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Abstract. T cells are key mediators of both humoral and cellular adaptive immune responses, and their role in Parkinson’s
disease (PD) is being increasingly recognized. Several lines of evidence have highlighted how T cells are involved in both
the central nervous system and the periphery, leading to a profound imbalance in the immune network in PD patients. This
review discusses the involvement of T cells in both preclinical and clinical studies, their importance as feasible biomarkers
of motor and non-motor progression of the disease, and recent therapeutic strategies addressing the modulation of T cell
response.
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INTRODUCTION

There is growing evidence suggesting the crucial
involvement of T cells in Parkinson’s disease (PD). T
cells are essential mediators of humoral and cellular
adaptive immune responses: highly specific receptor-
mediated clonal selection and expansion of T cells
allow both antigen-specific immunity and immuno-
logical memory against known pathogens [1]. It is
known that the precursors of T cells migrate to
the thymus and develop into two distinct subsets,
CD4+ and CD8+ cells, according to their peculiar
surface markers. Before their activation, T cells are
in the naı̈ve condition, and once in the circulation can
interact with antigen-presenting cells displaying for-
eign or self-antigens. Previous studies have shown
that T cells play a key role both in the central ner-
vous system (CNS) and in the periphery, leading to
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a profound imbalance in the immune network of PD
patients.

EVIDENCE OF T CELL INVOLVEMENT
FROM ANIMAL MODELS AND
NEUROPATHOLOGY: MORE CD4+ THAN
CD8+?

In �-synuclein overexpression animal models,
early infiltration of both CD4+ and CD8+ T cells
was observed [2], and T cells enhanced the number
of �-synuclein aggregates by promoting a pro-
inflammatory M1 phenotype in CNS myeloid cells
[3]. The crucial role of T cells was further supported
by the examination of postmortem human PD brains:
Brochard et al. found CD8+ and CD4+ T cells, but
not B cells, either in close contact with blood ves-
sels or near melanized dopamine-containing neurons
[4]. Interestingly, T cell-mediated dopaminergic tox-
icity was almost exclusively arbitrated by CD4+ T
cells [4], as also confirmed in a neurotoxic-driven
animal model [5] and from in vitro and in vivo
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data [6]. Furthermore, in �-synuclein overexpres-
sion models, the genetic deletion of T cell receptor
(TCR)� or CD4, as well as the use of the immunosup-
pressive drug fingolimod, reduced the CNS myeloid
major histocompatibility complex (MHC)II response
to �-synuclein, whereas the authors did not observe
after the knockout of CD8+ T cells any significant
effect on preventing the myeloid MHCII response
or dopaminergic neuronal loss [7]. The interaction
between CD8+ T cells and MHCI on neurons was
also assessed, reporting increased MHCI expression
in and around virally transduced neurons (including
dopamine neurons) and in CNS myeloid cells, but not
astrocytes [7].

�-SYNUCLEIN-SPECIFIC T CELL
RESPONSES

A seminal study by Sulzer et al. explored whether
T cells recognize epitopes derived from �-synuclein
and found that the Y39 and S129 regions act as
epitopes [8]. More in detail, epitopes derived from
the Y39 region were displayed by two MHC class
II beta chain alleles as well as an additional MHC
class II allele and an MHC class I allele, with an
immune response mostly mediated by interleukin
(IL-5)-secreting CD4+ T cells and interferon (IFN)�
CD8+ cytotoxic T cells [8]. Furthermore, it was
reported that �-synuclein-specific T cell activation
was predominant in early-stage PD [9].

EVIDENCE OF T CELL INVOLVEMENT
FROM ANIMAL MODELS AND
NEUROPATHOLOGY: MORE CD8+ THAN
CD4+?

Even though several lines of evidence point to the
crucial role of CD4+ T cells in the pathogenesis of
PD, the involvement of CD8+ T cells should be high-
lighted as well.

