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Abstract. Accumulating evidence suggests that microglia and peripheral immune cells may play determinant roles in the
pathogenesis of Parkinson’s disease (PD). Consequently, there is a need to take advantage of immune-related models of
PD to study the potential contribution of microglia and peripheral immune cells to the degeneration of the nigrostriatal
system and help develop potential therapies for PD. In this review, we have summarised the main PD immune models.
From a historical perspective, we highlight first the main features of intranigral injections of different pro-inflammogens,
including lipopolysaccharide (LPS), thrombin, neuromelanin, etc. The use of adenoviral vectors to promote microglia-specific
overexpression of different molecules in the ventral mesencephalon, including �-synuclein, IL-1�, and TNF, are also presented
and briefly discussed. Finally, we summarise different models associated with peripheral inflammation whose contribution
to the pathogenesis of neurodegenerative diseases is now an outstanding question. Illustrative examples included systemic
LPS administration and dextran sulfate sodium-induced colitis in rodents.

Keywords: Parkinson’s disease, animal models, microglia, inflammation, substantia nigra, lipopolysaccharide, thrombin,
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INTRODUCTION

Parkinson’s disease (PD) is characterized by a
significant loss of dopaminergic neurons in the
substantia nigra (SN) along with immunopositive
intracellular neuronal inclusions for �-synuclein (�-
syn) in the midbrain [1]. Different mechanisms have
been suggested to play an essential role in the patho-
genesis of PD, including impaired mitochondrial
function, autophagy, loss of trophic support, protein
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homeostasis dysfunction, and neuroinflammation.
Since the original observation by McGeer et al. in
1988 showing reactive microglia in the SN of human
postmortem PD brain tissue [2], evidence supporting
an important role of microglia and inflammation in
driving neurodegenerative events is overwhelming.
For instance, at the genetic level, it has been shown
that PD risk alleles likely alter the functioning of
microglia-specific enhancers in the loci LRRK2 and
FCGR2A, specifically through disrupting a SPIB-
binding motif in the latter [3]. Mutations in GBA1, the
gene encoding the lysosomal enzyme glucocerebrosi-
dase, are considered the most significant risk factors
for PD, which is believed to create toxic species of
�-syn aggregates through defective lysosomal func-
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tion [4]. A recent mouse brain cell atlas supports that
Gba1 is mainly expressed by microglia and not by
neurons [5]. A role for T cells is also implied by iden-
tifying specific major histocompatibility complex
(MHC) haplotypes and non-coding SNPs in MHC
genes as risk factors for PD [6]. Different animal
models have consistently shown that early microglia
activation may precede the death of dopaminergic
neurons, suggesting that brain immune cells may play
a leading role in the pathogenesis of PD. Pattern
recognition receptors (PRRs) sense the environ-
ment by recognizing pathogen-associated molecular
patterns (PAMPs) and danger-associated molecular
patterns molecules (DAMPs) [7]. Illustrative exam-
ples of PRRs are toll-like receptors (TLRs), nod-like
receptors (NLRs), and triggering receptors expressed
on myeloid cells-2 (TREM2) [7], whose selective
activation is thought to generate either a proinflam-
matory or a disease-associated microglia (DAM)
phenotype [8]. With the advent of single-cell RNA-
sequencing (scRNA-seq) of microglia under disease
conditions, it has become evident that microglia may
acquire an array of activation phenotypes much larger
than originally believed including potentially protec-
tive microglia phenotypes (DAM) [8], deleterious
microglial neurodegenerative phenotype (MGnD)
[9] or yet to be defined (such as white matter-
associated microglia (WAM) [10]). scRNA-seq from
the murine midbrain identified a microglia subtype
exhibiting typical pro-inflammatory features includ-
ing enrichment of TLR signalling pathways [11].
scRNA-seq performed from ventral mesencephalic
tissue obtained from postmortem PD patients and
age-matched controls identified a disease-specific
upregulation of microglia [12]. Interestingly, the
authors identified a significant PD risk variant
enrichment in microglia, showing the strongest
association with the PD gene LRRK2 along with
enrichment of NLRP3 inflammasome pathways [12].
In addition, a significant upregulation of GPNMB
was found, which was associated with amoeboid
microglia [12]. Of note, GPNMB is one of the most
upregulated genes in DAM [13] and MGnD [9] phe-
notypes, and increased brain expression of GPNMB
is associated with genome wide significant risk
for PD [14].

A sustained and complex systemic activation of
the immune system in PD is supported by increases
of different cytokines (pro-inflammatory and anti-
inflammatory) and immune-related molecules in CSF
and serum of PD patients [15, 16]. From the different
cytokines, TNF-� deserves special consideration as

blocking TNF-� has been found neuroprotective in
PD models [17] and usage of TNF-� antibodies has
been found to lower PD incidence among patients
with inflammatory bowel disease [18]. Increasing
evidence supporting an important role of the periph-
eral immune system in PD pathology is evident and
most of the peripheral contributors to PD-related
neuroinflammation have been recently described by
Romero-Ramos and colleagues [15]. Among them,
monocytes/macrophages have been involved in PD
pathogenesis since it is known that these cells infil-
trate the brain during PD through the CCL2-CCR2
axis [19]. Furthermore, genetic profiling analysis has
identified a distinct transcriptomic signature in mono-
cytes from early PD patients [20]. Some researchers
have also shown that monocytes from PD patients
cannot produce a healthy and balanced response to
different stimuli, such as �-syn for example [21].
The involvement of T cells in the pathogenesis of
PD has been also demonstrated, since CD4+ and
CD8 + T cells surrounding neuromelanin+ neurons
have been detected in postmortem PD patients [22].
These observations pinpoint the interactions between
brain innate and adaptive immune systems. The con-
tribution of MHC II to PD pathology is inferred
by studies demonstrating that MHC null mice are
resistant to dopaminergic degeneration under con-
ditions of �-syn overexpression [23]. Confirming
these observations, genetic association with PD in
the HLA region has been found, including HLA-
DRA, HLA-DQA2, HLA-DQB1, HLA-DRB1, and
HLA-DRB5 [24–27]. Importantly, a set of peptides
derived from �-syn have been found to act as anti-
genic epitopes to further drive CD4+ and CD8+ cell
responses in PD patients [28], thus linking preclinical
studies and GWAS studies across the HLA regions.
Finally, even though infiltrating B cells have not been
detected in the brains of PD [22], a recent scRNA
and BCR sequencing for B cells in PD patients and
aged-matched controls identified increased memory
B cells and increased IgG and IgA isotypes and more
frequent class switch recombination events in PD
patients [29]. All these findings have contributed to
the redefinition of PD as a multisystemic disease
that should be managed in a more integrative man-
ner instead of the brain-focused classical approach.
More research of this integrated network of commu-
nication that exists between peripheral immune cells
and glial cells is necessary to improve our understand-
ing of disease pathogenesis and hence provide more
effective therapeutic approaches. All this information
implies immune-associated models of PD as relevant
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tools to study the potential contribution of microglia
to the degeneration of the nigrostriatal system and
help in developing potential therapies for PD.

