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Abstract.
Background: Accurate electrode targeting was essential for the efficacy of deep brain stimulation (DBS). There is ongoing
debate about the necessary of microelectrode recording (MER) in subthalamic nucleus (STN)-DBS surgery for accurate
targeting.
Objective: This study aimed to analyze the accuracy of imaging-guided awake DBS with MER in STN for Parkinson’s
disease in a single center.
Methods: The authors performed a retrospective analysis of 161 Parkinson’s disease patients undergoing STN-DBS at our
center from March 2013 to June 2021. The implantation was performed by preoperative magnetic resonance imaging (MRI)-
based direct targeting with intraoperative MER and macrostimulation testing. 285 electrode tracks with preoperative and
postoperative coordinates were included to calculate the placement error in STN targeting.
Results: 85.9% of electrodes guided by preoperative MRI were implanted without intraoperative adjustment. 31 (10.2%)
and 12 (3.9%) electrodes underwent intraoperative adjustment due to MER and intraoperative testing, respectively. We found
86.2% (245/285) of electrodes with trajectory error ≤2 mm. The MER physiological signals length < 4 mm and ≥ 4 mm group
showed trajectory error > 2 mm in 38.0% and 8.8% of electrodes, respectively. Compared to non-adjustment electrodes, the
final positioning of MER-adjusted electrodes deviated from the center of STN.
Conclusion: The preoperative MRI guided STN targeting results in approximately 14% cases that require electrode reposi-
tioning. MER physiological signals length < 4 mm at first penetration implied deviation off planned target. MER combined
with intraoperative awake testing served to rescue such deviation based on MRI alone.
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INTRODUCTION

Subthalamic nucleus (STN) deep brain stimulation
(DBS) is a well-established neuromodulation treat-
ment for Parkinson’s disease (PD) worldwide. So far,
there are several electrodes implantation methods,
including preoperative imaging-guided, microelec-
trode recordings (MER) assisted with intraoperative
test, and intraoperative computerized tomography
(CT) or magnetic resonance imaging (MRI)-verified
approach. MER in DBS surgery is recognized as an
efficient method for targeting STN region in previ-
ous studies [1, 2]. In recent decades, it has been
proposed that the MER is not mandatory for STN-
DBS as imaging-guided DBS surgery experienced
significant growth [3, 4]. Imaging-guided targeting
has also sparked the possibility of performing DBS
during asleep procedure [5]. Considering the level
of stress and discomfort, PD patients prefer asleep
over awake surgery [6]. However, intraoperative CT
or MRI facilities to confirm electrode position are not
widely available, especially in developing countries.
Therefore, it is critical to obtain an estimate rate of
success of STN targeting by preoperative-MRI alone.

The targeting accuracy is highly associated with
the outcome of STN-DBS for symptomatic improve-
ment [7]. Different implantation methods from
various medical centers have reported different level
of targeting accuracy [3, 4, 8–10]. Some factors are
known to have certain influence on targeting accu-
racy, such as stereotactic system used [11], target
[12], and brain shift due to cerebrospinal fluid loss
and intracranial air [13]. Here we propose that MER
can serve as a predictive factor for targeting accuracy
during STN-DBS.

In this study, the authors retrospectively analyzed
single-center data of patients undergoing awake STN-
DBS. The authors investigated the rate of success of
implantation based on preoperative-imaging alone,
and the targeting accuracy by preoperative-imaging
alone vs. MER-guided procedures.

MATERIALS AND METHODS

Patients

We retrospectively analyzed 161 PD patients
undergoing STN-DBS at our center from March
2013 to June 2021. Seven patients were excluded
for anesthetic influence on MER. Three patients had
unilateral implantation and 151 patients had bilateral
implantation. MER was recorded in 305 hemispheres

Fig. 1. The patients screening procedure. PD, Parkinson’s disease;
MER, microelectrodes recording; STN, subthalamic nucleus.

