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Abstract. Accumulating evidence implicates immune dysfunction in the etiology of Parkinson’s disease (PD). For instance,
impaired cellular and humoral immune responses are emerging as established pathological hallmarks in PD. Further, in
experimental models of PD, inflammatory cell activation and immune dysregulation are evident. Genetic and epidemiologic
studies have drawn associations between autoimmune disease and PD. Distillation of these various lines of evidence indicates
dysregulated immunogenetics as a primary risk factor for PD. This article will present novel perspectives on the association
between genetic risk factors and immune processes in PD. The objective of this work is to synthesize the data surrounding
the role of immunogenetics in PD to maximize the potential of targeting the immune system as a therapeutic modality.
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INTRODUCTION

Parkinson’s disease (PD) is a progressive, debili-
tating neurodegenerative disorder that presents with
a range of clinical manifestations. PD varies in
the onset, symptoms, and progression of the dis-
order, suggestive of a complex interplay between
genetics and environment. Much attention has been
lent towards understanding the pathological features
underpinning PD; loss of nigral dopaminergic neu-
rons and accumulation of toxic �-synuclein in the
form of Lewy bodies and Lewy neurites [1]. Neu-
roinflammation is an additional hallmark of PD,
underscored by reactive gliosis [2] and an upregu-
lation of major histocompatibility class II (MHCII)
molecules [3, 4]. Yet, inflammatory activation in
PD is not only confined to the brain. Accumulat-
ing evidence implicates peripheral immune activation
in PD pathogenesis, including increased expression
of inflammatory molecules in the central [5] and
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peripheral nervous systems [6]. Moreover, several
recent reports implicate adaptive immune T cells in
the neurodegenerative process of PD [7–10]. This
review will synthesize the key concepts surrounding
peripheral immune involvement in PD and the role
of immunogenetics in PD risk. This work posits that
targeting the peripheral immune system is a potential
therapeutic modality for PD.

THE ROLE OF IMMUNOGENETICS IN PD
ETIOPATHOLOGY

Immunogenetics, the study of the genetic basis
of the immune response, includes the investigation
of normal immunologic pathways and the identi-
fication of genetic variations that cause immune
defects. The premise of immunogenetics is the iden-
tification of new therapeutic targets for diseases
with immunologic underpinnings. Immunogenetics
gained prominence following the awarding of the
1980 Nobel Prize in Physiology or Medicine to Baruj
Benacerraf, Jean Dausset, and George D. Snell for
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their discoveries concerning genetically determined
structures on the cell surface that regulate immuno-
logical reactions [11]. These researchers elegantly
showed that certain MHC molecules found on the cell
membrane predispose certain individuals to certain
diseases. Their work showed how genetic variants
contribute to inter-individual variation in immune
response and risk of disease. Notably, many of the
genetic variants linked to PD play a role in modulat-
ing the immune response. In fact, numerous studies
have reported that subtle mutations in the genetic
components of MHC, or human leukocyte antigen
(HLA), are associated with PD risk [12–18]. HLA is
a highly polymorphic region of the human genome.
HLA encodes both MHCI and MHCII molecules that
present antigens to adaptive immune CD8 and CD4 T
cells, respectively. Several studies have found associ-
ations between single nucleotide polymorphisms and
alleles in HLA class II and PD [12–18]. Cumula-
tively, these studies have provided functional insight
into the observed increased expression of MHCII
molecules in PD brains. However, the manner in
which HLA allelic variability affects the interaction
between antigen-presenting cells and T cells is an
area of active investigation.