PD MODELS USING INTRACEREBRAL
INJECTION

Lipopolysaccharide

Lipopolysaccharide (LPS; also known as endo-
toxin), a powerful pro-inflammogen, is the main
component of the outer membrane of Gram-negative
bacteria. The physiological response to LPS is medi-
ated by the TLR4 in association with other proteins as
the LPS binding protein (LBP), the monocyte antigen
CD14, and the myeloid differentiation factor (MD)-2
[30]. Injection of LPS into different brain struc-
tures such as the cerebral cortex, striatum, choroid
plexus-cerebral ventricles, or hippocampus triggers
the activation of astroglia and microglia [31–34].

Since the death of dopaminergic neurons in SN is a
key feature of PD, it was worth investigating whether
injection of LPS into SN could induce a glial reac-
tion and subsequent loss of dopaminergic neurons.
A single intranigral injection of 2 �g of LPS induces
microglial activation and loss of astrocytes on the
injection side, studied from two days after injection
[35]. Using a single injection of 5 �g of LPS into
the SN, microglial activation has been described as
early as 0.2 h after injection [36]. Importantly, the
number of TH positive neurons on the SN is reduced
on the ipsilateral side of injection [37]. Similarly,
dopamine (DA) levels, its metabolites, and TH activ-
ity (a key enzyme in the synthesis of DA) decreased
in both the SN and the striatum. The long-term anal-
ysis demonstrates that damage to the dopaminergic
system is permanent, as seen one year after injection
[35]. Other neuronal phenotypes, such as GABAergic
or serotoninergic, are not affected, strongly suggest-
ing that injection of LPS into the SN is a specific
inflammatory animal model of PD [35]. Other authors
have modified this model, using increasing amounts
of LPS into the SN, as 5 �g [36], 10 �g [38], or
up to 30 �g [39]. Intrastriatal injections have also
been used, employing either a low dose (0.05–5 �g)
[40] or a high dose (from 16 to 60 �g) [41, 42].
Intrapallidal injection has also been reported (10 �g)
[43]. Interestingly, SN is always identified among
the brain structures more prone to neuroinflamma-
tion. The causes of this situation have not yet been
determined, although local differences in the num-
ber of microglia [44] and of the inflammation-related

factors produced by these cells have been suggested
[45]. In this sense, even systemic administration of
LPS (which will be discussed in more detail below)
has a specific effect on SN, increasing phagoptosis of
nigral neurons through a mechanism dependent on
the P2Y6 receptor [46].

Injection of LPS at a dose of 2 �g did not affect the
dopaminergic system when injected into the striatum
or the medial forebrain bundle (MFB, the primary
neural connection between these two structures) [35,
47]. However, it has been reported that the intrastri-
atal injection of 10 �g of LPS in Sprague Dawley rats
produces an inflammatory response, oxidative stress,
and activation of the TLR/NF-KB (Nuclear factor-
kappa B) pathway, with motor alterations [48]. Other
authors administered even higher amounts of LPS (up
to 60 �g), inducing degeneration of the dopaminergic
nigrostriatal system, motor impairment, and �-syn
accumulation in nigral dopaminergic neurons [41,
42], with mitochondria affected before dopaminergic
neuronal degeneration. Furthermore, a study using
the injection of 10 �g of LPS into the globus pal-
lidus reported changes in SN iron levels, which could
increase stress and subsequent vulnerability of nigral
dopaminergic neurons [43]. It has been suggested that
microglia could be responsible for differential sus-
ceptibility to LPS in brain structures [45]. On the
other hand, models based on high LPS doses could
deviate from physiological conditions not represent-
ing a ‘realistic’ disease model.

The effect of LPS on neuronal and glial cells
is prevented by compounds with anti-inflammatory
properties, such as dexamethasone (a potent and
widely used anti-inflammatory drug) [49], minocy-
cline (a tetracycline antibiotic) [50], simvastatin (a
lipid-lowering agent) [51], or naloxone (an opi-
oid receptor antagonist) [52]. It is striking that the
LPS-induced neurotoxic effects in SN appear to be
DA dependent since the inhibition of TH with �-
methyl-p-tyrosine prevents microglial activation and
LPS-induced damage to dopaminergic neurons [53].
Synergistic interaction of DA with other compounds
to produce a toxic effect has previously been shown;
of particular interest is the interaction with �-syn,
which changes its aggregation pattern in vivo in
contact with DA [54]. On the other hand, the contri-
bution made by DA metabolism through monoamine
oxidase (MAO, which produces H2O2) to oxidative
stress should not be ruled out.

Stress reinforces the deleterious effect of LPS on
SN. Therefore, the number of activated microglial
cells in the SN of rats treated with LPS and the loss of
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astrocytes is almost doubled in stressed animals. The
reinforcement by stress of the effect induced by LPS
is similar (or even greater) on the expression levels
of key proinflammatory molecules, including tumor
necrosis factor (TNF), interleukin (IL)-1�, IL-6, and
inducible NO synthase (iNOS), and the combined
effect of stress and LPS results in a huge expres-
sion of monocyte chemoattractant protein 1 (MCP-1)
mRNA. The number of TH positive neurons in the
SN, which is halved in the animals treated with LPS,
decreases to 25% of the control value when LPS is
injected into the SN of stressed animals. RU486, a
glucocorticoid receptor antagonist, prevents all these
effects [55]. These data point to the potential role of
stress in the initiation/development of the neurode-
generative process that leads to PD.

