗∗p < 0.005, ∗∗∗p < 0.0005).

RESULTS

Demographic features

Among the 36 parkinsonian patients, 34 patients
had a confirmed PD diagnosis according to MDS
clinical criteria, 2 of them having a genetic form [1]
(Supplementary Table 1). Patients assessment was
carried out without considering the last dopamine
intake in order to record a panel of patients in a
wide range of parkinsonian state. We also recruited
11 healthy individuals, without any known neuro-
logical condition, to assess bradykinesia in a priori
non-parkinsonian subjects.
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Fig. 1. Unreliability of MDS-UPDRS scores across neurologists’ ratings. a) Histogram of the standard deviations (computed for each video,
on the 5 different MDS-UPRS scores); b) videos ranked by the number of different MDS-UPDRS scores given by the physicians, colors for
the difference between maximum and minimum scores.

Unreliability of MDS-UPDRS III scoring for
bradykinesia

Five neurologists were asked to blindly score
N = 272 videos from PD and non-PD subjects per-
forming with both hands the 3.4, 3.5, and 3.6 items
of the MDS-UPDRS III. Comparing the different
scores and analyzing their distribution for each video
led to the conclusion that in the majority cases, the
five examiners did not give the same scores. We also
computed the standard deviation of the scores for
each video and plotted its distribution (Fig. 1a). We
observed that 58 videos had a null standard devia-
tion, and as such were scored similarly by all five
neurologists. When considering the whole dataset,
MDS-UPRDS scores had a mean standard deviation
of 0.409.

We also gathered videos as a function of the
number of different scores that were given by the
neurologists, and then in each class on the differ-
ence between the maximum and minimum scores
(Fig. 1b). 58 videos had the same ratings, 171 with 2
different scores, 42 with 3 different scores and even
1 with 4 different scores given for the same videos
(on a total of 5 possible scores from 0 to 4). Overall,
this confirms the existence of inter-rater variability
for MDS-UPDRS III scoring.

Finally, to assess the reproducibility of measure-
ments between MDS-UPDRS III raters, we measured
the ICC. The ICC score was 0.792 (95% confi-
dence interval [0.76, 0.82]) which is defined as good
between 0.75 and 0.9, but still showed that the asses-

sors do not exactly rate videos in the same manner. We
did not observed difference between the variability
of finger tapping, hand movements and pronation-
supinations (0.836 [0.79, 0.88]; 0.774 [0.71, 0.83];
0.763 [0.69, 0.83], respectively).

Extractions of relevant parameters for
MDS-UPDRS III scores using deep learning

Using deep learning algorithms (DeepLabCut and
HandGraphCNN), we detected 21 important points
describing the hands of the patients, and extrapo-
lated their coordinates in 2D and 3D as a function
of time (see Materials and Methods). After complex
steps of post-processing and analysis, one metric is
extracted for each protocol and represented across
time. Examples of extracted data in a single patient
are presented in Figs. 2–4 for finger tapping, hand
movements, and pronation-supination movements of
the hands, respectively. For each figure, we present
snapshots from the initial videos, with the differ-
ent skeletons extracted using the two deep learning
algorithms (Figs. 2a–4a, blue DeepLabCut 2D, red
HandGraphCNN 2D, green HandGraphCNN 3D).
From the trajectories of the hand joints, we computed
protocol specific metrics (see Materials and Methods)
during the whole protocol. As the protocol is com-
posed of 10 repetitions of the same hand movement,
for each metric 9 sweeps (delimited by the 10 plain
circles on each trajectory, see Figs. 2b1–4b1, left)
were detected and then analyzed with the evolution
of movement during the protocols. The shapes from
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Fig. 2. Video analysis using deep learning algorithms for tapping protocol (associated Supplementary Movie 1). a) Snapshots from the initial
videos, with the different skeletons extracted using the two deep learning algorithms (blue DeepLabCut 2D, red HandGraphCNN 2D, green
HandGraphCNN 3D). b1, left) Evolution of the distance between the thumb and pinky fingers tips with 9 sweeps (delimited by the 10 plain
circles on each trajectory). b1, right) First three sweeps (dotted lines) compared to the last three ones (plain lines). b2) same as (b1) for the
speed. c) Frequency F , fatigue L, relative variation of the period �Tsweep, amplitude �Asweep, speed �Ssweep accross the protocol, more
complex variation coefficients, �Tfit and �Afit based on the fit of a periodic function.