Firstly, it is known that dopamine neurons can
express MHCI in response to IFN-�, which makes
them susceptible to cell death by cytotoxic CD8+ T
cells [10]. In an experimental PINK1-/- mouse
model of PD, the authors hypothesized that intesti-
nal infection may act as the precipitating event in the
establishment of a cytotoxic mitochondria-specific
response both in the periphery and the brain [11].
Based on neuropathological evidence, a recent study
[12] assessed T cell infiltration in human substan-
tia nigra pars compacta (SNc) throughout different

PD stages (one group with �-synuclein aggregates
only in the olfactory bulb representing the earliest
stage of the disease and the second group with �-
synuclein aggregates in the SN). Nigral cytotoxic
CD8+ T cell infiltration was robust in the earliest
stage of the disease when no �-synuclein aggrega-
tion and dopaminergic neuronal death were present
yet, whereas in the next stage neuronal loss was
accompanied by a milder CD8+ T cell infiltration,
thus suggesting that CD8+ T cell-mediated attack
may trigger neuronal death and synucleinopathy.

CHANGES OF PERIPHERAL CD4+ AND
CD8+ T CELLS IN PD PATIENTS

It is conceivable that the alteration of T cells in
the CNS is mirrored in the periphery, likely as a
consequence of blood-brain barrier disruption in PD
patients [13].

Regarding CD8+ T cells, recent research by Yan
et al. suggested that naı̈ve CD8+ T cells were sig-
nificantly decreased in the peripheral blood of PD
patients, whereas IFN-�–producing CD8+ T cells
were increased [14]. An increase in peripheral
CD8+ T cells was similarly observed in other studies
[15, 16], but conflicting evidence detecting no signif-
icant differences compared with healthy controls was
reported as well [17–19]. Another group [20] showed
a reduction in CD8+ terminally differentiated effec-
tor memory re-expressing CD45RA (TEMRA) cells
and a lower expression of the cell-aging marker p16,
suggesting an attenuated shift towards CD8+ T cells
senescence at the earliest stages of PD.

Furthermore, several studies found reduced levels
of circulating CD3+ and CD4+ T cells [15, 16, 19,
21, 22]. A meta-analysis including 21 case-control
studies and 943 PD patients confirmed that the num-
bers of CD3+ and CD4+ T cells were significantly
decreased in PD [23]. In contrast with these results,
another study found that PD patients had an increase
in the percentage of CD3+ and CD4+ T s and the
CD4+ /CD8+ ratio [24], whereas other groups did not
find any significant difference in the percentage of
both CD4+ and CD8+ between PD patients and con-
trols [17, 18, 25]. Undoubtedly, the composition of
peripheral T cells from PD patients in the reported
studies was quite heterogeneous, which could be
explained by the influence of ethnic variations
or other relevant disease-related confounders. For
example, a study by Bhatia et al. found that many fac-
tors, including age, sex, disease duration, and disease
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severity were associated with variations in T cell
pathology, with disease severity being the most sig-
nificant one [26].

Different CD4+ T cell subsets orchestrate
specific immune functions

Concerning CD4+ T cells, specific subsets are
known to orchestrate different immune functions
[27]: T helper (Th)1 and Th17 target bacterial
and viral pathogens mainly through the release of
IFN-�, IL-17A, IL-21, and other pro-inflammatory
cytokines. Th2 activity is focused on parasitic and
allergic responses, in particular through IL-4, IL-5,
and IL-13, which act as anti-inflammatory cytokines.
Regulatory T cells (Tregs) modulate T cell activation
and inflammation.

Imbalance of peripheral CD4+ T cell subsets in
PD: Th1 and Th17

Chen et al. [21] observed in the peripheral blood
of PD patients an increased proportion of circulat-
ing Th1 and Th17 cells and a decreased number of
Th2 and Tregs. Compared with the control group,
the Th1/Th2 and Th17/Treg ratios were significantly
increased with a shift towards Th1 and Th17 sub-
sets. The prominent role of pro-inflammatory Th1
and Th17 was further supported in a 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of
PD: naı̈ve CD4+ T cells treated with �-synuclein
showed a polarization towards the Th1 or Th17
phenotype, thus causing cell death of dopaminergic
neurons in the SN and exacerbating MPTP-induced
cell death [5].