Thrombin

This multifunctional serine protease, well known
for its participation in the blood coagulation cas-
cade, has harmful effects on the CNS. When injected
into the SN of Wistar rats, thrombin induces the
expression of iNOS and proinflammatory cytokines
(TNF, IL-1�, IL-1�) in both the SN and the stria-
tum, increases microglial proliferation and activation,
and induces the disappearance of astroglial cells
around injection into the SN. Intranigral injection
of thrombin also reduces the number of dopamin-
ergic neurons in this structure without affecting other
neuronal phenotypes such as GABAergic neurons.
Similar results were described in Sprague Dawley
rats [56], including the activation of apoptosis and
the c-Jun N-terminal kinase (JNK) and p53 signal-
ing pathways [57]. When injected into the striatum,
thrombin induces a retrograde loss of dopaminer-
gic neurons in the SN, also affecting the fibers
immunopositive for TH that connect both structures
and inducing the formation of deposits of �-syn in
the SN, a hallmark of PD [58]. Blocking PAR4, a
thrombin receptor, prevents these effects suggesting
that thrombin could be involved in eliminating presy-
naptic elements in the striatum, leading to synaptic
loss [59].

Anti-inflammatory compounds prevent the effect
of compounds that trigger an inflammatory response.
For example, minocycline-induced suppression of
reactive oxygen species (ROS) derived from
NADPH oxidase and expression of proinflammatory
cytokines prevented the death of thrombin-induced
dopaminergic neurons induced by thrombin [60].
However, in the intranigral thrombin model, sys-

temic administration of dexamethasone, a widely
used anti-inflammatory drug, does not only fail to pre-
vent microglial activation but increases dopaminergic
neuron damage. In fact, dexamethasone does not
decrease the number of apoptotic cells, nor reduces
thrombin-induced �-syn deposits, but reduces the
amount of P-Akt. Interestingly, these effects appeared
to be mediated by increases induced by thrombin in
MAO, which was prevented by the MAO inhibitor
tranylcypromine [61]. This suggests that in cases
in which the integrity of the blood-brain barrier
(BBB) has been compromised and thrombin is in
contact with the cerebral parenchyma (as occurs
in processes that affect the cerebral vasculature,
such as stroke), the administration of dexametha-
sone as an anti-inflammatory therapy would be
counterproductive.

α-Synuclein fibrils injections

�-syn protein injection has been widely used in
the last decade to promote PD-like features focused
on �-syn aggregation. In particular, striatal injection
of �-syn pre-formed fibrils (PFF) demonstrated to
cause Lewy body-like inclusion and dopaminergic
degeneration in mice [62]. The relevance of neuroin-
flammation in this model was recently investigated
in mice by Earls et al. [63] demonstrating upregula-
tion of MHC-II as a signal of microglia activation
while also describing astrogliosis and lymphocyte
infiltration while similar results were obtained in
rats [64]. Interestingly, T-lymphocytes have been
proposed to limit phosphorylation of �-syn [65].
Injection of PFFs in transgenic models also demon-
strated the importance of neuroinflammation. For
instance, injection of PFF in A30P transgenic mice
also resulted in increased microgliosis [66]. Sim-
ilarly, injection of PFF in A53T transgenic mice
led to microglia activation and neurodegeneration.
However, genetic deletion of TLR2 or pharmacolog-
ical inhibition achieved to decrease microgliosis and
cytokine release while also protecting the dopamin-
ergic system [67]. Overall, injection of PFF is,
nowadays, one of the most used models for the study
of �-syn aggregation and transmission presenting
interesting similarities with the progression of PD in
humans. However, the inflammatory component of
this model is very relevant and should be considered
as one of the best choices for determining the role of
neuroinflammation in PD progression.
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Other models using intracerebral injection

The tissue-type plasminogen activator (tPA,
another serine protease) was the first drug approved
(1995) by the Food and Drug Administration
to treat acute ischemic stroke. However, beyond
its beneficial abilities as a clot-dissolving agent,
injection of tPA into Wistar rats’ SN produces
microglial activation and loss of astrocytes, degen-
eration of dopaminergic neurons without affecting
GABAergic, disruption of BBB, �-syn deposits,
increased expression of the brain-derived neu-
rotrophic factor (BDNF), nNOS and iNOS, and
alteration of phosphorylation levels in the pro-
teins JNK, p38, extracellular signal-regulated kinases
(ERK), Akt, glycogen synthase kinase (GSK)-
3� and cAMP responsive element-binding protein
(CREB) [68].

Trisialoganglioside (GT1b; a glycosphingolipid
containing sialic acid) is a surface molecule of mam-
malian cells with endogenous effects on the CNS.
Injection of GT1b into the SN of female Sprague-
Dawley rats induced the loss of NeuN and TH positive
neurons in this structure in a dose-dependent manner.
GT1b induced microglial activation and expression
of iNOS in microglia (as soon as 4 h after injection).
Inhibition of NOS by L-NG-nitroarginine methyl
ester (L-NAME) partially prevented the deleterious
effect of GT1b [69].

Finally, neuromelanin is a pigment found in
human catecholaminergic neurons; however, extra-
cellular neuromelanin has been suggested to activate
microglial cells [70]. Zecca et al. [71] published
a new model of microglial activation and 50% of
dopaminergic degeneration after intranigral injection
of human neuromelanin in rats.

Virus-mediated overexpression of proteins

Overexpression of �-syn has been used in the last
decade as a model of parkinsonism focused on the
aggregation capacities of �-syn inside the dopamin-
ergic neurons [72]. Different adenovirus-associated
vector (AAV) serotypes have been used to induce the
expression of wild-type or mutant human �-syn. This
overexpression is frequently associated with a neu-
ronal promoter and locally injected in the midbrain
region to investigate the effect on dopaminergic neu-
rons (see [73]). Inflammation has been closely related
to this model, for instance, Sanchez-Guajardo et al.
[74] first described early microglia activation in rats
midbrain after AAV2/5 serotypes injections along

with lymphocytes infiltration. Same serotype was
demonstrated to induce microglia activation inde-
pendently of neurodegeneration in monkeys [75]
and mice [76]. Neuroinflammation appeared in the
striatum even before than in the SN, including
increased levels of several cytokines like IL-1� and
TNF-� [77]. Furthermore, inhibition of microglia
activation has been demonstrated to protect dopamin-
ergic integrity after AAV9 serotype injection [78]
and AAV2 serotype where MHC-II genetic deletion
resulted in absence of neurodegeneration [23]. Con-
versely, further activation of microglia through LPS
injection promoted cell-to-cell transmission of �-syn
[79]. Interestingly, combination of this model with
injection of PFF has also shown to increase microglia
activation, microgliosis and dopaminergic degenera-
tion [80].

