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Abstract. Parkinson’s disease (PD) by its common understanding is a late-onset sporadic movement disorder. However,
there is a need to recognize not only the fact that PD pathogenesis expands beyond (or perhaps to) the brain but also that
many early-onset patients develop motor signs before the age of 50 years. Indeed, studies have shown that it is likely the
protein aggregation observed in the brains of patients with PD precedes the motor symptoms by perhaps a decade. Studies
on early-onset forms of PD have shown it to be a heterogeneous disease with multiple genetic and environmental factors
determining risk of different forms of disease. Genetic and neuropathological evidence suggests that there are �-synuclein
centric forms (e.g., SNCA genomic triplication), and forms that are driven by a breakdown in mitochondrial function and
specifically in the process of mitophagy and clearance of damaged mitochondria (e.g., PARKIN and PINK1 recessive loss-
of-function mutations). Aligning genetic forms with recognized environmental influences will help better define patients,
aid prognosis, and hopefully lead to more accurately targeted clinical trial design. Work is now needed to understand the
cross-talk between these two pathomechanisms and determine a sense of independence, it is noted that autopsies studies for
both have shown the presence or absence of �-synuclein aggregation. The integration of genetic and environmental data is
critical to understand the etiology of early-onset forms of PD and determine how the different pathomechanisms crosstalk.
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INTRODUCTION

Classically, Parkinson’s disease (PD) is considered
a progressive, age-related neurodegenerative disor-
der of the elderly [1]. While this dogma is driven
by the onset of motor symptoms, well-characterized
prodromal clinical manifestations can precede motor
deficits, and neuropathological protein aggregation
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Fig. 1. Environment and genetic interplay in EOPD. An interpretation of the multi-hit hypothesis on early-onset Parkinson’s disease
suggests it is the combination of environmental agents acting on the background of genetic determinants that pre-disposes the individual to
disease. Highlighted are both risk (pink-red or bold) and protective (green or italics) factors. This concept in early-onset forms of disease
may be due to stronger effects sizes from exposure or higher penetrant genetic mutations observed in specific genes (e.g., SNCA or PRKN)
and molecular pathways (e.g., mitophagy). (Created by BioRender.com)

likely begins decades before the onset of clinical
symptoms given recent studies in Alzheimer’s disease
(AD) and PD [2–4]. With the average age-at-onset of
approximately 65 years being based on the appear-
ance of motor symptoms, this raises the interesting
question of whether prodromal clinical manifesta-
tions and early underlying molecular etiology justify
the reclassification of PD as a ‘early-onset’ disease.

Defining early-onset Parkinson’s disease

Early-onset PD (EOPD), sometimes referred to as
‘young-onset Parkinson’s disease’, lacks a consen-
sus definition, but generally refers to patients who
develop the classical PD motor symptoms after 21
years old and before 50 years of age [5, 6]. Patients
presenting with PD motor symptoms earlier than 21
years old are classified as ‘juvenile PD’ and usu-
ally present with atypical and more severe clinical
features [7]. EOPD and juvenile PD cases together
comprise between 5-15% of all patients with PD, and
are more frequent in males than females (1.5-1.7 : 1)
[8, 9]. Age of onset is not the only differential fea-
ture between EOPD and the more typical patients
with late-onset PD (LOPD; age of onset > 60-65
years) as there are significant differences in disease
progression, clinical features, response to medica-

tion, and postmortem pathology. Historically, EOPD
cases have been reported to be more likely familial
(∼20-30% of cases are familial) than sporadic LOPD
(where 10-15% report family history) [10]. The dis-
covery of novel EOPD genetic and environmental
causes and their potential interplay may also still help
to further elucidate the pathological mechanisms of
the more common late-onset patients with PD. Like
typical LOPD, EOPD is clinically and pathobiologi-
cally heterogeneous and the most current genetic and
environmental etiologies of EOPD will be discussed
herein (Fig. 1).