In addition to HLA alleles, other genes associated
with monogenic PD have immunogenetic compo-
nents, too. Mutations in Leucine Rich Repeat Kinase
2 (LRRK2) account for approximately 1–2% of PD
cases [19, 20]. LRRK2 encodes a large protein with
multiple functions in immune cells. High levels of
LRRK2 disrupt immune function in PD patients
[21]. Interestingly, the LRRK2 G2019S variant asso-
ciated with PD may help protect against infection by
enhancing the immune response to peripheral infec-
tion [22]. However, in the brains of mice expressing
the LRRK2 G2019S variant, this enhanced response
to infection may backfire, as immune cells release
reactive oxygen species that exacerbate neurodegen-
eration [22]. Notably, mice expressing the LRRK2
G2019S variant have increased amounts �-synuclein
deposits when harboring peripheral infections. Taken
together, these data raise the possibility that the
combination of the LRRK2 G2019S variant and an
environmental trigger, such as systemic inflamma-
tion, might be involved in PD etiopathology. In fact,
recent evidence suggests that independent of muta-
tions, wild-type LRRK2 plays a role in idiopathic
PD via endolysosomal and autophagic functions [21,
23, 24]. LRRK2 kinase inhibitors, which improve
endosomal maturation and lysosomal function [23,
24], may therefore be useful for limiting systemic

inflammation in idiopathic PD patients who do not
harbor LRRK2 mutations.

Parkin (PRKN) and PTEN Induced Kinase 1
(PINK1) are additional PD-associated genes involved
in immune modulation. Both genes target dam-
aged mitochondria for elimination by mitophagy
[25]. Recently, these genes were shown to link the
mitochondrial dysfunction and T cell autoimmunity
tenets implicated in PD pathogenesis [26]. In familial
forms of PD, mitochondrial proteins are processed
for recognition by CD8 T cells [26]. This finding
provides a mechanism by which selected proteins
from damaged mitochondria are presented by MHC
molecules to T cells. This pathway is antagonized
by PINK1 and Parkin, indicating that mitochondrial
antigen presentation could influence PD pathogene-
sis. Notably, in mice, expression of Prkn and Pink1,
suppresses antigen presentation by MHC class I
molecules in immune cells [26]. Thus, mutations in
these genes could block the inhibitory effects and
increased immune responses mediated by cytotoxic
CD8 T cells, ultimately leading to dopaminergic neu-
ronal death [26, 27].

Mutations and copy number variations in the
Synuclein Alpha (SNCA) gene are also linked to dom-
inantly inherited monogenic PD [28, 29]. Further,
genome-wide association studies (GWAS) have iden-
tified numerous single nucleotide polymorphisms
in the SNCA gene associated with idiopathic PD
risk [30]. Notably, the protein product of SCNA,
�-synuclein, inhibits viral infection in the central
nervous system [31], indicating a functional role
for the native expression of �-synuclein. Several
recent reports indicate that T cells can be activated
upon recognition of �-synuclein epitopes presented
on MHC molecules [7–10]. Further, �-synuclein-
specific T cells contribute to neurodegeneration in
mouse models of PD [32] and in PD dementia [7].
Most recently, �-synuclein was shown to be required
for normal immune function in mice [33]. Cumula-
tively, these data raise the hypothesis that �-synuclein
accumulates within the nervous system of PD individ-
uals due to an inflammatory/immune response. This
response may, in turn, spur a feed-forward mecha-
nism of immune activation given that �-synuclein
itself can serve as an immunostimulatory antigen.

IS PD AN AUTOIMMUNE DISORDER?

Autoimmunity occurs when immune responses of
an organism are mounted against its own healthy
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cells, tissues and other normal body constituents.
Notably, autoimmune diseases and PD share com-
mon genetic pathways [34, 35]. Dozens of loci have
been found to be shared between PD and autoim-
mune disorders by GWAS, including type 1 diabetes,
Crohn’s disease, ulcerative colitis, rheumatoid arthri-
tis, celiac disease, psoriasis, and multiple sclerosis
[34]. In fact, PD-associated variants in LRRK2 par-
tially overlap with LRRK2 variants associated with
inflammatory diseases, including Crohn’s disease,
an inflammatory bowel disorder that causes chronic
inflammation of the gastrointestinal tract [36]. It is
estimated that patients with an autoimmune disease
have a 33% excess risk of developing PD [37]. The
identification of common genetic pathways for PD
and autoimmune disorders further strengthens the
importance of immunogenetics and immune therapy
in PD.