However, Bido et al. [81] have recently pub-
lished a novel variant of this model focusing on
the effect of �-syn on microglial cells. In their
study, they used a novel lentiviral FLEX sys-
tem of conditional gene expression to provoke
microglia-specific overexpression of mutant A53T
�-syn associated with the expression of CX3CR1
receptor. The authors achieved high cell specificity
with this method and discovered that microglial
A53T �-syn overexpression promoted microglial
activation and dopaminergic degeneration. Surpris-
ingly, no intraneuronal �-syn accumulation was
found, but rather microglia presented signs of �-syn
accumulation like phosphorylation in serine S129.
Microglia has been proposed as the cell respon-
sible for pathological �-syn degradation. In fact,
Heneka and colleagues have recently demonstrated
that microglial cells can transport pathological �-
syn from microglia to microglia through tunneling
nanotubes for cooperative degradation [82]. How-
ever, under these conditions, �-syn fibrils induced
the production of ROS, resulting in a compromised
plasma membrane and mitochondrial network dis-
integration [82]. Both studies highlight the ability
of microglia to isolate and degrade pathological �-
syn. However, it is important to keep in mind that
levels of pathological �-syn rely on the perfect bal-
ance of three independent processes associated with
�-syn homeostasis: formation, aggregation rate, and
clearance [83]. This view is exemplified in the model
used by Bido et al. associated with overexpression
of �-syn that provoked microglial exhaustion, ineffi-
cient degradation, microglia activation, and neuronal
degeneration. Importantly, under these conditions,
microglia showed a transcriptomic profile with upreg-
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ulation of main proinflammatory cytokines like Il1b
and Tnfa as well as several chemokines. Addition-
ally, authors discovered upregulation of some of the
genes related to DAM phenotypes discovered in other
neurodegenerative diseases models like Apoe or Itgax
[8, 9]. Consequently, any disturbance of such a bal-
ance may make microglia prone to produce high
levels of neurotoxic ROS and proinflammatory fac-
tors, ultimately leading to cell death. Similarly, Zhang
and colleagues also promoted �-syn overexpression
in microglia primary cultures and microglial cell
lines [84], promoting a robust inflammatory response
and cytokine release that could be impaired by the
mGluR5 receptor activation.

While the recent study from Bido et al. has shed
light on the implication of �-syn in microglia acti-
vation and consequent dopaminergic degeneration,
other studies had previously used viral-mediated
overexpression to promote microglial activation. For
instance, in 2006, Ferrari and colleagues [85] proved
that chronic overexpression of IL-1� in the SN leads
to progressive neurodegeneration in rats associated
with microglial activation. Similarly, overexpression
of TNF led to mild but progressive neurodegenera-
tion as soon as 14 days [86]. Notably, both studies
suggested independent effects of both cytokines, as
levels of IL-1� after TNF overexpression remained
low and vice versa.

Interestingly, the combination of adenoviral
expression with classical PD models could become a
novel strategy for studying different immunomodula-
tory proteins and deciphering PD-specific microglial
phenotype. For instance, Ren et al. have studied
the role of TREM2 overexpression in a model
of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP). TREM2 is thought to be a master regulator
of microglia phenotype. Upon activation, TREM2
promotes phagocytosis, ameliorated inflammatory
response and neuroprotection, but is also a key
receptor for neurodegenerative microglia [9] and
is needed for complete inflammatory response
(reviewed in [87]). In the context of dopaminergic
degeneration, overexpression of TREM2 led to
decreased neuroinflammation and dopaminergic
protection [88], which goes in line with later studies
focused on TREM2 knockout mice and supports the
view that the DAM phenotype is neuroprotective
[89].

Altogether, adenoviral overexpression offers a
broad panel of possibilities for studying microglial
activation as a PD model and represents a novel tool
that should highly impact future PD research.

The experimental animal models of PD described
so far, in one way or another, end up activating this
inflammatory response, indicating that the different
models of this disease show common mechanisms to
some extent.

As shown above, LPS is a direct inflamma-
tory model. On the contrary, substances such as
6-OHDA MPTP/MPP+, paraquat, or rotenone are
classic toxic models that produce the specific death
of dopaminergic neurons. Interestingly, its adminis-
tration eventually triggers a harmful inflammatory
reaction. In recent years, the idea that neuronal death
produced by these toxic substances was followed
by activation of the immune response has changed
towards a scenario in which the latter is activated
before (or even in the absence of) neuronal death, so
that microgliosis and not neurotoxicity would be the
determining factor in neuronal death. For example,
MPTP administration not only induced microglial
activation but also induced T lymphocyte (CD4+
and CD8+) infiltration into the brain of non-human
primates [90]. Thus, both peripheral and cerebral
immune responses are involved in the mechanism of
death induced by MPTP.

6-OHDA induces a strong production of free rad-
icals that was soon identified [91, 92], in addition to
inhibition of complex I of the mitochondrial respira-
tory chain, a mechanism shared by substances such
as MPTP/MPP+and pesticides such as rotenone and
paraquat. In the 6-OHDA model, the loss of astrocytes
and the alteration of the BBB, the death of dopaminer-
gic neurons, and the activation of microglia observed
in the SN and the striatum was accompanied by the
infiltration of peripheral immune cells [93]. Interest-
ingly, these effects are prevented in female TLR4 KO
animals (suggesting a gender-dependent mechanism)
[94], and the treatment with urocortin [95] or P2Y6R
KO [46] exert protection. Since these substances also
exert protection in the LPS model, the inflammatory
response arises as a common mechanism to different
molecular challenges showing that the inflammatory
response induced by LPS and 6-OHDA share com-
mon pathways.