Clinical characteristics and neuropathology of
EOPD

It is clear that for PD in general the clinical
manifestation of symptoms is heterogeneous, and a
number of clinical subtypes have been described [11,
12]. With this in mind, a diagnosis of EOPD is based
on the presence of clinical manifestations that define
parkinsonism before a predefined age, and it remains
unclear whether using age at onset as a cut-off pro-
duces a more homogeneous patient group [13, 14].
A number of studies confirm no significant differ-
ence for tremor and bradykinesia between EOPD and
LOPD; however, EOPD patients are less likely to

https://BioRender.com


A. Kolicheski et al. / Early-Onset Parkinson’s Disease 2355

present with gait disturbances [15], possibly due to a
lower burden of comorbidities affecting gait either
due to the younger age of onset, or a slower dis-
ease progression. Dystonic posture and post-exercise
gait disorders have been reported frequently EOPD
as the first symptom [16]. As EOPD and LOPD
progress, differences can become more apparent with
rigidity, dystonia, dyskinesia, painful cramps, and
sexual dysfunctions being more frequent in EOPD
than LOPD [17]. By contrast, EOPD patients have
a lower risk of developing dementia compared to
LOPD patients [17, 18], perhaps again reflecting the
general overall health of the individual, e.g., better
vascular health and potentially different mechanism
of neuropathology progression between EOPD and
LOPD. In addition, early studies suggested preser-
vation of cardiac sympathetic innervation in patients
with PRKN-related disease, these findings have not
been observed consistently across EOPD or PRKN-
patients [19–21].

The reasons for these clinical differences are not
entirely clear, but age, environment, or underlying
genetic variants likely play important roles. Addi-
tionally, diverse distribution of �-synuclein-positive
Lewy body (LB) pathology may result in different
clinical phenotypes. In LOPD, although remaining
controversial, �-synuclein pathology is believed to
play an important role in dopaminergic neuronal
loss and the subsequent onset and progression of
motor symptoms. However, patients diagnosed with
EOPD can demonstrate heterogeneous neuropathol-
ogy, which may or may not include �-synuclein
deposits. Specifically, some patients with genetic
forms of EOPD harboring familial mutations in
PINK1 or PARKIN (PRKN) have been shown to
mostly lack LB pathology [22–35]. The heterogene-
ity in �-synuclein pathology raises the question of
whether the lack of LB pathology is due to the
younger age or whether distinct pathologic mech-
anisms exist that alter buildup and distribution of
the pathology. Interestingly, classical LB pathology
in several PINK1 and PRKN cases was observed
although confined to the brainstem [31, 36] suggest-
ing the degenerative processes taking place in these
forms of parkinsonism may differ from LOPD. The
predominant nigral degeneration in the presence of
few or no LB deposits led to these cases being defined
as “pure nigropathies” with restricted pathology and
underlying mitochondrial dysfunction as the primary
substrate [37]. This hypothesis is further supported
by the known role of environmental toxins (e.g.,
MPTP) in inducing mitochondrial-related parkin-

sonism which, together with the sporadic nature of
disease, was responsible for PD being described as
the archetypal non-genetic disease.

While PD is pathologically defined by the presence
of LBs, the biological origin, mechanisms of forma-
tion, and role(s) in disease remain unclear to date.
Interestingly, recent accumulating data suggest that
membranous organelles together with �-synuclein
are the main components of LB and that the pro-
cess of LB formation itself could be one of the
main drivers of neurodegeneration, rather than sim-
ple �-synuclein fibril formation [38–40]. Of note,
alterations in lipid metabolism and trafficking as well
as mitochondrial and autophagic-lysosomal function,
emerge as common biological pathways that can con-
tribute to LB formation [41], and may provide further
links between the various genetic and environmen-
tal factors in EOPD and/or LOPD. These studies
have raised more questions than answers in regard
to whether there are specific subtypes of disease, and
whether EOPD represents a distinct entity compared
to LOPD.

Environmental determinants

Exposure to environmental agents may modify the
risk of developing PD with the same environmen-
tal variables affecting LOPD believed to also play
a role in EOPD. Studies specifically investigating
the association between environmental exposure and
EOPD found that only a positive history of head
injury seemed to increase the risk of EOPD compared
to LOPD [42]. Interestingly, smoking was found to
be protective against PD in general with a stronger
association with a younger age at onset [43]. Coffee
consumption has been reported as possible protective
factors in the development of PD; however, the role
of coffee intake has not been extensively explored in
EOPD yet.

Historically, the H1N1 influenza pandemic of
1917-1918 has been considered a possible envi-
ronmental cause of parkinsonism. In particular,
the development of von Economo encephalitis was
directly caused by H1N1 [44]. In addition, results
of a study on trends of incidence and birth cohorts
of PD reported a slight but significant increase of
future risk of PD in men with a date of birth between
1915-1924 [4]. Recently, exposure to H5N1 has been
considered a possible PD causative infection in exper-
imental model of PD [45]. It is possible that systemic
viral (or potentially bacterial) infection represents the
first “hit” of the dual-hit theory of PD [46]. Addi-
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tional definitive studies will be needed in the future to
explore the role of the current SARS-CoV-2 (COVID-
19) pandemic on PD risk although studies have
shown that neurodegenerative processes are likely
[47–49].