(153 left hemispheres, and 152 right hemispheres).
The postoperative-electrodes coordinates were avail-
able in 285 hemispheres (Fig. 1). The study was
conducted with the approval by the ethics committee
of Zhejiang University School of Medicine Second
Affiliated Hospital, approval number 2021-0925.

Preparation and target formulation

The implantation was planned by preoperative
MRI-based (contrast enhanced 1.5T T1-weight MRI,
and 3.0 T T2-weight axial MRI sequence) direct
targeting. The patients were installed with Leksell
frame under local anesthesia and performed three-
dimensional CT scan subsequently. The images were
ported to workstation (StealthStation, Medtronic or
SinoPlan, Sinovation) for target planning. The neu-
rosurgeon (ZZ) planned STN target trajectories via
direct visualization at the maximum diameter slice
of the red nucleus relative to the anterior-posterior
commissures (AC-PC) line as previously described
[14].

Surgery and electrode adjustment

Surgery was performed under local anesthesia. If
bilateral implantation was performed, we first oper-
ated on the hemisphere contralateral to the side with
more severe symptoms. Burr holes of 1.4 cm were
placed by an arc incision through two ways: 1) simul-
taneous bilateral; 2) staged bilateral. Single-track
microelectrodes were inserted through guide tube in
a planned trajectory for recording electrophysiologi-
cal signals. The recordings started from 10 mm above
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Fig. 2. The example of classification in postoperative electrodes
position in STN region. A) Central in bilateral STN. B) Lateral
margin in bilateral STN. C) Medial outside in right STN. D) Medial
margin in right STN and central in left STN.

planned target with a microdrive of 0.5 mm steps until
substantia nigra activity appeared, or until STN activ-
ity disappeared [15]. Trajectories with STN MER
physiological signals length ≥ 4 mm were considered
ideal [16]; otherwise, microelectrode was adjusted to
a new trajectory and repeated recording until MER
physiological signals length ≥ 4 mm were achieved
(maximum 5 penetrations). The final placement of
DBS electrodes was validated by intraoperative test
for acceptable threshold for adverse effects with satis-
factory improvement of symptom. The patients then
underwent general anesthesia for implanting exten-
sion cables and implantable pulse generator.

Postoperative electrode localization

Permanent electrodes (four contacts with 1.5 mm
length, 0.5 mm interval, Medtronic model 3389 or
Pins model L301S) were used in this study. Post-
operative CT images were obtained and imported
to workstation (SinoPlan, Sinovation) to fuse pre-
operative MRI to visualize the final placement and
coordinates in stereotactic space. The final placement
coordinates were defined by identifying the center of
the artifact perpendicular to planned target [17]. The
trajectory error was defined as the perpendicular devi-
ation from the final electrode to the planned trajectory.
Postoperative-CT was obtained during postoperative
one week. The electrode positions in STN region were
defined as central, medial margin, medial outside, lat-
eral margin, and lateral outside at the plane 4 mm
below the AC-PC line (Fig. 2).

Table 1
Demographics of patients

Characteristics Value ± SD

No. Patients 155
Age (y) 62.6 ± 7.6
Gender (Male/Female) 76/78
Duration of symptoms (y) 9.5 ± 3.3
L-dopa equivalents dose 891.2 ± 343.7
UPDRS III-off 55.2 ± 16.0
UPDRS III-on 28.2 ± 11.0

UPDRS, Unified Parkinson’s Disease Rating Scale; SD, standard
deviation.

Statistical analysis

Categorical variables were tested by two tails chi-
square test. Two tails unpaired t-test with Welch’s
correlation was used for comparing trajectory error
of MER physiological signals length ≥ 4 mm and
< 4 mm group. The chi-square test with Bonferroni
correction was used for comparing STN subre-
gion position of MER adjusted and non-adjusted
electrodes. p < 0.05 was considered statistically sig-
nificance. Statistical analysis was performed in
Statistical Product and Service Solutions (SPSS) ver-
sion 22.0.