The effect of �-syn overexpression in dopaminer-
gic neurons of the SN produces a down-regulation
of TH and an increased sensitivity to MPTP/MPP+
[96]. Interestingly, �-syn can also exert a detrimental
effect on mitochondria, altering complex I-dependent
respiration [96, 97]. �-syn exerts an unquestionable
activating effect on microglia, especially the mis-
folded forms [98], which extends to monocytes [99,
100]. The Lewy pathology and neuroinflammation
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can then mutually potentiate in a vicious cycle, facil-
itating the progression of the pathology and the death
of dopaminergic neurons [101, 102].

The involvement of the peripheral immune cells
in these PD models has also been described. For
instance, peripheral immune components infiltrate
the brain following intracranial injection of any of
the toxic mediators discussed. Injection of LPS into
the SN causes infiltration of peripheral macrophages,
which contributes to the observed damage; in fact,
the depletion of peripheral macrophages using clo-
dronate not only eliminates their infiltration, but also
reduces other harmful effects of LPS injection, such
as microglial activation, loss of astrocytes, disrup-
tion of the BBB, and death of dopaminergic neurons
in the SN [103]. In the 6-OHDA model, the loss
of astrocytes and the alteration of the BBB, as well
as the activation of microglia and the infiltration of
peripheral immune cells observed in the SN and the
striatum, decreased when the concentration of DA
was depleted by the TH inhibitor �-MPT, suggesting
an interaction between endogenous DA and toxins
[93].

Any condition affecting the integrity of the BBB
can potentially let (or maybe induce) the infiltration
of peripheral immune cells. Alteration of the BBB
permeability has been shown in several animal mod-
els of PD, as for the intranigral/intrastriatal injection
of thrombin [57] or tPA [68].

Circulating neutrophils, for example, are important
in ischemic stroke [104, 105], where they become the
main producers of matrix metalloproteinases (MMP-
9), disruptors of the BBB. Peripheral immune cells
are arising as interesting therapeutic targets in brain
disorders coursing with inflammation; thus, the treat-
ment with L-cysteine (a source of SH2 groups)
reduced infiltration of peripheral immune cells in the
brain, contributing to a better outcome of neuronal
deficits induced by LPS [106]. Overexpression of �-
syn in microglial cells induced by lentivirus produces
an inflammatory cycle involving infiltrating immune
cells [81].

PD MODELS COMBINING PERIPHERAL
AND CENTRAL INFLAMMATION

The data discussed above make clear the piv-
otal role of neuroinflammation in the development
of PD. Nevertheless, the increase in understanding
of PD has led Brundin and colleagues to redefine
its pathogenesis by dividing the course of the dis-

ease into three temporal phases mediated by triggers,
facilitators, and aggravators [107]. Following this
concept, the inflammatory models described so far
could be the trigger that initiates the neurodegenera-
tive process. However, in the context of PD, triggers
alone may be insufficient for the pathology of PD to
develop, requiring facilitators. Consistent with this
view, our group was a pioneer in pointing to periph-
eral inflammation as one of these facilitators. In 2010,
Villarán et al. described that peripheral inflammation
induced by a model of ulcerative colitis based on
the administration of dextran sulfate sodium (DSS)
in drinking water exacerbates LPS-induced damage
to the nigral dopaminergic system [103]. The con-
tribution of chronic peripheral inflammation to the
pathogenesis of neurodegenerative diseases is now
an outstanding question. In the past 10 years, sev-
eral clinical data and animal models have supported
this view, suggesting peripheral inflammation as a
potential risk factor in neurodegenerative diseases,
especially in PD (for a review, see [108]). Sus-
tained activation of the peripheral innate and adaptive
immune systems occurs in the context of a wide
range of disorders ranging from chronic infectious
diseases to autoimmune and metabolic diseases, such
as obesity, diabetes mellitus, and atherosclerosis. In
addition, it is increasingly recognized that progres-
sive systemic inflammation takes place during aging,
a term known as inflammaging. Chronic peripheral
inflammation that accompanies these diseases has
been proposed to induce the production of proin-
flammatory cytokines that, following the endocrine
route or through the vagus nerve transmission, can
enter the brain [109]. In addition, increasing levels
of proinflammatory cytokines compromise the per-
meability of the BBB, allowing many immune blood
cells, including monocytes and T cells [110], to cross
the altered BBB. This realization arises from multiple
clinical studies showing elevated levels of inflamma-
tory mediators in patients with PD, providing strong
evidence for the interplay of the innate and adaptive
immune system in the CNS and periphery in the con-
text of PD and other synucleinopathies [15]. Some
authors have proposed that this humoral immune
response could be correlated with the nonmotor
symptoms of PD [109]. In this context, we can face
two possible scenarios: peripheral inflammation can
“prime” microglial cells, which may become over-
activated when a second noxious stimulus arrives.
On the other hand, peripheral inflammation can trans-
form previously “primed” microglia into an activated
state. In both cases, peripheral inflammation can trig-
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Table 1
Models based on the combination of central and peripheral inflammation used to study

the implications of systemic inflammation in the development of PD

Central challenge Peripheral Reference
inflammation model

6-OHDA LPS (0.4 mg/kg, 1 day) [115]
6-OHDA AdIL-1� [116]
AdIL-1� AdIL-1� [116]
Paraquat DSS (250 mg/ml, 5 days) [117]
�-syn injection LPS (1–2.5 mg/kg, 1 day) [118]
Transgenic A53T �-syn model LPS (1–2.5 mg/kg, 1 day) [118]
Lactacystin LPS (0.25 mg/kg, 4 days) [119]
Transgenic A53T �-syn model DSS (0.5%, 12 weeks) [120]
MPTP DSS (2.5%, 8 days) [121]

DSS (2%, 15 days) [122]
Iv injections of �-syn LPS (0.8 mg/kg, 4 days) [123]
Rotenone Chronic stress-induced intestinal dysfunction [124]
MPTP LPS (2 mg/kg, 1 day) [125]
LPS Carrageenan [126]
Rotenone Carrageenan [126]
�-syn injection LPS (0.5 mg/kg, 1 day) [127]
LPS DSS (5%, 7 days) [103]

ger stronger responses and further perpetuate the
ongoing neurodegenerative process [111, 112].

