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Abstract. Aging is the greatest risk factor for Parkinson’s disease (PD), suggesting that mechanisms driving the aging process
promote PD neurodegeneration. Several lines of evidence support a role for aging in PD. First, hallmarks of brain aging such as
mitochondrial dysfunction and oxidative stress, loss of protein homeostasis, and neuroinflammation are centrally implicated
in PD development. Second, mutations that cause monogenic PD are present from conception, yet typically only cause disease
following a period of aging. Third, lifespan-extending genetic, dietary, or pharmacological interventions frequently attenuate
PD-related neurodegeneration. These observations support a central role for aging in disease development and suggest that
new discoveries in the biology of aging could be leveraged to elucidate novel mechanisms of PD pathophysiology. A recent
rapid growth in our understanding of conserved molecular pathways that govern model organism lifespan and healthspan has
highlighted a key role for metabolism and nutrient sensing pathways. Uncovering how metabolic pathways involving NAD+

consumption, insulin, and mTOR signaling link to the development of PD is underway and implicates metabolism in disease
etiology. Here, we assess areas of convergence between nervous system aging and PD, evaluate the link between metabolism,
aging, and PD and address the potential of metabolic interventions to slow or halt the onset of PD-related neurodegeneration
drawing on evidence from cellular and animal models.
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AGING IS THE GREATEST RISK FACTOR
FOR PARKINSON’S DISEASE

Development and progression of Parkinsonism, the
movement disorder of Parkinson’s disease (PD), is
driven primarily by the degeneration of dopaminer-
gic neurons within the substantia nigra (SN) [1, 2].
Established contributors to this progressive neurode-
generation include mitochondrial dysfunction [3],
oxidative stress [4], inflammation [5], and the mis-
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folding and aggregation of �-synuclein into protein
deposits such as Lewy bodies [6].

It is now clear that aging is the greatest risk fac-
tor for developing PD [7–9]. While this connection
had long been presumed, detailed studies charac-
terizing the aging-PD link emerged in the 1980s
and 1990s. One of the most influential studies from
that time was the Rotterdam Study, a door-to-door
population-based survey of nearly 7,000 persons of
55 years of age or older living in a Netherlands sub-
urb [10]. The authors reported quantitative evidence
of the connection between aging and PD, with preva-
lence in males and females combined increasing from
0.3% in those aged 55–64 to 1.0% in those aged
65–74, 3.1% in those aged 75–84, and 4.3% in those
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aged 85–94. Census studies like the Rotterdam study
were conducted in several other countries as well,
including Italy [11], Greece [12], Spain [13], France
[14], China [15], Taiwan [16], and USA [17], all
of which reported similar age-associated increases
in PD prevalence. These studies consistently con-
firmed the close association of aging with PD
development.

Besides aging, PD has been associated with genetic
risk factors including highly penetrant familial PD
gene mutations and common risk variants, as well as
environmental risk factors such as pesticide exposure
[18]. Epidemiological evidence indicates that expo-
sure to the pesticides paraquat or rotenone increases
PD risk 2-3-fold due to the neurotoxic action of
these hazardous materials [19]. However, the reported
increase in PD risk associated with known environ-
mental factors pales in comparison to that of aging.
Recent analyses of older populations have observed
that PD incidence increases approximately 100-fold
when comparing people aged 45–49 to those aged
85–89 [20].

The strong relationship between aging and PD has
several major implications for the future outlook of
disease burden and on approaching the study of PD
development and treatment. First, population anal-
yses conducted by the World Health Organization
(WHO) have estimated that the number of Ameri-
cans aged 65 and older will approximately double
by 2050, with the world population of those aged
85 and older projected to triple in the same time-
frame [21]. This trend will inevitably lead to a rapidly
increasing incidence of PD and other aging-related
pathologies over the upcoming decades, resulting in
greater public health burdens. Second, new advances
made in understanding the drivers of CNS aging may
offer an important roadmap to delineating mecha-
nisms of PD development and vice versa. These fields
may inform each other and synergy may be derived
from an approach encompassing both aspects. This
concept forms the foundation of geroscience, which
strives to understand the mechanisms that make aging
a key driver for diseases such as PD. Third, there is
rationale for incorporating aging into preclinical ani-
mal testing of PD therapeutics. Preclinical studies
of candidate disease-modifying PD therapies con-
tinue to rely on non-aged acute animal disease models
for practical reasons related to the cost and duration
involved in such studies. While there are numerous
challenges in translating therapies to the clinic, the
profound physiologic changes associated with aging
may negate the efficacy of disease-modifying thera-

pies that work well in young animals but fail in aged
PD patients.

Here, to examine the aging-PD link further, we will
first assess points of convergence in the hallmarks of
CNS aging and PD that constitute abundant correl-
ative evidence linking the two. We will then discuss
how metabolism has emerged as a potential nexus
connecting aging to PD neurodegeneration, and
evaluate evidence that altered expression of lifespan-
regulating metabolic genes influences PD-related
phenotype development, potentially demonstrating a
causal link between aging and PD.