Fig. 3. Video analysis using deep learning algorithms for hand movements protocol (associated Supplementary Movie 2). a) Snapshots from
the initial videos, with the different skeletons extracted using the two deep learning algorithms (blue DeepLabCut 2D, red HandGraphCNN
2D, green HandGraphCNN 3D). b1, left) Evolution of the averaged distance between each finger tip and the wrist point with 9 sweeps
(delimited by the 10 plain circles on each trajectory). b1, right) First three sweeps (dotted lines) compared to the last three ones (plain lines).
b2) same as (b1) for the speed. c) Frequency F , fatigue L, relative variation of the period �Tsweep, amplitude �Asweep, speed �Ssweep

accross the protocol, more complex variation coefficients, �Tfit and �Afit based on the fit of a periodic function.

the first three sweeps (dotted lines) were compared
to the last three ones (plain lines) (Figs. 2b1–4b1,
right). Similarly, we computed the associated speed
in Figs. 2b2–4b2. The frequency F , fatigue L, relative
variation of the period �Tsweep, amplitude �Asweep

and speed �Ssweep accross the protocol were com-
puted and presented in Figs. 2c/2c/4c. More complex
variation coefficients, �Tfit and �Afit based on
the fit of a periodic function were also obtained
(Methods) and represented in Figs. 2c/2c/4c. This
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Fig. 4. Video analysis using deep learning algorithms for pronation-supination protocol (associated Supplementary Movie 3). a) Snapshots
from the initial videos, with the different skeletons extracted using the two deep learning algorithms (blue DeepLabCut 2D, red Hand-
GraphCNN 2D, green HandGraphCNN 3D). b1, left) Evolution of the azimuthal angle from spherical coordinates of the tip of the thumb
with 9 sweeps (delimited by the 10 plain circles on each trajectory). b1, right) First three sweeps (dotted lines) compared to the last three
ones (plain lines). b2) same as (b1) for the speed. c) Frequency F , fatigue L, relative variation of the period �Tsweep, amplitude �Asweep,
speed �Ssweep accross the protocol, more complex variation coefficients, �Tfit and �Afit based on the fit of a periodic function.

innovative analysis of several parameters over time
allowed for accurate application of the MDS-UPDRS
III item scoring guidelines.

For the finger tapping protocol (Fig. 2 and Supple-
mentary Movie 1), we computed the distance between
the tips of the thumb and the index fingers as the pri-
mary metric, and the associated speed. We observed
on this example that the trajectories were almost
periodic. The analysis showed that, with the three
different detection algorithms (Fig. 2: DeepLabCut
2D (blue), HandGraphCNN 2D (red) and Hand-
GraphCNN 3D (green)), the parkinsonian patient
reduced the amplitude �Asweep/�Afit of its move-
ment during the protocol, and also reduced its speed
�Ssweep. The period �Tsweep/�Tfit stayed constant
during the experiment. This agrees with the slightly
positive MDS-UPDRS III scores (2/2/1/2/1) given by
the neurologists.

For the hand movements (Fig. 3 and Supple-
mentary Movie 2), we computed the mean distance
between the finger tips and the wrist. We observed
a periodic trajectory, with an increase of the period
�Tsweep/�Tfit , and consequently a reduction of the
speed �Ssweep. Since period is more difficult to assess
than amplitude, it might explain why the raters gave
so different scores (1/1/0/0/2).

For the pronation-supination movements of the
hands (Fig. 4 and Supplementary Movie 3), an angle

was computed from the 3D representation. The tra-
jectories were periodic enough to enable detection of
the sweeps. Because of the irregularity of the tra-
jectory, it is more accurate to use measures from
fits to a periodic function. There was a drop of the
amplitude of the movement �Afit , consistent with
the MDS-UPDRS III scores (1/1/2/2/1).