RESULTS

The demographics of patients are shown in Table 1.
In total, 154 patients (76 male and 78 female) were
included in our study, with a mean age of 62.6 ± 7.6
(mean ± SD).

85.9% (262/305) of electrodes were implanted
based on preoperative-imaging alone without adjust-
ment. 11.8% (18/153) of the electrodes in the left
hemisphere and 16.4% (25/152) in the right hemi-
sphere were adjusted intraoperatively. This result
showed that imaging-guided alone was insufficient,
as approximately 14% of electrodes needed reposi-
tioning.

Moving to intraoperative MER data, 15.0%
(23/153) and 18.4% (28/152) of electrodes in the left
and right hemispheres showed MER physiological
signals length < 4 mm at first penetration, respec-
tively. Of the 51 electrodes that required a second
MER trajectory, 51.0% (26/51) required only one
additional trajectory to identify the physiologically
optimal target location, while 49% (25/51) required
more than one additional penetration. The adjustment
directions of microelectrodes were mostly medial-
posterior and lateral-anterior (Fig. 3). We were
unable to obtain MER criteria in 3.9% (12/305) of
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electrodes despite multiple repositioning. Inversely,
2.3% (7/305) of electrodes showed satisfactory
threshold testing results, despite suboptimal MER
findings.

The targeting error in the planned vs. final place-
ment of electrodes verified by postoperative images
were shown in Table 2. The mean trajectory error was
1.22 ± 0.06 mm (mean ± SEM) and 1.26 ± 0.06 mm
(mean ± SEM) in the left and right hemispheres,
respectively, with no significant difference in x, y, and
z axial. 86.0% (245/285) of electrode trajectory errors
were ≤ 2.0 mm (Fig. 4), while 12.4% and 14.3% of
electrodes trajectory error were > 2 mm in the left
and right hemispheres, respectively. Neither laterality
nor timing of second electrodes implantation (simul-
taneous vs. staged) showed significant influence on
trajectory error.

Fig. 3. The intraoperative microelectrodes adjustment direction.

Trajectory error in groups with MER physiological
signals length ≥4 mm and < 4 mm at first penetra-
tion were compared (Fig. 5). The MER physiological
signals length ≥4 mm group showed a significantly
smaller trajectory error vs. the MER physiological
signals length < 4 mm group (1.15 mm vs. 1.67 mm,
p < 0.01). Further, the trajectory error (percentage

Fig. 5. The histogram represents trajectory error difference
between MER physiological signals length ≥4 mm and < 4 mm
groups at first penetration. ∗∗p < 0.01.

Table 2
The pre- and post-electrodes coordinate in stereotactic space and deviation

Left side (mm) Right side (mm)

x y z x y z

Pre-op ± SEM 111.3 ± 0.20 95.0 ± 0.42 113.1 ± 0.79 88.1 ± 0.19 95.1 ± 0.41 113.2 ± 0.79
Post-op ± SEM 111.0 ± 0.20 94.8 ± 0.40 113.0 ± 0.79 88.0 ± 0.64 94.9 ± 0.76 113.2 ± 1.11
Vector error ± SEM –0.3 ± 0.07 –0.1 ± 0.08 –0.1 ± 0.04 –0.1 ± 0.07 –0.2 ± 0.08 0.0 ± 0.05
Absolute vector error ± SEM 0.7 ± 0.05 0.7 ± 0.05 0.4 ± 0.03 0.7 ± 0.04 0.8 ± 0.05 0.5 ± 0.03
Trajectory error ± SEM 1.22 ± 0.06 1.26 ± 0.06

SEM, standard error of mean.