AGING AND PD: POINTS OF
CONVERGENCE

The process of aging is highly complex and
spans many integral biological pathways and sys-
tems within organisms. While the details differ
across species, the underlying phenomenon is always
the same: a progressive accumulation of molecu-
lar and cellular dysfunction that ultimately results
in the breakdown of tissues necessary to sustain
life. Several major molecular hallmarks of brain
aging overlap with mechanisms implicated in PD
neurodegeneration, including oxidative damage and
mitochondrial dysfunction, loss of protein home-
ostasis, neuroinflammation, genomic instability, and
impaired stress responses. Accumulating age-related
dysfunction in these areas likely renders neurons vul-
nerable to PD-associated environmental and genetic
factors that affect the same processes, thus com-
pounding dysfunction and promoting �-synuclein
pathology. Additionally, dopaminergic neurons may
be more vulnerable to age-related loss of mitochon-
drial function and resulting bioenergetic stress due
to their highly ramified processes that harbor dense
mitochondria to sustain energy-requiring processes
at distal sites [22]. Hence, it is conceivable that some
effects of aging may be more deleterious in dopamine
neurons and may contribute to regional vulnerability
in PD. The convergence of aging hallmarks with PD
is consistent with aging being the predominant risk
factor for disease. To an extent, PD-related neurode-
generation resembles an exacerbated form of aging
in that disease-associated mitochondrial dysfunction,
loss of protein homeostasis, and neuroinflammation
occur in a more pronounced manner within vulnera-
ble regions such as the SNpc than generally manifests
across the brain as a result of aging. It is important to
note, however, that the degree to which these func-
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Fig. 1. Convergent effects of aging and Parkinson’s disease development on key biological functions. Major overlapping effects of aging
and PD on mitochondrial homeostasis, protein homeostasis and inflammation are described. See text for additional details. ROS, reactive
oxygen species.

tional deficits are actually causal in the physiological
declines of aging and neurodegeneration of PD has
not yet been resolved. An alternative hypothesis is
conceivable, in which PD neurodegeneration occurs
independently of aging but on a matching time-scale.
For example, if the seeding and spread of toxic �-
synuclein aggregates across the brain are slow and
take decades to reach the point where they trigger the
manifestation of disease, they could be misattributed
to aging. However, it seems unlikely that these phe-
nomena would not be promoted by the breakdown in
protein folding, trafficking and turnover that occurs
with age, and in this context it seems more plausible
that they would be influenced by aging if not governed
by it.

Compelling evidence from cell and animal disease
models supports convergent roles for 1) mitochon-
drial dysfunction and oxidative stress; 2) loss of
protein homeostasis and protein aggregate formation;
and 3) chronic inflammation in aging and PD (Fig. 1).
Similarities between aging and PD for each of these
areas are discussed below.

Mitochondrial dysfunction and oxidative stress

Mitochondrial oxidative phosphorylation relies on
the electron transport chain (ETC) utilizing oxygen

molecules for their electron accepting potential. This
use of oxygen creates the opportunity for the forma-
tion of superoxide (O2

−) radicals that can give rise to
other reactive oxygen species (ROS), such as hydro-
gen peroxide (H2O2) and reactive nitrogen species
(RNS) such as peroxynitrite (ONOO−). While recent
research has supported that these ROS or RNS
molecules may have essential signaling functions
within the cell [23–25], their high biochemical reac-
tivities can also cause disruption through oxidative
or nitrosative stress, respectively [26]. Mitochondria
harboring dysfunctional ETC complex component(s)
have increased potential for generating O2

− (pro-
duced predominantly by complexes I and III) which
can elevate overall oxidative stress in the cell.

The accumulation of oxidative stress has been
implicated in the normal processes of aging. In fact,
the oxidative stress theory of aging was one of the
most popular until recent evidence has begun to
cast doubt on its validity [26–28]. Originally con-
ceived as the mitochondrial free radical theory of
aging, the oxidative stress theory of aging posits
that the growing presence of reactive species within
the cell derived from both endogenous (e.g., mito-
chondrial) and exogenous sources causes structural
damage to macromolecules including lipids, proteins,
and nucleic acids. Since these ROS/RNS could target
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the mitochondria themselves, a putative feed-forward
cycle of mitochondrial dysfunction and ROS/RNS
generation has been proposed to account for the pro-
gressive nature of cellular aging. The widely-held
hypothesis that oxidative damage alone is sufficient
to account for functional losses associated with aging
has recently been challenged [29]. An alternative
hypothesis posits that an age-related shift toward a
pro-oxidizing cellular redox state via mitochondrial
ROS production leads to a disruption of redox-
regulated signaling pathways that in turn promotes
cell senescence and death [29].

Mitochondrial dysfunction has been implicated in
PD for over thirty years, initially arising from studies
examining the effects of exposure to 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP) [30, 31]
and certain pesticides such as rotenone and paraquat
that selectively inhibit mitochondrial ETC complex
I [32, 33]. This evidence was supported by the iden-
tification of reduced complex I levels in PD patient
dopamine neurons [34] and more recently reinforced
by studies on familial PD-linked genes and from the
PD-like phenotypes arising from genetic deletion of
a catalytic ETC complex I subunit [35], thus estab-
lishing mitochondrial dysfunction and bioenergetic
failure as a primary candidate mechanism for PD
development.