Overall, these three examples highlight the poten-
tial of the current analysis to accurately quantify hand
movements over time during MDS-UPDRS III pro-
tocols.

Impact of the measured parameters on
MDS-UPDRS using statistical analysis

We trained three algorithms (linear regression,
decision tree with max depth = 2, decision tree with
max depth = 3) to predict the averaged MDS-UPDRS
III score from the previously defined 7 variables for
each video. The results are presented in Table 1 with
the coefficients of determination obtained for algo-
rithms trained with correct MDS-UPDRS scores, the
averaged coefficients of determination over 100 dif-
ferent randomly shuffled datasets and the pshuffle

value used for significance (see Methods for its def-
inition). For the finger tapping and hand movements
protocols, all 3 algorithms predicted significantly
better the correct MDS-UPDRS III score than algo-
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Table 1
Regression algorithms trained to match MDS-UPDRS scores based on the parameters detected by the automated analysis

Finger tapping
(DeepLabCut 2D)

Hand movements
(DeepLabCut 2D)

Pronation-supination
(HandGraphCNN 3D)

Linear regression 0.309 (shuffled: 0.115) 0.427 (shuffled: 0.087) 0.286 (shuffled: 0.194)
pshuffle = 4.23e-04∗∗∗ pshuffle = 4.83e-11∗∗∗ pshuffle = 1.27e-01 n.s

Decision tree with
max depth = 2

0.461 (shuffled: 0.265) 0.598 (shuffled: 0.252) 0.377 (shuffled: 0.405)
pshuffle = 6.65e-04∗∗ pshuffle = 2.72e-09∗∗∗ pshuffle = 6.20e-01 n.s

Decision tree with
max depth = 3

0.609 (shuffled: 0.403) 0.701 (shuffled: 0.403)
pshuffle = 3.95e-04∗∗∗

0.630 (shuffled: 0.602)
pshuffle = 1.76e-02 * pshuffle = 4.05e-01 n.s

Coefficients of determination are presented for training with the correct scores, the averaged over 100 trainings with shuffled
scores, and the probability pshuffle used to test significance (see Materials and Methods).

rithms trained with shuffled scores (Table 1). For
the prono-supination movements of the hands pro-
tocol, algorithms failed to predict the correct scores
since algorithms trained with the correct scores
performed as well as the ones trained with shuf-
fled scores (pshuffle > 0.1). Using more complex
algorithms (Linear regression < Decision tree with
max depth = 2 < Decision tree with max depth = 3)
led to higher coefficient of determinations for
each protocol, but to decreases in significance
(Table 1).

In conclusion, the different parameters computed
using our automated analysis include pertinent infor-
mation for 3.4 and 3.5 MDS-UPDRS scoring.

Individual correlations with MDS-UPDRS III

Figure 5 showed correlations of the measured
parameters with the averaged MDS-UPDRS III
scores. For the finger tapping protocol (top), metrics
extracted from the 2D DeepLabCut coordinates are
shown here and their correlation with MDS-UPDRS
III scores is presented. The variation of amplitude
(for both empirical measure and fit), speed and fatigue
are significantly correlated with the MDS-UPDRS III
scores, with a negative slope, as expected from MDS-
UPDRS III guidelines. The other metrics (frequency
and period variations) are not significantly correlated.
Similar results are observed for the hand movements
protocol (center), with higher significant correlations
for amplitude (both types of measure), speed and
fatigue. Moreover, the period variation measured with
the fit is also negatively and significantly correlated.
This analysis did not reach significance for pronation-
supination movements of the hands (bottom). Over-
all, measured parameters related to MDS-UPDRS
guidelines are directly correlated with MDS-UPDRS
scores.