The discovery of 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) induced parkinsonism
dramatically advanced the understanding of the
pathophysiology of parkinsonism and increased the
understanding of possible risk factors for EOPD [50].
MPTP-induced mitochondrial damage raises the pos-
sibility that cases of non-drug induced EOPD have
mitochondrial dysfunction as the underlying patho-
genesis [51]. On the other hand, in the genetic and
non-genetic forms of EOPD, the involvement of envi-
ronmental agents seems to cause less acute and more
long-lasting effect later in life. Paraquat and a num-
ber of pesticides have been identified as a risk for
PD either as a direct exposure or via polluted water
[52, 53]; however, the information on EOPD is lim-
ited. Certainly, the duration and amount of exposure
has an important weight in the development of PD,
together with an individual (genetic) predisposition.

Therefore, in EOPD the environmental risk factors
(alone or acting in cluster) may need a stronger indi-
vidual genetic predisposition to contribute to EOPD.
In fact, a study reported an increase risk of developing
PD and having a more severe disease in farmers that
had head trauma, exposure to pesticides and a genetic
susceptibility allele of the SNCA REP1 expansion
(common variation at the SNCA locus is hypothe-
sized to increase expression of �-synuclein protein)
but not in farmers with head trauma, exposure to pes-
ticides and no REP1 risk allele [54, 55]. If this is valid
for LOPD, we may argue that a stronger individual
(genetic) predisposition is needed in EOPD and/or a
stronger exposure to environmental risk factors.

ENVIRONMENT-GENE INTERACTIONS

The majority of PD cases are idiopathic, with inher-
ited genetic forms accounting for approximately 10%
of PD cases [56]. Many have postulated that PD
arises from an interaction between genetic suscep-
tibility and environmental exposures [57]. One of the
most studied interactions in PD is between smok-
ing and monoamine oxidase B (MAO-B) enzyme. As
noted earlier, smoking has been shown to be protec-
tive against PD; however, different polymorphisms
in the gene encoding MAO-B may have opposite
effects on PD risk in smokers [58]. Another exam-

ple of gene-environment interaction comes from a
genetically predetermined inability to metabolize
organophosphates and pesticides that in turn may
result in an increased risk of PD [59]. Chronic expo-
sure to rotenone, a mitochondrial complex I inhibitor
and pesticide, may alter the genetic expression and
production of �-synuclein and DJ-1, leading to PD
pathogenesis [60]. In addition, chronic exposure to
heavy metals and pesticides is associated with a
younger onset of PD [61]. It is also possible that
genetic factors only become relevant when placed in
the context of an environmental agent and these genes
may be more complicated to identify than those that
have been identified as monogenic drivers of disease.

Genetics determinants

PD is a genetically heterogeneous disease with
family members who carry the same genetic mutation
presenting with varying symptomatic manifestation
(e.g., age of onset, severity of symptoms, and disease
progression rate), suggesting that even less complex
Mendelian and monogenic cases of the disease rely
on environmental factors or additional genetic mod-
ifiers/risks.

Currently, pathogenic variants of variable pene-
trance have been identified in a handful of genes
widely accepted as major determinants or strong
risk factors for inherited forms of parkinsonism
and PD including SNCA, PINK1, PRKN, DJ-1,
LRRK2, VPS35, VPS13C, FBXO7, PLA2G6, SYNJ1,
ATP13A2, RAB39B, and GBA [62]. Genes known
to cause hereditary ataxias (ATXN2, ATXN3, and
FMR1) and frontotemporal dementia (C9ORF72,
GRN, MAPT, and TARDBP) have also been sug-
gested to influence PD as a secondary phenotype
[63]. Additional genes including UCHL1, HTRA2,
GIGYF2, CHCHD2, DNAJC13, TMEM230, LRP10,
PODXL, and NUS1 have been linked to isolated
familial PD cases but are either too rare for proper val-
idation/replication studies or lack definitive evidence
of pathogenicity [62–65].