Familial PD genes and mitochondrial
dysfunction

Investigations into highly penetrant mutations
in genes including leucine-rich repeat kinase 2
(LRRK2), Parkin, PTEN-induced kinase 1 (PINK1),
synuclein alpha (SNCA), and DJ-1 have revealed a
robust association of neurodegeneration with markers
of mitochondrial damage, dysfunction, and oxida-
tive stress in genetic disease models, marking a
clear parallel with mitochondrial hallmarks of aging
(Table 1). Parkin encodes an E3-ubiquitin ligase
that can monoubiquitinate and polyubiquitinate a
number of cellular substrates and PD-associated
Parkin mutations are generally thought to result
in a loss of function via one of several mecha-
nisms [36–38]. PINK1 is a mitochondria-targeted
kinase whose functional silencing has also been
linked to PD. Recent work has shed light on a
coordinated role for PINK1 and Parkin in regu-
lating mitochondrial quality control via mitophagy
and in mitochondrial biogenesis via transcriptional
control of Peroxisome proliferator-activated receptor
gamma coactivator 1-alpha (PGC-1�) [39]. Quality
control deficits occurring through loss of Parkin or
PINK1 function enables dysfunctional mitochondrial
to remain within the overall mitochondrial pool thus

Table 1
Effect of familial PD gene mutations on mitochondrial function. The mitochondrial role and effect of PD-associated loss or gain of function

mutations on mitochondrial morphology and function are described

Gene Inheritance Pattern and
Disease Onset

Protein Function and
Mitochondrial Role

Mitochondrial effect of
PD Mutation

References

Parkin Autosomal recessive,
early onset

E3 ubiquitin ligase,
interacts with PINK1,
involved in mitophagy
and mitochondrial
biogenesis

Deficient mitophagy and
mitochondrial biogenesis

[34–36, 38, 39, 160, 162,
181, 183]

PINK1 Autosomal recessive,
early onset

Mitochondria-targeted
kinase, interacts with
Parkin, involved in
mitophagy and
mitochondrial biogenesis

Deficient mitophagy and
mitochondrial biogenesis

[37, 39, 160, 161, 182]

DJ-1 Autosomal recessive,
early onset

Redox-regulated
chaperone, DJ-1
oxidation promotes
mitochondrial interaction
and protection

Mitochondrial
fragmentation, increased
vulnerability to oxidative
stress

[51–60, 71]

SNCA Autosomal dominant,
early onset

Role in
neurotransmission,
regulates mitochondrial
morphology

Mitochondrial
fragmentation,
mitochondrial DNA
damage

[45–50]

LRRK2 Autosomal dominant, late
onset

Kinase, protective
mitochondrial role via
unclear mechanism

Mitochondrial
fragmentation,
mitochondrial DNA
damage

[37, 40–44]
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promoting ROS generation and bioenergetic deficits
[40, 41] reminiscent of aging cells.

Mutations in the leucine-rich repeat kinase 2
(LRRK2) gene cause late-onset PD (>60 years
old) consistent with neurodegeneration occurring
following a major intersection with aging. The com-
mon LRRK2 G2019S mutation increases LRRK2
kinase activity which appears to be a key route
to LRRK2-induced neurotoxicity. Cells expressing
pathogenic LRRK2 mutations exhibit mitophagy
deficits through unclear mechanisms [39, 42, 43],
hence impaired clearance of damaged mitochon-
dria may be a common feature of multiple familial
PD genetic mutations. Pharmacologically inhibit-
ing LRRK2 kinase activity restores mitophagy, thus
linking aberrant LRRK2 kinase activity to altered
mitochondrial homeostasis [39, 43]. iPSC-derived
neural cells from PD patients carrying LRRK2
G2019S mutations or at-risk individuals harboring
the R1441C mutation display elevated levels of
mtDNA damage that can be blocked by correcting
the gene mutation [44]. LRRK2 G2019S was also
reported to hyperphosphorylate the essential H2O2
scavenger peroxiredoxin 3 (PRDX3) in Drosophila
brains, reducing overall peroxide activity and result-
ing in skeletal muscle mitochondrial degeneration
and dopaminergic neurodegeneration that could be
reversed by PRDX3 overexpression or treatment with
the peroxidase mimic ebselen [45]. Lastly, LRRK2
G2019S overexpression can induce mitochondrial
fragmentation in cultured neurons, severely impair-
ing their energetic homeostasis and increasing ROS
levels [46].

Further intersection between aging and PD within
the context of mitochondrial health can be found
in studies of �-synuclein and DJ-1. Point mutations
and common variants in SNCA, the gene encoding
for �-synuclein are linked to familial and sporadic
forms of PD, respectively [47, 48]. �-synuclein is a
small, natively unfolded, cytosolic protein that has
been observed to cause mitochondrial fragmenta-
tion in dopaminergic neurons in vivo that may be
dependent on its binding to and disruption of mito-
chondrial membranes [49, 50]. These effects were
reported to occur independently of the mitochondrial
fission protein Drp1 [50], although in Drosophila,
�-synuclein overexpression led to disruption of the
spectrin cytoskeleton resulting in actin-mediated
Drp1 mislocalization and aberrant mitochondrial
dynamics [51]. In transgenic mice expressing the
PD-linked �-synuclein A53T mutation, degenerat-
ing mitochondria were observed harboring significant

mitochondrial DNA (mtDNA) damage [52]. DJ-1 is
a ubiquitous and highly-conserved protein critical for
cellular responses to oxidative stress, where upon
it becomes relocalized to mitochondria [53]. While
the specific mechanism of action is still obscure,
loss of DJ-1 results in mitochondrial fragmentation
in a human dopaminergic cell line [54]. Specific
pathogenic mutations in DJ-1 have been associated
with autosomal recessive early-onset Parkinsonism,
likely due to a lack of protection from oxidative
stress-induced cytotoxicity [55–57]. In mice, overex-
pression of wild-type DJ-1 has conferred resistance to
MPTP, a mitochondrial complex 1 inhibitor that can
cause a PD-like clinical syndrome with dopaminer-
gic neurodegeneration [58]. Conversely, mice lacking
DJ-1 show increased susceptibility to MPTP toxicity
and display nigrostriatal dopaminergic deficits [59,
60]. Despite its effectiveness at neutralizing oxida-
tive stress threats in the cell, over time DJ-1 undergoes
oxidative modifications that impair its functionality
in the cell [61]. One study found that the percentage
of modified DJ-1 in fly brains increased from 0.8% in
1-day-old flies to 17.9% in 40-day-old flies; similar
significant age-related changes were also observed
in mouse and human brain samples [62]. Therefore,
both aging-related modification and PD-associated
mutations have the potential to impair DJ-1 function-
ality and lead to the development of PD.