What could be driving the association between PD
and autoimmune diseases? Secondary parkinsonism
is a symptom of some autoimmune disorders and
a confounding factor in interpreting the association
between PD and autoimmunity. Additional cofactors
that may alter inflammation and immunity in PD
include stress and depression, which are symptoms
in PD that also commonly exasperate autoimmune
diseases. Yet, the association between autoimmu-
nity and PD might be explained by immunogenetic
aberrations that are shared between these conditions
and that affect immune function. In support of this
hypothesis, expression quantitative trait locus analy-
sis has shown that protein expression profiles of CD4
T cells and monocytes are associated with genetic
variants that underlie some of the heritable risk
for PD [27, 38]. Notably, abnormal expression pat-
terns of �-synuclein and LRRK2 in monocytes were
associated with autoimmune diseases [38]. Thus,
protein expression profiles could partly explain the
observed clinical associations between autoimmune
diseases and PD [27, 38]. Yet, aside from genetic
overlap with autoimmunity, it remains unclear which
immune stimuli dictate the propensity for one to
develop the region-specific brain pathology observed
in PD.

One potential mechanism underlying the asso-
ciation between PD and autoimmunity could be
molecular mimicry, whereby the structure of �-
synuclein resembles that of a viral protein [39]. In
this regard, influenza and herpes simplex virus infec-
tions have been loosely associated with increased
risk of subsequent PD [40], but further delineation
of molecular mimicry mechanisms is warranted.

IMMUNE CELL ACCESS TO THE
SUBSTANTIA NIGRA IN PD

It has been postulated that PD is an inflammatory
disorder that arises from the combination of immuno-
genetic risk factors and an environmental trigger such
as infection. In fact, Braak and Del Tredici first
postulated that PD originates in the enteric nervous
system and olfactory bulb, due to the proximity of
these brain structures to the environment [41]. Oth-
ers have suggested that idiopathic PD is caused by
interactions between genetic susceptibility, infection
history, sex and age [42]. But, how might immune
cells inflict region-specific damage to the substan-
tia nigra in PD? The brain has historically been
regarded as an immune privileged organ owing to
the existence of the blood–brain barrier. However,
the identification of meningeal lymphatic vasculature
has challenged the notion that the peripheral immune
system does not directly interact with the brain [43,
44]. Now, it is understood that brain-derived antigens
in the cerebrospinal fluid (CSF) accumulate around
the dural sinuses, are captured by local antigen-
presenting cells, and are presented to patrolling T
cells [45]. The CSF, after circulating through the
ventricular system and subarachnoid space of the cor-
tex and spinal cord, penetrates perivascular spaces
[46]. Perivascular spaces are fluid-filled spaces that
surround small arterioles, capillaries and venules in
the brain. Notably, enlarged perivascular spaces are
associated with PD [47, 48], raising the possibility
that T cells have enhanced access to PD-associated
antigens.

What is the mechanism by which T cells home to
the substantia nigra in PD? Recent evidence suggests
that increased expression of C-X-C motif chemokine
receptor 4 (CXCR4) in CD4 T cells mediates their
homing to the PD substantia nigra [7]. CD4 T cells
are likely drawn to the brain via increased CSF protein
levels of the CXCR4 ligand, C-X-C motif chemokine
ligand 12 (CXCL12), since levels of CXCL12 are
associated with neuroaxonal damage [7]. Interest-
ingly, a variant of CXCR4 is associated with increased
PD risk [49]. Further research is required to determine
the impact of this CXCR4 variant on T cell traffick-
ing in PD. Given that enhanced MHCII expression
is a component of PD, the CXCR4-CXCL12 sig-
naling axis may represent a mechanistic target
for inhibiting pathological CD4 T cell trafficking
in PD.
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CONCLUSION