DISCUSSION

In this study, we created an innovative tool able
to reproduce clinical observations obtained with
MDS-UPDRS scores with a precise and objective
quantification and an adequate evaluation of the
MDS-UPDRS III scores for finger tapping and hand
movements. We obtained an accurate extraction of
important temporal parameters of MDS-UPDRS III
hand tasks, in an automated way only starting from
standard videos.

The 7 parameters tested here, exploring speed,
frequency, amplitude, duration and fatigue were mea-
sured using the automated analysis for finger tapping
and hand movements protocols, estimated the MDS-
UPDRS III used worldwide for PD motor symptoms
evaluation with high coefficients of determination.
More importantly, predictions using different statisti-
cal learning regression algorithms were significantly
higher than algorithms trained with shuffled datasets.
We concluded that the 7 parameters computed in the
analysis presented here contained enough informa-
tion for MDS-UPDRS estimation for finger tapping
and hand movement protocols. Hand movements
probably gave better correlations because we com-
puted the averaged distance for all fingers, compared
to the finger tapping metric which only relied on two
points, and therefore was more prone to undesired
variations. For pronation-supination movements of
the hands, our methods did not lead to statistically
significant predictions. The non-significant correla-
tion of pronation-supination with MDS-UPRDS III
might be due to the vertical plane of video recording
and a horizontal one would be more appropriate and
should be considered for further studies. This might
also be explained by the low number of samples to
reach a significant response. Indeed, less than half of
the videos with pronation-supination movements of
the hands passed all the tests to be included in the
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Fig. 5. Correlations between the 7 metrics computed with deep learning algorithms and averaged MDS-UPDRS scores. F , frequency of the
repetitions; �Tsweep, comparison of the duration of the three first/last sweeps; �Asweep, comparison of the amplitude of the three first/last
sweeps; �Ssweep, comparison of the speed of the three first/last sweeps; �Tfit , period variation, which represents the change in period
computed from the fit parameters; �Afit , amplitude variation, which represents the change in amplitude computed from the fit parameters;
L, fatigue parameter which represents the maximal change in amplitude during the whole protocol. ns: not significant; ∗<0.05, ∗∗<0.005,
∗∗∗<0.0005 for the significance of the p-values. LR, linear regression; SC, Spearman correlation.

prediction analysis. Moreover, we computed individ-
ual correlations for the three protocols, and showed
that the variation of amplitudes, speed and fatigue
were significantly correlated with the MDS-UPRDS
III scores. Importantly, the parameters measured in
this analysis were consistent with MDS-UPRDS III
guidelines for scoring. For instance, despite some
studies analyzed more than 10 repetitions [20–22],
we limited the repetitions to 10 because we wanted
to strictly follow the MDS-UPDRS III recommenda-

tions. The 2D and 3D models of the hand recorded
by video allow precise quantification of multiple
parameters such as speed, amplitude and rate of the
movement during MDS-UPDRS III evaluation. Thus,
the composite parameters analyzed here are the same
as those used for assessing bradykinesia during a
medical consultation. Bradykinesia is a complex phe-
nomenon of slowness of movement that cannot be
seen only as a simple decrease of the movement rate
[12], and therefore more complex properties need to
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be considered in the scoring. The video-based method
described in our study by-passes the subjective mea-
surements of these parameters.

As already stated in the literature [7–12], we
also highlight here that MDS-UPDRS III scoring
is physician-dependent, and as such is a less reli-
able parameter than an automated and quantifiable
assessment tool to evaluate bradykinesia. Here, we
video-taped patients in real-life situations without
specific preparation and environment. Moreover,
patients were not selected regarding the phenotype or
the severity of the parkinsonian syndrome, thus pro-
viding a representative panel of real-life parkinsonian
patients. Importantly, by labelling only 5 frames per
videos we demonstrate that, even with scarce labels,
the network performs accurately. Overall, the time
needed to label 5 frames is quite small (1-2 minutes
for an expert) while the operation would last at least
an hour to individually label each frame, leading to a
great gain in term of time for a result almost as precise
as manual labelling.