It was shown that Th1 cells may be relevant in the
altered immune network of PD. This subgroup dif-
ferentiates under the influence of IFN-� and IL-12
released by antigen-presenting cells, and the release
of Th1-derived pro-inflammatory cytokines is crucial
for the activation of B cells and the phagocytosis of
microbes [28]. Intriguingly, in PD patients, the shift
towards Th1 cells was associated with motor function
scores as assessed through the Unified Parkinson’s
Disease Rating Scale (UPDRS)-part III [21]. Kustri-
movic et al. reported no significant correlations
between circulating CD4+ T cells, dopamine receptor
(DR) expression, transcription factors mRNA lev-
els, and demographic and clinical features of PD
patients [22]. Nonetheless, the shift towards Th1
lineage was confirmed in both drug-naı̈ve and drug-
treated patients, and was associated with profound

modifications of transcription factor genes expression
and increased production of IFN-� and tumor necro-
sis factor (TNF)-�. Modifications of the transcription
factors network in CD4+ T cells occur early in PD,
and the absence of correlations with patients’ char-
acteristics suggests that the alteration of CD4+ T cell
differentiation mechanisms is independent of PD pro-
gression and severity and antiparkinsonian treatment
[22]. The imbalance in CD4+ T cells transcription
factors could be of great interest since it represents
a peculiar molecular signature shared by idiopathic
REM sleep behavior disorder and PD patients [29] as
well as potential biomarkers of motor complications
[30].

The pro-inflammatory bias could be promoted
by the Th17 subpopulation as well. This specific
subset is mainly involved in host defense against
extracellular pathogens and plays a central role in
the pathophysiology of several autoimmune diseases
through the production of IL-17, IL-17F, IL-21, IL-
22, and granulocyte-macrophage colony-stimulating
factor (GM-CSF) [31]. Increased levels of Th17
in early-stage PD patients were reported in several
studies [14, 21, 32], even though conflicting results
observing no differences or reduced levels of Th17
cells were described as well [22, 33]. A recent study
also found that there were significant correlations
between Th17 cells and the subscales I and II of the
MDS-UPDRS [14].

Regarding in vitro evidence and animal mod-
els, the critical role of Th17-driven inflammation
was further explored in a recent work [6] employ-
ing autologous co-cultures of activated T cells and
induced pluripotent stem cells (iPSC)-derived mid-
brain neurons of 10 PD patients and 10 controls.
After co-culture with T cells or the addition of IL-
17, PD iPSC-derived midbrain neurons underwent
increased neuronal death driven by upregulation of
IL-17 receptor (IL-17R), whereas blockage of IL-17
or IL-17R prevented neuronal death. Furthermore, the
co-culture of MPTP-treated neurons with Th17 cells
further exacerbated neuronal cell death and increased
IL-1� and TNF-� levels [34]: Liu et al. found
that these effects were mediated via lymphocyte
function-associated antigen 1 (LFA-1) and intracellu-
lar adhesion molecule-1 (ICAM-1), and the blocking
of either LFA-1 in Th17 cells or ICAM-1 in ven-
tral mesencephalic neurons abolished Th17-induced
dopaminergic neuronal death. Taken together, these
results suggest that counteracting Th17 develop-
ment could represent a feasible therapeutic option
in PD. The restriction of Th17 development and
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differentiation can be achieved through different
compounds, for example, the peroxisome prolifer-
ator-activated receptor-gamma [35], or through the
reduction of transcription factors ROR�t and STAT3
via cytokines such as IL-4 or IL-32 [31].

Imbalance of peripheral CD4+ T cell subsets in
PD: Th2 and Tregs

The prevalence of a pro-inflammatory phenotype
in PD is also favored by an altered anti-inflammatory
response promoted by Th2 and Treg cells. Th2 cells
differentiate from naı̈ve T cells under the influence
of IL-4 and the activation of the GATA3 and STAT6
transcription factors. The cytokines most typically
associated with Th2 cells are IL-4, IL-5, IL-9, and IL-
13, and combinations of these cytokines drive B cell
proliferation and immunoglobulin class-switching to
immunoglobulin E (IgE), eosinophilia, mastocytosis,
and macrophage polarization to an M2-like phe-
notype [36]. Several studies have observed lower
absolute numbers and frequency of Th2 cells in
PD compared with healthy controls [15, 22], with
increased mRNA levels of both GATA3 and STAT6
[22]. Interestingly, increased levels of STAT6 were
also reported in PD patients with motor fluctuations
[30], suggesting the suitable targeting of Th2 cells
in the complex stage of the disease. On the other
side, Alvarez-Luquin et al. demonstrated no signif-
icant difference in Th2 cell counts in PD patients
compared with controls, even though a significant
increase in IL-13 levels was observed [33], and also
significantly increased levels of IL-4-producing Th2
have been recently reported [14].