POLG and mtDNA mutations

Aging cells accumulate mtDNA mutations [63],
potentially via oxidative damage and clonal expan-
sion of mtDNA replication errors that occur early
in life [64]. Deficiencies in the polymerase gamma
(POLG) gene, encoding mtDNA polymerase gamma
results in accelerated parameters of aging and
reduced lifespan in mice accompanied by mutations
in mtDNA [65, 66]. Likewise, POLG1 mutations are
associated with PD in humans [67, 68] and POLG
mutator mice that express a proofreading-deficient
variant of POLG exhibit comparable mtDNA muta-
tions in substantia nigra pars compacta (SNpc)
neurons by 1 year of age to that of aged human
SNpc [69–71]. Despite the manifestation of brain
metabolic and neurotransmitter abnormalities [72],
these mice do not develop overt dopaminergic neu-
rodegeneration [71, 73], even when challenged with
loss-of-function in the familial PD gene DJ-1 [73] or
the PD-associated toxin MPTP [74]. Closer exami-
nation indicates that mtDNA deletions in these mice
trigger a neuroprotective response within dopamin-
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ergic neurons that may stave off neuronal death [71].
This does not appear to be the case in flies, however,
where expression of proofreading-deficient mtDNA
polymerase leads to somatic mtDNA mutations,
mitochondrial dysfunction, and PD-related pheno-
types such as dopamine neuron loss and locomotor
dysfunction [75].

Loss of protein homeostasis and protein
aggregate formation

Protein homeostasis is achieved upon the bal-
ance and fidelity of protein synthesis, folding, and
degradation. Impaired proteolysis and the accumula-
tion of misfolded protein aggregates, implicated in
both aging and PD etiology, can cause significant
stress on cell resources and ability to function. The
aggregation of specific proteins are directly linked
to aging-related diseases such amyloid-�-containing
plaques in Alzheimer’s disease [76] and �-synuclein-
containing Lewy bodies in PD [6]. While it still
remains to be conclusively determined if these pro-
tein aggregates are the cause of their respective
disease’s clinical progression, it is clear that such a
phenomenon can be promoted by the aging process.

Healthy cells produce vast amounts of proteins on
a daily basis to maintain homeostasis amid constant
protein turnover. Errors in translation or folding can
render proteins dysfunctional or actively disruptive
via toxic gain of function. These misfolded proteins
are dealt with by molecular chaperones and degra-
dation machinery within the cell to prevent damage
and stress. As cells age, however, these proteome-
stabilizing elements lose effectiveness which results
in a growing loss of protein homeostasis [77, 78].
Additionally, levels of protein oxidation and nitrosy-
lation, modifications that can impair protein folding
and increase aggregation potential, increase over
aging and add additional pressure to the proteostasis
machinery [79, 80]. Given enough time and accu-
mulation, aging cells may reach their threshold of
proteome stress tolerance leading to cell death [81,
82].

While protein aggregation is commonly associ-
ated with age-related disease, recent studies have
shown that the phenomenon occurs during normal
aging as well. In C. elegans, it was shown that
hundreds of proteins become insoluble upon aging,
spanning a wide range of biological systems includ-
ing proteostasis itself [83]. Other studies in C. elegans
as well as cultured mammalian cells suggests that
osmotic stress results in the formation of age-related

unstable polyglutamine (polyQ)-repeat-containing
proteins that have the potential to self-aggregate,
without any mutation needed [84, 85]. These data led
to even further work that found that for a large por-
tion of these unstable polyQ proteins, the increased
aggregation potential is conferred by aging-related
post-translational carbonyl modification [86, 87].

�-synuclein point mutations or gene multipli-
cations linked to PD promote the formation of
oligomeric and higher-order aggregates within neu-
rons [88–90]. Interestingly, brainstem Lewy bodies
and Lewy neurites have been repeatedly documented
in a small subset (∼10%) of aged individuals with-
out PD [91], consistent with a baseline degree of
synuclein aggregation during normal aging. Hap-
loinsufficiency of GBA1, the gene that encodes for
glucocerebrosidase (GCase), is one of the most com-
mon genetic risk factors for PD [92–94]. GCase is
a lysosomal hydrolase critical for the metabolism
of glycosphingolipids, and recent studies have sug-
gested that its impaired activity can contribute to
increased aggregation of �-synuclein and the forma-
tion of Lewy bodies within the cell [95–97]. This
impairment can be caused by PD-associated GBA1
mutations but may also appear as a natural result
of aging; in wild-type mice, levels of GCase activ-
ity in the brain were found to decrease with aging
and were correlated with an increase in glycosph-
ingolipids [96]. Patients with a PD-linked GBA1
mutation exhibit earlier age of onset and a more
rapid disease progression compared to non-carrier PD
patients [98, 99].