In the expanding field of telemedicine, the present
tool appears of much interest. As an example,
COVID-19 pandemic has been striking evidence that
remote evaluation of neurological patients is needed,
this being even more crucial with chronic diseases
[30–32]. It has been shown that remote assessment
of MDS-UPDRS III is feasible via videoconferenc-
ing, except for specific items such as rigidity, or
postural instability, which are not as important as
bradykinesia for general evaluation of the disease [33,
34]. Indeed, some studies, which restricted bradyki-
nesia assessment to the upper limb motor tasks of
the MDS-UPDRS III, showed that upper limb motor
performance was a predictive feature of PD onset
and progression [21, 35]. Research on remote eval-
uation of PD patients has been mainly focused on
the use of technological devices [14, 15, 36, 37].
Such techniques require specific setup, which dif-
fers from MDS-UPDRS III tasks (e.g., touching
tactile screen of tapping, holding the phone during
prono-supination). Recording video while clinically
assessing the MDS-UPDRS III is easy, and there-
fore any videos recorded, while strictly following
MDS-UPDRS III instructions, can be analyzed and
quantified by our system. Also, it is well known that
PD patients’ symptoms, such as tremor and motor
functions, vary upon emotional load [13, 38]. Thus,
by quantifying bradykinesia from homemade videos,
in a less stressful environment than hospital or medi-
cal consultation, clinicians could have a more reliable
assessment of their patient’s condition on a daily life

basis. It is noteworthy that this deep-learning analy-
sis of parkinsonian movement could be extended to
other body parts (e.g., feet movements, hypomimia,
posture) and therefore most of the MDS-UPDRS III
procedures [23, 24]. Thus, a wide range of movement
disorders, such as tremor or chorea, could be eligible
to this strategy of evaluation [16, 39].

This study has several limitations. First, it is a
monocentric study, which needs to be extended to
other centers. Nevertheless, our PD patient popula-
tion was similar to epidemiological data found in the
medical literature. Two of the 36 patients had atyp-
ical parkinsonian syndrome and were still included
since we were interested in analyzing parkinsonian
movements regardless of the underlying parkinso-
nian pathology. Indeed, although there are specific
scales for the assessment of degenerative parkinso-
nian syndromes (such as the UMSARS for MSA),
clinicians also apply in real life the MDS-UPDRS III
to atypical parkinsonian syndromes for the assess-
ment of the parkinsonian symptoms, especially in
outpatient clinic/consultation. Secondly, the MDS-
UPDRS III is considered as the international and
consensual scale which is a reference in the field
of parkinsonian symptoms. The main problem with
its use can arise from the assessor who rates the
MDS-UPDRS III as well as how the guidelines are
respected, often resulting in an inter- and intra-rater
variability. In our study, to reduce the risk of errors in
rating and to maximize the validity of the human rat-
ing, we have consciously asked several raters working
in a Movement disorders unit to rate the videos. We
demonstrated that it is feasible to objectively capture
and measure the parameters used in the guidelines
to rate the MDS-UPDRS III and then to get rid of
inter- and intra-rater variability. Thirdly, regarding
pronation-supination movements of the hands, the
results were not significant despite a trend for the
amplitude parameter. This could be explained by the
low number of patients but also the complexity of
extracting 3D coordinates. Frontal video recording
of the hand pronation-supination movements with
the forearm horizontal and not vertical would cer-
tainly facilitate the hand rotation analysis. Further
prospective analyses with more patients are needed
to implement this specific assessment. Forthcoming
development of this software will allow analysis of
other movement disorders and other body parts.

In conclusion, using a deep-learning approach, we
provided a quantitative measurement of bradykine-
sia that prevents inter-operator variability. We have
reached an unprecedented level of precision and sim-
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plicity for its assessment. This precision, even at
distance, could help non-movement disorder special-
ists to rate bradykinesia of their patients accurately.
It would also be useful for specialists and non-
specialists, to monitor bradykinesia of patients at
distance, with video recordings provided directly by
the patient or caregivers, with appropriate instruc-
tions as indicated in the MDS-UPDRS III.
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