Regulatory T cells (Tregs) represent another T
cell subset possibly involved in the disruption of
immune mechanisms. Tregs are responsible for the
preservation of immune tolerance and inhibition of
autoimmunity. They act as negative regulators of
inflammation [37] through the secretion of anti-
inflammatory cytokines, in particular IL-10 and
TGF-�, and express granzyme A to kill effector cells
in a perforin-dependent manner [38]. It was previ-
ously reported that PD patients display an impaired
ability to suppress effector T cell function [39] and
reduced absolute numbers of Tregs have been found
as well [15, 22, 33]. Intriguingly, dysregulation of the
Treg compartment was also associated in PD patients
with crucial non-motor symptoms, such as cognitive
impairment [40] and constipation [41].

Concerning animal studies, Reynolds et al. demon-
strated a neuroprotective role for Tregs in the MPTP

mouse model of PD: the adoptive transfer of CD3-
activated Tregs to MPTP-intoxicated mice protected
the nigrostriatal system in a dose-dependent manner
[42], probably by attenuating Th17-mediated neu-
rodegeneration [5]. Also in the MPTP mouse model
examined by Li et al., Treg transfer along with anti-
TNF� antibody administration increased Tregs and
reduced Th1 cells leading to an amelioration of PD
severity [43].

Alterations of CD8+ and CD4+ T cells in PD are
summarized in Table 1 and Fig. 1.

Imbalance of peripheral CD4+ T cell subsets in
PD: Role of dopaminergic treatment

Several works have also explored whether
dopaminergic drugs may play a significant role in reg-
ulating lymphocyte subsets in PD. Kustrimovic et al.
[22, 44] did not suggest relevant effects of antiparkin-
sonian treatment on the peripheral immune system of
PD patients. Similarly, Chen et al. found a weak asso-
ciation between the percentage of CD4+ T cells and
the levodopa equivalent daily dose [24]. In another
study [45], the negative correlation between the lev-
els of T cytotoxic cells 1 (CD8+ Tbet+IFN-�+) and
T cytotoxic cells 2 (CD8+ GATA3+ IL-13+) with the
Hoehn and Yahr scale score was observed only in
patients receiving treatment with levodopa, thus sug-
gesting that levodopa could affect T cytotoxic cells.
Furthermore, it should be noticed that human and
murine lymphocytes express all the five subtypes of
DR, and the DRD2 agonist sumanirole was able to
inhibit the shift to the Th1 and Th17 phenotypes of
CD4+ T cells obtained from MPTP-intoxicated mice
[46].

T CELL IMMUNITY AND GUT
MICROBIOTA

Whether the peculiar immune profile observed
in PD patients arises from the periphery, favoring
subsequent neuroinflammation, or is a consequence
of peripheral leakage of CNS-derived antigens, has
not been fully clarified. Among peripheral sources,
intestinal immune activation and dysbiosis could rep-
resent one potential driver of PD inflammatory state.
There is increasing research interest in the gut-brain
axis: several studies have suggested in PD an asso-
ciation between gastrointestinal inflammation and
the accumulation of �-synuclein in the enteric ner-
vous system [47]. Moreover, a relationship between
inflammatory bowel diseases (IBD) and PD has been
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Fig. 1. Central and peripheral involvement of T cells in PD. Naı̈ve CD4+ and CD8+ T lymphocytes are activated in the periphery after the
interaction with antigen-presenting cells. CD4+ T cells then differentiate into pro-inflammatory (Th1, Th17) or anti-inflammatory (Th2,
Treg) subtypes, characterized by the release of specific patterns of cytokines. Activated T cells can reach the central nervous system by
crossing an altered blood-brain barrier, thus polarizing resident cells to pro-inflammatory or anti-inflammatory phenotypes. In particular, Th1
and Th17 subsets release pro-inflammatory molecules (TNF-�, IFN-�, IL-17, IL-21, IL-22), which, in concert with other mechanisms, lead
to neuronal damage and death. Detrimental pro-inflammatory pathways are indicated with red lines. Figure created with BioRender.com.

reported [48, 49], and a recent study showed a signif-
icant reduction in the risk of developing PD in IBD
patients receiving early treatment with anti-TNF-�
therapy [50].