Chaperones assist in intracellular protein folding
by providing the space and protection for proteins
to undergo the conformational changes needed to
achieve the proper configuration and functionality.
Chaperones are also able to recognize misfolded
proteins that are beyond repair and target them for
degradation, a process known as chaperone-mediated
autophagy (CMA) [100]. Several PD-related muta-
tions interfere with CMA, likely contributing to the
disease pathology. The disease-associated mutants of
�-synuclein and LRRK2, while recognized by chap-
erones and marked for CMA, fail to be fully degraded
by the lysosomes due to their mutation-derived
association with lysosomal-associated membrane
protein 2a (Lamp2a) [101]. Even more interestingly,
this degradation failure instead results in mutant
�-synuclein accumulating at lysosomal surfaces,
promoting its subsequent aggregation and further
impairing the overall CMA proteostasis of the cell
[102]. Overexpression of Lamp2a was found to be
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neuroprotective against �-synuclein aggregation, as
CMA function was maintained [103]. Taken together,
multiple lines of evidence indicate that the ability of
a cell to maintain proper protein folding and cor-
rect for misfolding is impaired similarly with old
age and with PD-associated mutations, illustrating
the convergence between the two and highlighting
the relevance for investigation.

Chronic inflammation

A chronic low-grade inflammation associated with
aging, dubbed “inflammaging” may result from
elevated innate immune system triggers such as pro-
inflammatory damaged or dysfunctional cells [104].
Aging also increases the likelihood of developing
conditions that promote chronic inflammation, such
as obesity, cardiovascular disease, and diabetes [105].
A major biochemical root of aging-induced chronic
inflammation has to do with immune response reso-
lution. In the prime of adult life, the human immune
system can clear out threats efficiently while also
ramping down the inflammatory response to reduce
unnecessary stress on the body. With aging, how-
ever, inflammatory triggers from damaged and dying
cells are chronically elevated resulting in prolonged
inflammation with increased collateral damage to the
body, damage that can leave the immune system
hypervigilant and overreactive to future insults [104].

The role of inflammation in PD has been exten-
sively studied since the connection was first posited
several decades ago and has recently garnered even
greater attention as a causative factor with the
proposed influence of intestinal inflammation on
disease development via a putative gut-brain trans-
mission of �-synuclein [106]. PD genetic studies
support a role for inflammation, at the level of
penetrant familial PD genes and low-risk common
variants. Genome-wide association studies (GWAS)
have linked late-onset PD with variants at the HLA
(human leukocyte antigen) locus [107, 108] and sev-
eral of the familial PD genes discussed above are
expressed in immune cells and involved in their func-
tion (reviewed in [109]), particularly LRRK2. LRRK2
is highly expressed in cells of the innate immune sys-
tem and is elevated in the peripheral immune cells
of idiopathic PD patients and in inflamed colonic
tissue of Crohn’s disease patients [110]. Inflamma-
tory triggers such as lipopolysaccharide or IFN-�
induce LRRK2 expression in several immune cells
[111–113] implicating its role in inflammation. In the
CNS, LRRK2 is highly expressed in microglia [111]

and gain-of-function mutations found in PD such as
G2019S may promote hyperactive or inappropriate
microglia-mediated inflammation [114, 115]. When
activated, microglia upregulate a variety of recep-
tors and pro-inflammatory cytokines that stimulate
the immune response and associated phagocyto-
sis [116]. This is beneficial for the clearance of
dead cells or debris, yet trouble arises when the
microglia remain in an activated state for too long,
as their activity also produces ROS that can dam-
age neurons [5]. Evidence of activated microglia
has been observed both in the aging brain [117,
118] and in the brain or cerebrospinal fluid of PD
patients [119, 120] characterized by upregulation
of pro-inflammatory cytokines such as IL-1�, IL-6,
and TNF�, implying chronic innate immune activa-
tion. Additionally, microglia in both aging mammals
and PD display an active (deramified) morphol-
ogy [121, 122], increased phagocytic activity [121,
123] and inflammatory marker levels [124–127].
In PD, they are found in postmortem brain sur-
rounding degenerating dopaminergic neurons [128]
consistent with a potential role in neurodegenera-
tion. While there is compelling evidence supporting
microglial-induced inflammation in the brains of
PD patients and aging mammals, it remains to be
determined whether this is causal vs. consequence
of age-related cognitive changes or PD onset and
progression.

METABOLISM AT THE INTERSECTION
OF AGING AND PD

The link between metabolism and aging has long
been recognized. Over a century ago, the rate of living
theory was postulated based on the observation that
organismal lifespan shows a strong negative correla-
tion with metabolic rate, indicating that metabolism
influences longevity. Over the last few decades, a
central role for metabolism as a driver of aging has
emerged from invertebrate and rodent studies show-
ing that reduced intake of calories, and in particular
dietary protein is frequently associated with delayed
mortality [129–132]. Further, numerous metabolic
regulation genes have been identified whose modified
expression in model organisms can extend lifespan
[133]. The relationship between diet and longevity
exists in primates and likely humans too. Calorie
restriction can extend longevity in rhesus monkeys
as well as delay the onset of multiple age-related
pathologies [134] and human studies also support
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a relationship between protein intake and mortality
[135].

A growing list of lifespan-regulating genes have
been shown to influence PD-related neurodegener-
ation, thus strengthening the connection between
aging and PD while uncovering potential molecu-
lar mediators. Informatively, many of these genes
belong to major metabolic hubs such as insulin and
mechanistic target of rapamycin (mTOR) signal-
ing or Nicotinamide adenine dinucleotide (NAD+)
metabolism, thus underscoring the impact of nutrient
sensing and metabolic signaling to the neurodegener-
ation process. The role of these dietary and metabolic
pathway factors in PD pathogenesis is discussed
below.