Considering all this information, some authors,
including our group, have developed several animal
models resulting from the combination of peripheral
inflammation and central nigral dopaminergic chal-
lenge (reviews in [113, 114]). These models have
been summarized in Table 1.

The most popular model of peripheral inflamma-
tion used in these combined models is the one based
on intraperitoneal injection of LPS at doses ranging
from 0.4 to 2.5 mg/kg in just one or several consecu-
tive days. Gut inflammation induced by the ulcerative
colitis model based on DSS administration (from 0.5
to 5%) in drinking water is the other most com-
mon model of peripheral inflammation. Injection of
carrageenan into the paws of rats and injections of
adenoviral vector that produce human IL-1� are also
useful approaches to achieve peripheral inflamma-
tion. These models of peripheral inflammation were
combined with a nigral insult induced by several
PD models, including the 6-OHDA, MPTP, LPS,
rotenone, and paraquat administration models. Inhi-
bition of the proteasome system and injections of
�-syn oligomers or transgenic animals that overex-
press �-syn are also used as PD models. To note,
chronic stress, which is a common condition nowa-
days, can influence the gut microbiota and alter the
complex equilibrium in the intestinal milieu leading
to a proinflammatory state that has been shown to
accelerate neuronal degeneration and motor deficits
in parkinsonism rodent models [124].

All these data reinforce the idea that peripheral
inflammation could be a significant risk factor for
PD and, therefore, strategies aimed at controlling
the systemic inflammatory state arise as potential
therapeutic options to control the development of
PD. In this sense, Boza-Serrano et al. have shown
that modulation of galectin-3, a microglia-related
protein recently described as an immunomodula-
tor, plays a significant role in microglia activation
induced by �-syn [128]. Indeed, we have demon-
strated that this ability of galectin-3 is extensive to
emerge as a promising strategy to minimize undesired
microglia activation states in PD [129]. The use of
anti-inflammatory therapies in PD treatment has also
been proposed, although clinical trials do not show
significant results [130]. The NLRP3 inflammasome
plays a critical role in the pathogenesis of PD, which
led some authors to propose liver NLRP3 inhibitors to
attenuate systemic inflammation and protect against
a model of PD in rodents [131]. Finally, Liu et al.
have demonstrated that peripheral immune tolerance
mediated by CD200/CD200R signaling can attenuate
neuroinflammation and decrease neurodegeneration
in the LPS model of PD, suggesting CD200R as a
potential therapeutic target to alleviate neuroinflam-
mation in PD [132, 133].

MODELS OF PD BASED ON PERIPHERAL
INFLAMMATION

All these studies target systemic inflammation as
a possible facilitator of PD. The question is whether
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Table 2
Take-home information. All the models described so far share two common features: microglial activation and the death of dopaminergic

neurons. This can be achieved by central or peripheral inflammatory challenges while their combination leads to a higher effect

Model Substance Main features

Intranigral injection LPS, Thrombin, tPA Loss of astrocytes
Infiltration of peripheral cells
Dose-dependent TH+ cells death
Other neuronal phenotypes not affected

�-Syn PFF �-Syn aggregation
GT1b iNOS upregulation

Neuromelanin 50% TH+ cells death
Virus-mediated overexpression of

proteins
�-Syn Toxic aggregates of �-syn in microglia but not in

dopaminergic neurons
IL-1� Low but progressive TH+ cells death
TNF Mild but chronic microglial activation and TH+ cells

death
Peripheral challenge LPS, DSS Progressive TH+ cells death
Infiltration of peripheral cells
Intranigral + Peripheral insult 6-OHDA

AdIL-1� LPS Higher microglial activation∗
Paraquat DSS Higher loss of astrocytes∗
Lactacystin AdIL-1� Higher loss of dopaminergic neurons∗
�-syn Cg ∗Compared to single insult
MPTP Stress
Rotenone

peripheral inflammation is able per se and without
any other central stimulus to induce a neuroinflam-
matory environment in the brain that subsequently
could induce dopaminergic neurodegeneration. In
this sense, two important PD models based on periph-
eral inflammation are arising: the systemic LPS
injection and the gut-brain axis.

Systemic LPS injection

The relevance of systemic inflammation in the
integrity of the dopaminergic system was first demon-
strated by Qin et al. in 2007 [134] when they
administered a single dose of intraperitoneal LPS
(5 mg/kg) in adult mice and discovered that the mice
suffer from chronic and progressive dopaminergic
degeneration at 7 and 10 months after the injection.
Interestingly, LPS is not reported to cross the BBB,
but authors identified the upregulation of peripheral
TNF as the responsible for dopaminergic vulnera-
bility. Indeed, effects of injection include increased
microglial activation and reduced TH staining in the
first hours post-injection [135]. Notably, the study
by Qin et al. stimulated the combination of sys-
temic LPS injection with other parkinsonian models
(see Table 1). Later, other studies have observed a
more accelerated degeneration with repeated injec-
tions of LPS. For instance, Bodea and colleagues
[136] proposed that systemic injection of LPS during
4 consecutive days (1 mg/kg per day) led to dopamin-

ergic degeneration 15 days after the last injection,
in contrast with the same dose in a single injec-
tion that was unable to promote degeneration at that
time point. Systemic LPS injection was characterized
by an increased initial microglial response with sig-
nificant cytokine production, particularly TNF and
IL-1�; however, this activation returned to basal lev-
els 15 days after the injection. Importantly, systemic
LPS can be a valuable model for studying prodro-
mal PD. For instance, systemic LPS models present
early �-syn alterations and non-motor symptoms in
the gut [137], olfactory impairments, and anxiety-like
behavior [138]. Indeed, Song and colleagues [139]
demonstrated that systemic LPS promotes sequen-
tial degeneration in the brain, resembling the initial
phases of the Braak theory [140], starting in the locus
coeruleus, followed by the SN, and lastly, the cortex
and hippocampus.