Some genetic mutations are associated with atyp-
ical presentations of EOPD, with extrapyramidal
symptoms as part of a more complex phenotype.
Various forms of variable dystonia-parkinsonism
syndromes associated with early onset parkinso-
nian features have been described; mutations in
the ATP13A2 (PARK9) gene can cause a constel-
lation of symptoms including supranuclear up-gaze
palsy, oculogyric dystonic spams, facial-faucial-
finger mini-myoclonic and autonomic dysfunction
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along with more typical parkinsonian signs and
symptoms [66]. Mutations in the PLA2G6 (PARK14)
might be associated with levodopa-responsive EOPD
along with marked truncal hypotonia, optic atrophy,
cerebellar ataxia and mental retardation [67]. A simi-
lar pattern can be observed in those genetic disorders
clinically defined as spinocerebellar ataxias (SCA)
(e.g., SCA 2, SCA 3, SCA 8, and SCA 17) in which
parkinsonism may occur as a prominent sign early
in life, and signs of cerebellar dysfunction are the
main findings [68, 69]. Genetic forms of EOPD usu-
ally show a good response to Levodopa, but a higher
risk of developing dyskinesia, with a shorter latency
between treatment initiation and motor fluctuations
onset [70, 71]. Interestingly, EOPD patients may
present a slower disease progression and longer sur-
vival compared to LOPD [72, 73].

The identification of genes related to PD has
provided useful insights into specific biological
pathways involved in PD pathobiology and progres-
sion. Mutations in confirmed PD genes mainly alter
the dopaminergic neuron maintenance/homeostasis
through various mechanisms including, synaptic
vesicle protein defects, alterations of mitochondrial
quality control, and endosome-autophagy-lysosome
dysfunctions [74–76]. For EOPD, two genetic drivers
of disease are currently considered: 1) the three
recessive genes PINK1, PRKN, and DJ-1 and 2) the
autosomal dominant genes SNCA and LRRK2.

SNCA and LRRK2: from early to late, from
familial to sporadic

As the presence of LBs is considered the defining
pathological confirmation of a PD diagnosis [77], the
most relevant genetic cause of EOPD is the highly
penetrant mutations observed in the SNCA gene
encoding �-synuclein. SNCA point mutations and
genomic multiplications cause autosomal dominantly
inherited forms of EOPD with variable penetrance
and severity [78]. SNCA coding variation is rare and
to date only a handful of pathogenic autosomal domi-
nant missense mutations have been discovered along
with genomic multiplications of the entire gene [79].
Patients who carry additional copies of the SNCA
gene (e.g., duplications and triplications) often have
an earlier onset and more severe disease phenotypes
that appear to be dose-dependent [78]. Interestingly,
EOPD patients with the �-synuclein p.A30P substi-
tution have a slightly later disease onset than patients
carrying p.A53T, whereas patients with the highly
penetrant p.E46K mutation are more likely to develop

cognitive symptoms and dementia within two years
after the PD diagnosis [80].

The normal function of �-synuclein remains
unclear but it is thought to play several roles in
synaptic regulation and neurotransmitter release [81].
Pathologically, overexpression of �-synuclein or
folding defects/toxic gain of function mutations lead
to the accumulation and aggregation of this protein
in the pre-synaptic termini of neurons. This leads to
a cascade of events that includes neurotransmission
inhibition, inhibition of exocytosis, cell stress, and
cell death, which then spreads in a prion-like man-
ner through the synaptically connected brain regions
at variable rates consistent with Braak staging [82].
However recent links to other genes related to PD
also link �-synuclein levels to mitochondrial func-
tion (PINK1 and PRKN) and endosomal-lysosomal
pathways (LRRK2) [74, 75].

Leucine-rich repeat kinase 2 (LRRK2) is a large
protein with multiple domains and GTPase and kinase
activity that is widely expressed in different tissues
[83–85]. Mutations in LRRK2 are the most common
genetic cause of autosomal dominant PD, where the
most common disease-causing mutant is likely a gain
of function, LRRK2 p.G2019S [86]. Even though
LRRK2 variants are generally associated with LOPD,
clinical presentation is heterogeneous with a num-
ber of reports of EOPD patients harboring LRRK2
mutations [87]. The clinical heterogeneity observed
seems to be dependent on sex, ethnic background and
familial history [88]. Reduced penetrance is becom-
ing a better recognized feature of late-onset complex
disease and is likely a combination of risk and protec-
tive determinants (both environmental and genetic).
Interestingly, large genome-wide association stud-
ies have confirmed common risk variants with small
effect size in both SNCA and LRRK2 that contribute
to overall disease risk of PD [89].