Regarding animal models, chronic mild focal
intestinal inflammation accelerated brain neu-
ropathology and motor dysfunction in �-synuclein
mutant mice [51]. Additionally, when �-synuclein
overexpressing mice were colonized with microbiota
from PD patients, enhanced physical impairment and
neuroinflammation were observed compared with
microbiota transplants from healthy human donors
[52].

It was shown that PD patients display an
altered composition of several gut microbiome taxa
[53]. Among these, Lactobacillaceae may induce
Th1-type immune responses [54], whereas Prevotel-
laceae abundance was associated with augmented
Th17-mediated mucosal inflammation [55]. Another
study evaluating fecal DNA samples from 69 PD
patients and 244 controls reported that, among the
microbiota-associated epitopes involved in inflam-
matory pathways, two were involved in T cell
responses [56]. Based on these observations, it could

be speculated that T cell-related immunity, triggered
by the aggregation of �-synuclein in the gut mucosa,
may promote further CNS neuroinflammation and
neurodegeneration. Nonetheless, the complex inter-
action between intestinal mechanisms, the enteric
nervous system, the immune system, the CNS, and
environmental factors, is yet to be fully elucidated.

THE CONNECTION BETWEEN PD
GENETIC FACTORS AND T CELLS

Finally, in this complex scenario, genetic fac-
tors should be considered as well: the association
between human leukocyte antigen genes and PD was
explored in several studies [57, 58] and a large-
scale meta-analysis including more than 100,000
subjects [59]. Other lines of evidence found that
the knockout of the �-synuclein gene affected IL-
2 production by CD4+ T cells and the frequency of
Tregs in mice [60]. The role of �-synuclein defi-
ciency in promoting a pro-inflammatory immune
response was also observed in experimental autoim-
mune encephalomyelitis models of multiple sclerosis
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Table 1
Summary of peripheral T changes in PD patients

Peripheral blood alterations of T cells in PD

Finding Population Nation Reference

↓ Naı̈ve CD4+ and naı̈ve CD8+ T lymphocytes 41 treated PD patients, 40 HC USA [14]
↓ CD3+ and CD4+ T lymphocytes, no difference 127 treated PD patients, 148 HC China [19]

in CD8+ T lymphocytes
32 drug-naı̈ve PD patients, 20 HC Mexico [33]

↓ CD4+ T lymphocytes 60 treated PD patients, 40 HC China [21]
26 drug-naı̈ve and 56 treated PD Italy [22]

patients, 47 HC
↓ CD4+ and ↑ CD8+ T lymphocytes 33 treated PD patients, 34 HC Japan [15]
↑ CD3+ and CD4+ T lymphocytes, no difference 761 treated PD patients, 761 HC China [24]

in CD8+ T lymphocytes
No difference in CD4+ and CD8+ T lymphocytes 10 treated PD patients, 13 HC Germany [17]

268 PD patients, 268 HC China [18]
40 treated PD patients, 25 HC Brazil [25]

↑ Th1 and Th17, ↓ Th2 and Treg 60 treated PD patients, 40 HC China [21]
↑ Th1, ↓ Th2, Th1/17, Th17, Treg 26 drug-naı̈ve and 56 treated PD Italy [22]

patients, 47 HC
↑ Th17, Th2, no differences in Th1 and Treg 41 treated PD patients, 40 HC USA [14]
↓ Th2 and Treg, no difference in Th1 20 treated PD patients, 20 HC Japan [15]
↑ Th17 18 drug-naı̈ve PD patients and 18 HC China [32]
↓ suppressor Treg, active Treg, type-1 regulatory T cells; 32 drug-naı̈ve PD patients, 20 HC Mexico [33]

no difference in Th1, Th2, Th17

[61, 62]. The LRRK2 G2019S gene altered myeloid
cell differentiation in transgenic rats, leading to
decreased Th17 cell activity [63]. Furthermore,
PINK1–/– T cells exhibited a reduced suppressive
function despite normal FoxP3 expression kinetics
[64]. A recent study [11] reported that the intestinal
infection with gram-negative bacteria in PINK1–/–
mice leads to autoimmune mechanisms eliciting
cytotoxic mitochondria-specific CD8+ T cells, thus
highlighting the role of PINK1 as a repressor of
the immune system and supporting the relevance
of the gut-brain axis as a triggering event in PD.
Taken together, these results provide evidence that
PD-associated genetic mutations could influence the
immune network and suggest that specific subsets of
patients with a genetic predisposition could be more
suitable for immune-targeted therapies.