An innovative variant of the effect of periph-
eral LPS on the dopaminergic system is the chronic
intranasal administration, which after 5 months of
daily administration, promoted microglia activation,
moderate (∼50%) dopaminergic degeneration, and,
remarkably, �-syn aggregation [141]. A similar but
shorter model was also used by Li et al. [142], lead-
ing to a 38% of TH neuronal loss after 1 month of
treatment, increased �-syn expression, and behav-
ioral impairment. The same approach was used by
Niu et al. [143], describing a more intense nigral
degeneration after 6 weeks of treatment while also
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Fig. 1. A) Inflammatory models of Parkinson’s disease take advantage of the use of different proinflammatory compounds administered
peripherally, intracerebral, or by combining both pathways. B) Whatever compound and route of administration used, homeostatic microglia
sense the environment through a set of surface receptors (the pattern recognition receptors, PRRs), including TLR2, TLR4, and RAGE. C)
When activated, microglia undergo molecular and morphological changes, becoming reactive microglia. Illustrative examples are the DAM
phenotype driven by TREM2 or the proinflammatory phenotype driven by TLR activation. Different microglia phenotypes can coexist under
neurodegenerative conditions. Their activation leads to activation of the NF-κB pathway and the transcription of several proinflammatory
genes (TNF and IL-6). Assembly of the NLRP3 inflammasome and activation of caspase-1 produce IL-1� and IL-18. Reactive microglia
are also a source of ROS and RNS. All these products exert a harmful effect on dopaminergic neurons, which in turn release substances
such as ATP, neuromelanin, and different forms of α-syn (either monomers or aggregates) that bind microglial PRRs in a vicious cycle that
eventually leads to the death of dopaminergic neurons. Modified from Herrera et al., 2018 [169] using BioRender.

identifying IL-1� signaling as a relevant factor in this
model.

Gut-brain axis

Different authors have recently suggested that
intestinal inflammation could be a silent driver of PD
pathogenesis [144]. The term gut-brain axis has been
progressively gaining interest in the last 20 years.
This term refers to the bidirectional communication
between the CNS and the enteric nervous sys-
tem and incorporates the fine regulation of immune
responses in the gut and brain [144]. It is known that
inflammatory processes can enter the CNS through

different mechanisms, including the humoral and
neuronal pathways (see [113]). Braak and colleagues,
based on the appearance of Lewy pathology, already
hypothesized the possibility that PD may start in
the gastrointestinal tract to spread to the brain via
the vagus nerve to further reach the ventral mesen-
cephalon [140]. Indeed, experimental evidence has
shown that the gastrointestinal tract is a potential
starting point for aggregated �-syn, with the vagus
nerve acting as a route by which pathology may be
transmitted to the lower brainstem [145]. Therefore,
a new model for PD pathogenesis has been recently
proposed [144]. In this model, the disorder origi-
nates in the intestine to further progress to the ventral
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mesencephalon in an inflammation-mediated pro-
cess. Thus, in a susceptible individual, inflammatory
triggers, such as bacteria, viruses, or environmen-
tal toxins could initiate immune responses in the gut
that eventually could deleteriously impact the micro-
biota, increasing intestinal permeability and inducing
increased expression and aggregation of �-syn. Aber-
rant conformations of �-syn may be transmitted
from the gut to the brain via the vagus nerve, while
chronic intestinal inflammation promotes systemic
inflammation. As mentioned before, this peripheral
inflammation can increase BBB permeability, allow-
ing the entrance of cytokines and immune blood cells
to the brain parenchyma. Combination of intesti-
nal inflammation, systemic inflammation and �-syn
pathology in the brain promote neuroinflammation,
which eventually drives the neurodegeneration pro-
cess that characterizes PD. This model is sustained
by epidemiological data showing that patients with
inflammatory bowel disease (IBD) have a higher risk
of developing PD than non-IBD individuals [146].
Moreover, gene association studies have found a
genetic link between PD and IBD [147]. Therefore,
it would be interesting to look for parkinsonian signs
in animals using models to mimic IBD pathology. In
this context, Labandeira-Garcı́a’s group showed that
a subchronic regimen of 2.5% of DSS for three weeks
results in early changes in the nigrostriatal dopamin-
ergic homeostasis, dopaminergic neuronal death, and
increased levels of nigral proinflammatory mediators
[148]. These are intriguing data that deserve further
investigation since, if confirmed, this model would
greatly contribute to understanding the underlying
mechanisms involved in PD.

Anti-inflammatory interventions

All this information has encouraged some authors
to deepen their understanding of the effects of periph-
eral inflammation on neuroinflammation. These
studies have revealed that peripheral inflammation,
especially gut inflammation, induces neuroinflamma-
tion in certain brain structures that is accompanied by
several manifestations such as anxiety, depression,
chronic pain and memory and cognitive impairments
[149, 150]. However, this neuroinflammation and
its associated symptoms decrease with some anti-
inflammatory interventions in animal models. These
treatments include inhibitors of the S-100 protein,
TNF inhibitors, and neutrophil depletion [151, 152].
Melatonin, fermented rice brand, and DHA/EPA
treatments also improve the symptoms associated to

peripheral inflammation-related neuroinflammation
[153–155]. In this regard, our group has recently
published a study on the peripheral and central
anti-inflammatory effects of galectin-3 inhibitors in
DSS-induced gut inflammation [129].

There is, therefore, increasing interest in testing
these anti-inflammatory treatments in humans,
which is why several clinical trials are running
(CN-02323358). Considering that intestinal inflam-
mation appears to be the most powerful driver
of neuroinflammation, most of these trials focus
on the reduction of gut inflammation, modifying
the microbiota through probiotics and prebiotics
(CN-02355534; NCT04512599; NCT05146921;
NCT04032262, NCT05173701, NCT04159727).
However, to date, only one trial has been completed
[156]. In this study, the authors evaluate the effects of
probiotic supplementation on inflammation-related
gene expression in PD patients, finding an overall
significant improvement on several inflammatory-
related genes such as IL-1, IL-8, TNF-� and TGF-�.
Further studies need to be completed to gain a
better understanding of whether interruption in
inflammatory signaling ameliorates inflammation
and subsequent neurodegeneration.