PINK1 and PRKN: regulation of mitochondria
quality control

The high energy demand of dopaminergic neu-
rons means a large amount of reactive oxygen species
(ROS) is produced in these neurons. As ROS are toxic
to mitochondria and to the cell, it is essential that the
mitochondrial quality control is efficient in these neu-
rons [75, 90]. Mitochondrial damage and clearance
defects are relevant for neurodegenerative disorders
in general, and EOPD in particular has been hypoth-
esized to result from a breakdown of these quality
control pathways in some cases [91]. This hypothe-
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Fig. 2. Mitophagy pathway. Two of the genes that have been identified to drive early-onset recessive forms of Parkinson’s disease have
been demonstrated to play a major role in mitochondrial quality control measures of healthy mitochondria (A). The recessive loss of function
for either the PINK1 or “PARKIN (PRKN)” proteins disrupts the normal mitochondrial surveillance process which induces the process of
mitophagy for clearance of the damaged organelle (B). This dysfunction is believed to lead to the accumulation of damaged mitochondria
eventually resulting in neuronal death. (Created by BioRender.com)

sis is in part driven by the identification of recessive
loss-of-function mutations in two genes, PINK1 and
PRKN [92, 93], and moreover their functional link-
age into a stress-activated mitophagy pathway - the
degradation of selectively damaged mitochondria via
the autophagy-lysosome system (Fig. 2) [75].

PINK1 is a mitochondrial ubiquitin (Ub) kinase
that constantly surveilles organelle health through its
regulated import into healthy organelles and rapid
cleavage and degradation therefrom. When mito-
chondrial damage is present though, PINK1 is no
longer imported but locally accumulates on the outer
mitochondrial membrane where it recruits and acti-
vates the E3 Ub ligase PRKN from the cytosol to
jointly label and target damaged mitochondria for
degradation [75]. PRKN encodes for PARKIN, which
was first shown to function in the Ub-proteasome
degradation pathway in the early 2000 s [94, 95].
Experiments in drosophila were the first to geneti-
cally link PINK1 and PARKIN into a linear pathway

associated with mitochondrial health and function
[96, 97]. Yet, the biological link between PINK1
and PARKIN and their roles in mitophagy were
only established later in human cell culture [98–
101]. Homozygous loss of function mutations in
PINK1 and PRKN cause EOPD, with mutations in
PRKN representing the most common genetic defect
in EOPD patients [93, 102]. Although the symptoms
are indistinguishable from sporadic cases, multiple
post-mortem brains with PRKN mutations do not har-
bor �-synuclein aggregation and LB pathology [103]
and only one report suggests PINK1-linked Lewy
pathology [31].

The mean age at onset of patients with PINK1
mutations is 33 years old; however, the onset
and severity of the symptoms is highly variable.
For example, the youngest patient diagnosed with
PINK1-related disease was just 5 years old, whereas
some PINK1 patients first present with symptoms at
61 years of age or older [104, 105]. This extreme

https://BioRender.com
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Fig. 3. GBA-mediated Lysosomal dysfunction. Mutations of the GBA gene that result in haploinsufficiency have been shown to result
in loss of lysosomal homeostasis, a reduction of glucocerebrosidase activity, the build-up of lysosomal glucosylceramides and impairs
�-synuclein degradation enhancing aggregation. (Created by BioRender.com)

example suggests that there is more to the picture than
the PINK1 loss-of-function variants, with a possi-
bility of population-specific phenotypic expressions
of certain gene mutations. However, it is also clear
that the extent and duration of mitochondrial stress
and damage play critical roles in the activation of
the PINK1-PARKIN mitophagy pathway. Moreover,
proper flux through the autophagy-lysosome system
is crucial for swift and effective degradation and recy-
cling of the mitochondrial cargo.