Insulin/IGF-1 and mTOR signaling

A wealth of animal studies has demonstrated the
conserved lifespan extending-effect of dietary restric-
tion. At the cellular level, dietary restriction can
promote adaptive cellular stress responses and reduce
activity of conserved nutrient-sensing pathways such
as insulin and IGF-1 signaling (IIS) and its targets in
the forkhead box O (FOXO) transcription factor fam-
ily and the connected mTOR pathway [136]. Roles for
IIS and mTOR signaling pathways in the longevity
effects of dietary restriction have been demon-
strated through genetic epistasis studies and genetic
perturbation of pathway constituents which can phe-
nocopy the lifespan extending effects of dietary
restriction [130, 137]. In agreement, genetic loss-
of-function polymorphisms in the IGF-1 receptor
(IGF-1 R), insulin receptor (INSR), Akt, and FOXO3A
are also associated with longevity in humans and
model organisms [138–141]. While activation of
the mTOR signaling complex mTORC1 (mTOR
complex 1) is promoted by insulin via PI3K/Akt
mediators, mTORC1 also acts in response to nutri-
ent amino acids and other growth factors to control
a wide array of biosynthetic and metabolic func-
tions including inhibition of autophagy. Thus, dietary
restriction, and in particular amino acid restriction,
can directly impact mTOR signaling which has been
observed to extend lifespan similarly to mTOR path-
way inhibitors such as rapamycin and other rapalogs.

Evidence collected over the last two decades sug-
gests that diet can influence dopamine neuron health
and viability, particularly when underlying neuronal
insults related to toxin exposure or monogenic PD-
causing mutations exist, and that impact on insulin
and mTOR signaling as well as stress responses

may play a role (Fig. 2). For example, reducing
food consumption staves off motor deficits and nigral
dopamine neuron loss in mouse and primate toxin
models of PD [142, 143]. Subjecting rhesus mon-
keys to a low-calorie diet for 6 months bestowed
protection from the dopaminergic neurotoxin MPTP
[143]. The movement disorder and striatal dopamine
deficits occurring upon MPTP exposure are substan-
tially attenuated in monkeys fed low-calorie diets
and this is associated with increased levels of striatal
BDNF and GDNF levels, which at least for BDNF,
have been shown to decline with age in several brain
regions including striatum [144] and in serum [145].
Similarly, impairments in autonomic regulation of
heart rate observed in mutant A53T �-synuclein
transgenic mice can be reversed by a form of dietary
restriction called alternate day fasting, and worsened
by a high fat diet in young mice [146]. A high fat
diet has also been shown to accelerate the onset of
brainstem pathology and motor deficits in a sepa-
rate line of �-synuclein mice [147]. Invertebrate and
rodent genetic studies have been particularly useful
in delineating the contribution of the insulin and TOR
signaling pathways to aging and PD. For example, a
loss-of-function mutation in daf-2 (the worm insulin-
like growth factor 1 receptor) promotes organismal
survival and partially rescues the loss of dopamine
neuron viability in worms expressing human LRRK2
G2019S or �-synuclein A53T [148, 149]. FOXO
transcription factors are major downstream mediators
of PI3K/Akt that have been linked to lifespan regula-
tion in humans (FOXO3) as well as model organisms
(e.g., daf-16 in nematodes, dFOXO in Drosophila)
[141, 150]. FOXO3A protein is reportedly found
in lewy bodies in human PD brain [151] and fly
dFOXO plays a role in protecting dopamine neurons
against cellular stress and accordingly, a subset of
these neurons are lost in dFOXO null mutants [152].
Silencing or overexpressing FOXO3 in rat substantia
nigra dopamine neurons appears to protect them from
cell death associated with human �-synuclein expres-
sion [153]. Together, these findings suggest that
dietary restriction or genetic modulation of insulin
signaling pathway components can have a prominent
impact on dopamine neuron health and viability in
the face of familial PD mutations or toxins. Whether
these effects occur cell autonomously through altered
insulin signaling in dopamine neurons, or whether
glia are involved is currently unresolved. Addition-
ally, while consumption of high calorie diets may
promote aging and PD-related neurodegeneration in
part through elevated insulin signaling, it should be
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Fig. 2. Similar impact of insulin/IGF-1 and mTOR pathway manipulations on aging and PD-related neurodegeneration. Impact of dietary and
genetic manipulations on several key nodes throughout the insulin/IGF-1 and connected mTOR signaling pathway on aging and PD-related
neurodegeneration are shown. Green boxes denote beneficial effects (i.e., delayed/attenuated aging or PD neurodegeneration) and orange
boxes denote deleterious effects (i.e., accelerated aging or PD neurodegeneration). Figure was created on BioRender.com.

noted that type 2 diabetes is associated with elevated
PD risk [154–156] and that increased insulin resis-
tance and decreased nigral insulin receptor mRNA
are reported in PD patients compared to age-matched
controls [157–159] raising the question of whether
insulin resistance is a cause or consequence of PD-
related neurodegeneration [160].