In conclusion, it is likely that a complicated mix
of immunogenetics and environment, such as infec-
tion history, play a role in PD. There are several
PD-associated risk factors that modulate the immune
system, including the aforementioned LRRK2, SCNA,
PINK1, and PRKN genes. Genetic alterations to HLA
genes, which are critical for antigen-specific immune
responses, are also implicated in PD. Importantly, to
fully delineate the role of immunogenetics in PD, it
will be critical to thoroughly document patient his-
tory of infections and to stratify patients by HLA
haplotypes. The HLA region is highly polymorphic,
so epigenetic effects of ethnicity and environmental
factors in addition to viral infections need to be taken
into account before a pathogenic link between HLA
genes and PD can be solidified [50]. Furthermore,
associations of non-coding single-nucleotide poly-
morphisms with PD have been found even without the
classic HLA risk alleles [18]. So, the association with
non-coding single-nucleotide polymorphisms in the
HLA region is not necessarily dependent on structural
genetic variants in HLA genes. With advancements
in vaccine technology, underscored by improvements
in mRNA vaccines [51], controlled studies may iden-
tify virus-PD associations that decline in vaccinated
populations harboring PD HLA risk alleles.

Reports on �-synuclein immunoreactivity have
shown that patients with advanced PD have lower
levels of �-synuclein reactive antibodies than patients
with early PD [52, 53]. Further, autoantibodies to �-
synuclein are consistently observed to be higher in
early-stage PD in a meta-analysis [54]. In addition to
the humoral immune response, T cell responses to �-
synuclein have also been shown to occur early in PD
disease course [9, 10]. These results imply that adap-
tive immunity plays an early role in PD etiopathology.
However, discordance exists in the type of T cell
response involved in PD. While some studies impli-
cate CD4 T helper 1 (Th1) or Th2 class II T cells
[9, 10], others implicate CD4 interleukin-17 (IL-17)-
producing (Th17) cells [7, 55, 56]. Thus, the function
and phenotype of CD4 T cells and their pathobiologi-
cal role in synucleinopathies is unclear. Yet, it is likely
that a complicated mix of immunogenetics, including
HLA haplotype, and disease state influence the T cell
response in PD. Adding to this complexity are recent
findings on the role of intestinal inflammation in PD
(reviewed in [57]). Epidemiologic and genetic studies
have underscored the similarities between gastroin-
testinal disorders and PD. As mentioned, LRRK2

is also a common susceptibility locus for Chron’s
disease [58]. Yet, the mechanism by which LRRK2
mutations might synergize with intestinal inflamma-
tion to promote neuroinflammation in PD remains an
outstanding question. Thus, investigating the role of
LRRK2 in the gut–brain axis in PD is highly war-
ranted.

To summarize, aberrant immune function is an
established component of susceptibility to and
progression of PD. This emergent field provides
opportunities to identify novel therapeutic targets
and strategies to slow or reverse PD [27, 59, 60].
While immunological changes have been difficult
to interpret, immune system involvement in PD
is supported by several independent lines of clin-
ical and preclinical evidence [27]. Importantly, T
cell responses associated with �-synuclein pathology
have been detected in adeno-associated viral mouse
models which overexpress �-synuclein in the sub-
stantia nigra [32, 61]. These models will serve as a
critical tool assess future pre-clinical immunother-
apeutic strategies. The CXCR4-CXCL12 signaling
axis is a potential pre-clinical therapeutic target to
inhibit CD4 T cell trafficking to the PD brain. To this
end, longitudinal studies are needed to identify PD
patients who are most suitable for immunotherapy.
Of course, clinical trial studies will need to deter-
mine the long-term efficacy, outcome and viability of
immunotherapeutic treatments.
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