Viral parkinsonism models

A viral onset has been long proposed for PD since
1918 influenza led to some encephalitis cases that
mimicked some parkinsonism symptoms [157]. It
remains however unclear if there is a real implication
of viral infections on PD onset [158]. However, viral
infection can lead to systemic hyperinflammation
known as “cytokine storm” that can penetrate in the
brain and promote a potent inflammatory response,
oxidative stress and upregulation of �-syn [159, 160].
In Sadasivan et al. [161], authors examined the effect
of H1N1 influenza virus in an MPTP model of PD.
The authors observed an increased loss of dopaminer-
gic neurons but they failed to attribute it to increased
microglia activation, what suggests an implication of
peripheral immune system, but also the direct action
of the virus in the dopaminergic neurons [162]. How-
ever, the best described virus used to induce PD in
animal models has been Japanese encephalitis virus
[163]. In this model, strong microglia reactivity has
been observed through TLRs activation while also
compromising dopaminergic system integrity [164].
Similarly, alphaviruses have also been described as
an alternative parkinsonism model [165].
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The new pandemic caused by coronavirus SARS-
CoV-2 has gained a lot of attention from a PD
research perspective. Despite the relation of COVID-
19 with PD, this is yet not clear as the neurological
effects of COVID-19 are still arising [166]. It has
been reported that PD patients could develop pro-
longed post-COVID19 syndrome with worsen motor
behavior and poor levodopa response [167]. Sev-
eral COVID-19 features could lead to worsening PD
symptoms; in particular, those related with cytokine
storm that increase serum levels of distinct cytokines
and neurotoxic components that have been previ-
ously related with PD [168]. No model for the impact
of SARS-CoV-2 in PD, or vice versa, has been
proposed. However, health care systems overload,
pandemic-derived psychological stress and lockdown
restrictions have had a major (but variable) impact on
PD patients’ status that should be carefully addressed
before analyzing any physiological effect of COVID-
19 on PD etiology.

CONCLUSIONS

This plethora of immune models may help to
understand the complex molecular mechanisms asso-
ciated with PD like the contribution of central and
peripheral immune cells in key events of the disease.
Among them, we may cite the role in the aggregation
and spreading of �-syn and identification of microglia
subtypes and their contribution in the disease. Elu-
cidation of signaling pathways behind these events
may be critical for identification of preclinical drugs
potentially relevant for PD.
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AM, Tomás-Camardiel M, Herrera AJ, Cano J, Machado
A (2009) The intranigral injection of tissue plasminogen
activator induced blood-brain barrier disruption, inflam-
matory process and degeneration of the dopaminergic
system of the rat. Neurotoxicology 30, 403-413.

[69] Ryu JK, Shin WH, Kim J, Joe EH, Lee YB, Cho KG,
Oh YJ, Kim SU, Jin BK (2002) Trisialoganglioside GT1b
induces in vivo degeneration of nigral dopaminergic neu-
rons: Role of microglia. Glia 38, 15-23.

[70] Wilms H, Rosenstiel P, Sievers J, Deuschl G, Zecca L,
Lucius R (2003) Activation of microglia by human neu-
romelanin is NF-kappaB dependent and involves p38
mitogen-activated protein kinase: Implications for Parkin-
son’s disease. FASEB J 17, 500-502.

[71] Zecca L, Wilms H, Geick S, Claasen JH, Brandenburg
LO, Holzknecht C, Panizza ML, Zucca FA, Deuschl G,
Sievers J, Lucius R (2008) Human neuromelanin induces
neuroinflammation and neurodegeneration in the rat sub-
stantia nigra: Implications for Parkinson’s disease. Acta
Neuropathol 116, 47-55.

[72] Visanji NP, Brotchie JM, Kalia LV, Koprich JB, Tandon A,
Watts JC, Lang AE (2016) �-synuclein-based animal mod-
els of Parkinson’s disease: Challenges and opportunities
in a new era. Trends Neurosci 39, 750-762.

[73] Cenci MA, Björklund A (2020) Animal models for pre-
clinical Parkinson’s research: An update and critical
appraisal. Prog Brain Res 252, 27-59.

[74] Sanchez-Guajardo V, Febbraro F, Kirik D, Romero-Ramos
M (2010) Microglia acquire distinct activation profiles
depending on the degree of alpha-synuclein neuropathol-
ogy in a rAAV based model of Parkinson’s disease. PLoS
One 5, e8784.

[75] Barkholt P, Sanchez-Guajardo V, Kirik D, Romero-Ramos
M (2012) Long-term polarization of microglia upon
�-synuclein overexpression in nonhuman primates. Neu-
roscience 208, 85-96.

[76] Theodore S, Cao S, McLean PJ, Standaert DG (2008) Tar-
geted overexpression of human alpha-synuclein triggers
microglial activation and an adaptive immune response in
a mouse model of Parkinson disease. J Neuropathol Exp
Neurol 67, 1149-1158.

[77] Chung CY, Koprich JB, Siddiqi H, Isacson O (2009)
Dynamic changes in presynaptic and axonal transport pro-
teins combined with striatal neuroinflammation precede
dopaminergic neuronal loss in a rat model of AAV alpha-
synucleinopathy. J Neurosci 29, 3365-3373.

[78] Rodriguez-Perez AI, Sucunza D, Pedrosa MA, Garrido-
Gil P, Kulisevsky J, Lanciego JL, Labandeira-Garcia JL
(2018) Angiotensin type 1 receptor antagonists protect
against alpha-synuclein-induced neuroinflammation and
dopaminergic neuron death. Neurotherapeutics 15, 1063-
1081.

[79] George S, Rey NL, Tyson T, Esquibel C, Meyerdirk L,
Schulz E, Pierce S, Burmeister AR, Madaj Z, Steiner
JA, Escobar Galvis ML, Brundin L, Brundin P (2019)
Microglia affect �-synuclein cell-to-cell transfer in a
mouse model of Parkinson’s disease. Mol Neurodegener
14, 34.

[80] Negrini M, Tomasello G, Davidsson M, Fenyi A, Adant
C, Hauser S, Espa E, Gubinelli F, Manfredsson FP,
Melki R, Heuer A (2022) Sequential or simultaneous
injection of preformed fibrils and AAV overexpression

of alpha-synuclein are equipotent in producing relevant
pathology and behavioral deficits. J Parkinsons Dis, doi:
10.3233/JPD-212555

[81] Bido S, Muggeo S, Massimino L, Marzi MJ, Giannelli SG,
Melacini E, Nannoni M, Gambarè D, Bellini E, Ordazzo G,
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