In Drosophila, rapamycin treatment or genetic
suppression of TOR signaling through 4EBP over-
expression can substantially extend longevity [130]
and also appears to protect against dopamine neuron
loss in Pink1 and parkin mutant flies [161], while
overexpressing p70 S6 kinase (S6k) in a manner
that putatively mimics TORC1 signaling exacerbates
neuron loss in Pink1 mutant flies [162]. Activity of
TOR complex 1 (TORC1) is negatively regulated
by AMP-kinase (AMPK) signaling and there is evi-
dence to suggest that AMPK phosphorylation, an
index of its activity, is reduced in both aged mice and
in Parkin-deficient mice [163]. Pharmacological or
genetic activation of AMPK suppresses neurodegen-
erative phenotypes in LRRK2 G2019S-expressing

and parkin mutant flies, while loss of AMPK exacer-
bates climbing defects in LRRK2 mutant flies [164].
It remains to be determined whether TOR inhibition
plays a role in the protective impact of AMPK acti-
vation, since autophagy can be induced via AMPK
signaling which is a feasible mechanism. Work from
our own laboratory indicates that LRRK2 G2019S
expressing flies chronically fed a moderately elevated
amino acid diet across adulthood are protected from
age-related loss of dopamine neurons and locomotor
dysfunction observed in these flies on a standard diet
in a mechanism that involves induction of AMPK
activity by the fly Sestrin ortholog and consequent
upregulation of autophagy [165]. TOR inhibition may
be neuroprotective in the context of LRRK2 G2019S,
since enhanced vulnerability to valinomycin-induced
cytotoxicity seen in LRRK2 G2019S iPSC-derived
neural cells from familial PD patients can be attenu-
ated by treating them with rapamycin [166] consistent
with TOR involvement.

Supporting the potential relevance of model organ-
ism findings to human PD, genetic variants in the
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mTOR pathway (specifically in the RPTOR and
RPS6KA2 genes) have been shown to interact with
the alpha-synuclein encoding gene, SNCA, to mod-
ify age at onset of PD [167]. It’s important to note,
however, that whether and how these mTOR path-
way variants affect signaling is not currently known.
Another important caveat alongside the beneficial
effects of dampened TOR signaling, is that strong
TOR deficits such as those occurring in response
to certain stress stimuli may promote cell death,
e.g., via reduced Akt phosphorylation [168, 169].
RTP801 (a.k.a. REDD1) is a transcriptional target
of HIF-1 and is rapidly upregulated under hypoxic
and oxidative stress conditions [170–172]. RTP801
inactivates mTORC1 signaling through the tuberous
sclerosis complex (TSC1/TSC2) and also appears
to suppress Akt phosphorylation, possibly through
dual mTORC2 inhibition [173, 174]. Supporting
a role for RTP801 in PD, elevated RTP801 lev-
els and reduced Akt Ser473/Thr308 phosphorylation
are found in substantia nigra dopaminergic neurons
from human idiopathic PD brain and RTP801 is
induced in response to the PD-associated neurotoxin
MPTP in mouse brain [173, 174]. Hence, while there
is still much to be learned, preliminary evidence
supports a model whereby an optimal window for
dopamine neuron health exists where the activity of
nutrient-sensing insulin and TOR pathways is suffi-
cient to maintain robust Akt phosphorylation, while
the anabolic and autophagy-suppressing effects of
TOR signaling are not detrimentally high.

NAD+ and NAD+-dependent enzymes

NAD+ is consumed by many enzymes involved
in metabolic function, redox homeostasis, DNA
repair, and genomic stability that are implicated
in cellular homeostasis and aging. It serves as a
co-enzyme for redox reactions involving dehydro-
genases important in glycolysis, citric acid cycle,
fatty acid oxidation, and ATP generation. NAD+
is also an essential cofactor for NAD+-dependent
enzymes including sirtuins and poly (ADP-ribose)
polymerases (PARPs), involved in chromatin remod-
eling and DNA repair, respectively. Initial evidence
from model organisms and humans suggests that
aging is associated with a progressive decline in brain
NAD+ levels [175–177], through unclear mecha-
nisms. PARP is chronically activated upon aging in
mice and nematodes [178], possibly as a result of
age-related DNA damage, which could conceivably
contribute to NAD+ depletion and impaired sirtuin

activity in aged animals. Potentially tying the drop
in NAD+ levels with lifespan, inducing levels of the
NAD+ biosynthetic enzyme nicotinamidase are nec-
essary and sufficient for the lifespan-extending effect
of dietary restriction in yeast [179] and in flies, over-
expression of orthologous D-NAAM also extends
longevity [180]. The age-related decline in NAD+
and beneficial effects of enzymatically enhancing
NAD+ production has generated interest in devel-
oping interventions to increase NAD+ levels. NAD+
precursors such as nicotinamide riboside (NR) show
promise in restoring NAD+ levels as do PARP
inhibitors that lower NAD+ consumption. In yeast
and worms, exogenous administration of the NAD+
intermediate nicotinamide riboside to restore NAD+
levels enhances lifespan in a sirtuin-dependent man-
ner [178, 181].