FUTURE PERSPECTIVES

A deeper understanding of the peripheral immune
system in PD has widened research avenues to
explore whether it is a suitable target for disease-
modifying therapies. In particular, the possibility
of immune escape mechanisms in PD has built
the premise of re-establishing immunological toler-
ance as a key strategy. In this context, compounds
acting on the Treg compartment, i.e., vasoactive

intestinal peptide (VIP), pituitary adenylate cyclase-
activating polypeptide (PACAP), and GM-CSF, have
been explored in recent literature [65]. VIP-receptor
2 peptide agonist (LBT-3627) attenuated neuroin-
flammation by promoting the restoration of Treg
activity in both 6-hydroxydopamine (6-OHDA) and
�-synuclein overexpression rat models [66]. Sim-
ilarly, PACAP exerted a neuroprotective effect in
the rotenone-induced snail and 6-OHDA-induced rat
models of PD. [67]. The adoptive transfer of GM-
CSF-induced Tregs to MPTP mice was able to protect
nigral neurons through the activation of immune-
based neuronal protection pathways linked to the
upregulation of IL-27 [68]. Further evidence was pro-
vided in a study carried out by Thome et al., who
found that ex vivo expansion of dysfunctional Tregs
restored suppressive function by diminishing multi-
ple pro-inflammatory pathways in myeloid cells and
inhibiting responder T cell proliferation [69]. Regard-
ing clinical trials, the subcutaneous administration
of sargramostim (a human recombinant GM-CSF)
at 6 �g/kg/day for 56 days, increased the numbers
of Tregs and determined modest improvement in the
UPDRS-III after 6 and 8 weeks of treatment when
compared with placebo [70]. Since some adverse
events were noticed, another study [71] explored
long-term sargramostim treatment at 3 �g/kg/day in
5 PD patients. Reductions in adverse events, as well
as an increase in peripheral blood Treg numbers,
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function, and hypomethylation of upstream FoxP3
DNA elements, were observed. Furthermore, there
was no worsening of motor function scores for any
subject during the course of treatment. An alternative
approach to enhance the Treg compartment is to iso-
late and purify Tregs from peripheral blood, expand
them in vitro, and administer autologous infusions of
expanded Tregs, as reported in a recent phase I trial
involving patients with amyotrophic lateral sclerosis
[72]. Another feasible strategy could be represented
by targeting T cells through immunosuppressant
drugs, i.e., azathioprine. Azathioprine is a pro-drug
of 6-mercaptopurine, a purine antagonist that inhibits
leukocyte proliferation by interfering with nucleotide
synthesis [73]. A phase 2 trial is currently exploring
whether the suppression of the peripheral immune
system using azathioprine has a disease-modifying
effect in PD [74]. Additionally, glatiramer acetate,
an FDA-approved treatment for multiple sclerosis
which improves Th2 and Treg function, was inves-
tigated as a potential disease-modifying treatment in
PD: in the MPTP murine model, this compound was
able to reverse motor dysfunction, promote the recov-
ery of tyrosine hydroxylase protein expression in the
striatum and the levels of brain derived neurotrophic
factor, and reduce the microglial activation marker
IBA1 [75].

CONCLUSION

The present review highlighted how the dysreg-
ulation of central and peripheral T cells may play
a key role in PD. Nonetheless, several unanswered
questions remain: 1) Is the peripheral activation of
T cells a primary event leading to neurodegenera-
tion, or is it a secondary response caused by neuronal
injury? 2) What is the exact relationship between the
alteration of T cell subsets in the blood and the CNS
of PD patients? 3) Which are the potential applica-
tions of T cell changes as diagnostic and therapeutic
biomarkers? 4) What is the role of genetic stratifica-
tion in identifying PD subjects susceptible to T cell
impairment and T cell-targeted therapies? Moreover,
a thorough understanding of the role of PD medica-
tion and the use of comparable methodologies (i.e.,
use of standardized markers for the identification
of T cell subsets) are warranted to avoid contra-
dictory findings. If these issues will be correctly
tackled, the modulation of T cell response could
hopefully slow or even halt neuronal damage through
the restoration of immune balance, thus providing

new therapeutic avenues in the management of PD
patients.
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