Interestingly, even though the function of DJ-1
may not be directly involved in the PINK1-PARKIN
mitophagy pathway, there is growing evidence that
loss of function variants in DJ-1 do in fact interact in
parallel with the mitophagy pathway during disease
progression [106, 107]. DJ-1 loss of function vari-
ants were first described in 2 consanguineous families
from geographically isolated regions in the Nether-
lands and Italy [108], and patients with DJ-1 loss
of function variants are clinically similar to PINK1-
PRKN patients [109]. Multiple functions have been
attributed to DJ-1 since it was first identified as an

oncogene, including as a chaperone with protease
activity, a transcriptional regulator, and a role in
the maintenance of mitochondrial homeostasis [110].
Most of those functions could not be demonstrated in
vivo so far, until a recent study in DJ-1 knock-out rat
and mice brains demonstrated that PTEN inhibition
and AKT signaling seem to be the main functions of
DJ-1 in the progression of neurodegeneration [107].
AKT signaling promotes the attachment of hexok-
inase1 and 2 (HK1 and HK2) to the mitochondrial
outer membrane, which is an important step that aids
the function of the PINK1-PARKIN pathway. DJ-1
absence in rat and mice brain cells have displayed
delocalized HK1 from mitochondria to the cytosol,
which in turn may disrupt the efficiency of mitophagy
and increase oxidative stress and cell death.

There is controversy whether PINK1 and PRKN
deficiency and genetic variation might also contribute
to risk for development of PD later in life, so the tar-
geting of this pathway might confer therapeutic value
to both EOPD and LOPD [64, 75, 111–114]. With the
rise in Next Generation Sequencing and characteriza-
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tion of gene expression regulators it will be possible
to determine whether EOPD and LOPD patients who
carry heterozygous PINK1-PRKN deleterious vari-
ants also carry additional regulatory variants that
could lower the expression efficiency of these pro-
teins under stress. However, it is also becoming clear
now that not all mutations are alike and thus genetic
and functional analyses must be performed on the
single variant level in order to truly determine the
pathogenicity [115]. Yet, the amount of mitochon-
drial damage and the critical threshold functions of
PINK1 and PARKIN in that context may also vary
from individual to individual and even from cell to
cell, further impeding a pure genetic approach.

AGE-AT-ONSET MODIFIERS

Patients with EOPD have considerable age-at-
onset (AAO) variation. Genetic variation and sex
differences very likely contribute to AAO [116]. Mul-
tiple studies have attempted to identify genes or
variants that modify the AAO of PD with very lit-
tle success, likely due to the low sample size of
their datasets. The largest aggregate of PD genome
wide association studies (GWAS) to date includes
a meta-analysis of 17 datasets, with 37,688 PD
patients, 18,618 UK Biobank proxy-cases and 1.4
million controls. This study identified 90 indepen-
dent common genetic risk factors in individuals of
European ancestry [89]. Currently, there are efforts
to generate a predictive genetic risk score (GRS)
that is based on cumulative genetic risk, this may
also help determine AAO prediction, as it has
been shown that a subset of risk variants overlap
with AAO modifiers [117]. A Mendelian random-
ization portal that uses thousands of GWAS data
is now available for the research community in
hopes to identify modifiers of disease progression
(https://pdgenetics.shinyapps.io/MRportal/) [118].

GBA: lysosomal pathway central in PD
pathobiology

Rare coding variants in GBA are one the best
established risk and AAO modifiers of PD. Homozy-
gous detrimental variants in GBA cause Gaucher’s
disease (GD) which is the most common lysoso-
mal storage disease worldwide [119]. Patients who
are heterozygous for GD-causing variants have a
10-30% increased chance of developing PD by 80
years of age; this reflects a 20-fold higher risk com-
pared to the general population [120]. PD patients

with GBA mutations may exhibit typical manifes-
tations of PD but have a higher risk for dementia
with Lewy bodies than patients with LOPD [121].
Patients with homozygotic GBA mutations seem to
be more susceptible to psychiatric symptoms such
as psychosis, hallucinations, depression, anxiety, and
apathy, although this has not been confirmed in
all clinical studies [120]. Different GBA mutations
result in different risks of developing PD [122]. It is
proposed that patients with known disease-causing
variants in other PD genes (e.g., SNCA, LRRK2,
PINK1, and PRKN) that carry GBA mutations may
develop an earlier onset and more severe disease [123,
124]. A recent study showed that PD and Lewy body
dementia cases with GBA variants often carry a sub-
stantial number of other PD associated risk variants,
which confirms the age of onset modifier hypothesis,
and further highlights the importance of the lysoso-
mal pathway in PD pathobiology (Fig. 3) [117, 125].
In addition, heterozygotic carries of GBA mutations,
may also carry a number of variants of uncertain sig-
nificance that can further provide heterogeneity to the
clinical manifestations, but are likely contributing to
the neurometabolic process responsible for the symp-
toms and disease progression. The interplay between
AAO modifier genes with the rest of the genome,
epigenome and environmental risk/protective factors
is not understood yet, but likely it is one of the
major contributors to the endophenotypic variation
of LOPD and more specifically to EOPD.