Altered NAD+ metabolism can be found in sev-
eral PD genetic models where it appears to contribute
to neurodegenerative phenotypes. Decreased NAD+
and its precursors NR and NMN are observed in
fly parkin and Pink1 mutants, while dietary sup-
plementation with the precursor NAM enhanced
mitochondrial function and preserved viability of
dopaminergic neurons in these flies [182, 183].
Additional support comes from recent work in
PD patient tissues and fluids. Fibroblasts from PD
patients with PRKN mutations display decreased
NAD+ /NADH ratio [184] as does blood from
idiopathic PD patients compared to age-matched con-
trols [185], while iPSC-derived neurons expressing
mutant LRRK2 G2019S or mutant glucocerebrosi-
dase (GBA) iPSC-derived neurons display evidence
of reduced NAD+ /NADH ratio or NAD+ levels
as well as mitochondrial dysfunction [186, 187]
which, in the case of GBA, could be attenuated
by boosting NAD+ levels via nicotinamide riboside
administration [186]. Lastly, NR which appears effec-
tive in extending lifespan may also protect against
PD-related neurodegeneration. Mutant Transgenic
flies expressing mutant GBA-N370S exhibit age-
dependent dopaminergic neuron loss and climbing
defects [188] which are prevented by administering
NR via dietary supplementation during adulthood
[186] suggesting that boosting NAD+ levels may
preserve dopaminergic neurons in vivo.

As mentioned above, age-associated NAD+ deple-
tion has been hypothesized to arise from age-related
PARP1 activation [189]. There appears to be major
competition between PARPs and sirtuins for NAD+
such that pharmacological blockade of PARP1
can increase NAD+ content and SIRT1 activity
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[190]. PARP1 activity may also influence NAD+
metabolism and neurodegeneration in genetic and
toxin models of PD. Decreased NAD+ levels and
increased protein PARylation (PARP-mediated post-
translational modification that consumes NAD+) are
observed in parkin null flies and consistent with lower
NAD+ being PARP-dependent, flies expressing a
PARP loss-of-function mutation exhibit increased
NAD+ levels [182]. Further, loss of PARP1 expres-
sion or activity using PARP inhibitors is protective
against dopamine neuron loss in rodents exposed
to LPS [191] or MPTP [192] and decreased Parp
expression ameliorates mitochondrial dysfunction,
locomotor deficits and dopaminergic neuron loss
in parkin or Pink1 mutant flies [182, 183]. More
recently, pathologic alpha-synuclein has been shown
to trigger PARP-1 activation, proposed to be a
crucial driver of neurodegeneration [192]. PARP
inhibitors or genetic deletion of PARP-1 were shown
to block neurotoxicity associated with the pres-
ence of toxic �-synuclein pre-formed fibrils [192].
PARP1-dependent �-synuclein PARylation to form
more neurotoxic strains is hypothesized to drive
neurodegeneration [193], while a potential role for
altered NAD+ bioavailability upon PARP1 inhibi-
tion in this model awaits further clarification. The
activity of at least some sirtuins such as SIRT1
and SIRT6 are positively correlated with lifespan
or healthy aging [194, 195] and are neuroprotective
[196–199] with broad roles in DNA damage sens-
ing [200], autophagy [201], and mitochondrial health
[202]. Hence, modulation of NAD+-dependent sir-
tuin activity by rising NAD+ levels is one mechanism
conjectured to account for the neuroprotective effect
of NR, other NAD+ precursors or PARP silencing.
Yet, whether this is the case in the context of PD
is unclear and may depend on the specific sirtuin(s)
activated. For example, sir2 activity has been shown
to promote �-synuclein aggregation and pathology
[203, 204] and accordingly, its genetic or pharma-
cological inhibition appears to be neuroprotective
in preventing alpha-synuclein-mediated toxicity in
models of PD [204].

CONCLUSIONS

Numerous hallmarks of aging occur in the brain
[118, 136] and close inspection reveals that sev-
eral of these have well established ties to PD, as
described above. Since aging is the biggest risk factor
for PD, it is reasonable to speculate that age-related

declines in molecular/cellular function act as a major
driver for PD neurodegeneration. Toward moving the
aging-PD relationship beyond correlation, probably
the best evidence to date supporting a causal role for
aging in PD comes from studies in which manipu-
lations that extend organismal lifespan or healthspan
also impede the onset or progression of PD-related
neurodegeneration. Here, a common influence of
metabolic/nutrient sensing pathways on both aging
and PD-related neurodegeneration in model organ-
isms has begun to emerge. This evidence supports
the causal hypothesis that aging is a pre-requisite for
neurodegeneration to occur, as opposed to a distinct
scenario in which PD-related phenotypes develop
in a time-dependent manner and on a scale that
simply coincides with the manifestation of aging.
The robust relationship between PD and aging pre-
dicts a sharp rise in disease in the coming decades
and generates compelling rationale for incorporating
aging into studies into the pathogenesis and treat-
ment of disease. When contemplating the inclusion
of aging in PD disease modeling, important ques-
tions arise over how well the aging of commonly
used model organisms recapitulates human aging.
Despite the acknowledged caveats that differences
in species lifespan and physiology exist comparing
model organisms to humans, studies from worms to
mice have revealed that lifespan regulating genes are
often evolutionarily conserved which provides ratio-
nale for this approach. While the fact that aging is
the biggest risk factor for PD makes disease model-
ing and therapeutic development challenging, future
advances in delineating the biology of aging will offer
a major opportunity for gaining novel insight into PD
etiology and should be harnessed accordingly.
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Oldfors A, Wibom R (2004) Premature ageing in mice
expressing defective mitochondrial DNA polymerase.
Nature 429, 417-423.

[66] Vermulst M, Wanagat J, Kujoth GC, Bielas JH, Rabi-
novitch PS, Prolla TA, Loeb LA (2008) DNA deletions and
clonal mutations drive premature aging in mitochondrial
mutator mice. Nat Genet 40, 392-394.

[67] Luoma P, Eerola J, Ahola S, Hakonen A, Hellström O,
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