CONCLUSIONS

Over the last two decades it has become clear
that up to 10% of patients with EOPD harbor a
major genetic determinant [126]. Nonetheless, in
most patients, disease cannot be explained by a
monogenetic form of inheritance, rather a genetic-
environment interaction appears to play a pivotal
role in the onset and progression of the disease
[57]. GWAS have identified susceptible gene loci
for many diseases, including neurodegenerative dis-
orders, however, the variability in common alleles
can’t explain heritability of common disorders by
itself. Moreover, GWAS cannot detect those genes
that influence disease onset/progression dependent
upon an interaction with other genes or with the envi-
ronment [127].

Functional analyses of lipid metabolism, mito-
chondrial health, neurometabolic cellular activity,
and autophagic-lysosome capacity will be critical to
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place these proposed gene-environment interactions
into context. Specific readouts such as phosphory-
lated ubiquitin, the joint PINK1-PARKIN product
and so-called mitophagy tag, may not only be helpful
to reveal cross-talk between and potential conver-
gence of PD pathways in cells, tissues, and biofluids,
but may also aid in better stratification of patients
[128–130]. Likewise, further approaches to identify
and compare specific molecular signatures, could be
critical to re-categorize forms of PD based on biolog-
ical pathways, in addition to clinical and pathological
definitions, rather than simply age at onset [131].

After the initial discovery of SNCA gene mutations
as a cause of PD more than 20 years ago, focused
research has led to the identification of multiple
genes linked to PD onset and progression [132–135].
Gene-environment interactions might be necessary to
initiate the cascade of events leading to the onset of
PD, and in some cases modify the risk of developing
PD as is the case for caffeine exposure and specific
polymorphisms that reduce PD risk [136] or smoking
and decreased risk of PD that can be reversed in the
presence of specific genetic variants [58]. Advances
in research and technology have enabled genetic
testing to become widely accessible and allowed con-
sumers to access their genetic information without a
healthcare professional intermediate. Genetic testing
companies such as 23andme empower customers, not
only with the ability to access information regarding
their ancestry, but also their genetic predisposition to
develop certain diseases, or their response to a spe-
cific drug, all without having to see a physician. A
number of PD risk loci have been identified or con-
firmed using a genetic database based on the data
collected through 23andme DNA samples [137].

A major question that remains unanswered by cur-
rent genetic-environment studies is whether EOPD
and LOPD are distinct disease entities or differ-
ent staging on the same spectrum of disease. As
discussed herein, there are clinical and neuropatho-
logic differences in the phenotypic manifestation of
disease signs, but it is not clear whether these are
a simply a reflection of overall health (biological
age) in the younger patients. Age is recognized as
the major risk factor for LOPD, but this is absent
in patients with EOPD and may reflect a stronger
genetic/environmental component in the latter. How-
ever, given the presented genetic and environmental
data it may be the scenario whereby there are dis-
tinct forms of PD, e.g., �-synuclein-centric versus
mitophagy-driven, that may produce/influence both
EOPD and LOPD. If this is the case, then whether

it is a benefit to split patients by an arbitrary age
cut-off is up for debate. What we really need as
a field is an unbiased biologic readout that cate-
gorizes patients into subtypes and allows a more
accurate definition of disease for clinical trial par-
ticipation. A good example of this is the application
of seed assays, such as RT-QuIC (real-time quak-
ing induced conversion), which will facilitate the
identification of patients with toxic �-synuclein pro-
tein driven forms of disease [138, 139]. Also, the
recent work on phospho-ubiquitin (Serine-65) as a
marker of mitochondrial health and readout for the
mitophagy/mitochondrial quality control pathway, is
another example of a potential biologic marker of
a specific disease process [128]. Finally, the expo-
sure to toxins may also in part define these subtypes,
creating an environment on which the genetic deter-
minants will act to drive phenotypic heterogeneity.
Whether we can use these combinations to define spe-
cific patients’ subtypes, beyond the simple dichotomy
of EOPD or LOPD, will be critical for drug develop-
ment and successful clinical trials. As we start using
machine-learning approaches to integrate large scale
multimodal datasets, we can perhaps identify these
key interactions, tease out cause versus effect ques-
tions, and redefine early-onset forms of PD.
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