Fig. 4. The deviation of final electrodes position compared with the planned target (0,0,0). The red dots represent trajectory error ≤ 2 mm
electrodes and the blue dot represent trajectory error > 2 mm electrodes. A, anterior; D, dorsal; L, lateral; M, medial; P, posterior; V, ventral.
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Table 3
The adjusted and non-adjusted electrode position in postoperative STN region

Central Medial Medial Lateral Lateral Total χ2 p
margin outside margin outside

Non-adjusted electrodes 179 (71.9%) 57 (22.9%) 5 (2.0%) 8 (3.2%) 0 (0%) 249 34.8 < 0.001
Adjusted electrodes 13 (36.1%) 12 (33.3%) 7 (19.4%) 4 (11.1%) 0 (0%) 36
Total 192 (67.4%) 69 (24.2%) 12 (4.2%) 12 (4.2%) 0 (0%) 285

of leads with > 2 mm targeting error) was com-
pared in above groups. 38.0% (19/50) of electrodes
with MER physiological signals length < 4 mm show
trajectory error > 2 mm, while 8.8% (21/238) of
electrodes with MER physiological signals length
≥4 mm show trajectory error > 2 mm (χ2 = 29.59,
p < 0.001).

Finally, we verified final electrode positions in
non-adjusted and MER-based adjusted trajectory in
Table 3. Our results showed that electrodes that were
adjusted intraoperatively had significantly greater
level of deviation compared to electrodes without
intraoperative adjustment (χ2 = 34.8, p < 0.001).

DISCUSSION

In this study, we aim to evaluate the success
rate of preoperative imaging-guided alone STN-DBS
surgery. The results show that 85.9% of electrodes are
implanted without intraoperative adjustment, while
14.1% of electrodes need repositioning. These results
are slightly better than previous study by Lozano et al.
and Montgomery et al. [8, 18], as they reported that
70–80% of the electrodes were in good position using
imaging-guided alone method. Our results reiterate
the validation that preoperative imaging-guided alone
was not sufficient for optimal electrodes placement
during DBS procedure.

The electrode implantation accuracy assisted by
MER in our study is similar to previous studies [7,
9, 10, 17]. Some studies propose smaller trajectory
error using intraoperative MRI/CT-guided technique
compared to MER [10, 17]. One possible reason is
the multi-penetration in MER caused loss of cere-
brospinal fluid and generation of intracranial air,
while intraoperative MRI/CT-guided method usu-
ally only required one penetration. Similar finding is
reported when dural sealant system prevented brain
shift and improved targeting accuracy [19]. This may
explain the result in our study that MER physiological
signals length < 4 mm group show greater trajectory
error, as multiple penetrations are done in this group.
In our study, we choose 2 mm error as cut-off to

represent optimal electrode accuracy based on vol-
ume of tissue activation model [20, 21], which has
also been used as re-implantation breakpoints in pre-
vious clinical studies [22]. Our results also show that
the electrode adjustment due to MER criteria predict
deviation off central STN region. We find that neither
laterality nor timing of second electrode implanta-
tion had significant impact on targeting accuracy,
which is consistent with another previous study
[23].

There is ongoing debate about MER’s necessity in
STN-DBS surgery [24, 25]. Limousin et al. [4] per-
formed preoperative MRI-guided and intraoperative
MRI-verified approach without MER, and showed
satisfactory UPDRS III scores improvement in 5
to 8 years. Similar findings were also reported in
other studies [9, 10, 26]. MER may increase the risk
of surgical complication, such as intracranial hem-
orrhage, compared to DBS surgery without MER
[27]. However, in both awake and asleep STN-DBS
surgery, the MER could be used to map out bound-
aries of the STN [28–30]. In our center, we find that
MER provides useful targeting information intraop-
eratively. 31 (10.2%) of electrodes are repositioned to
an optimal placement after intraoperative MER and
symptom evaluation, which rescue suboptimal tar-
geting at first penetration. However, whether MER is
necessary for STN-DBS remains controversial. Dif-
ferent perspectives, such as outcomes, complication
risks, side effects, and cost should be also be taken
into account.

There are several limitations in our study. First, we
do not include UPDRS III improvement outcome, and
the optimal electrodes placement is based on intra-
operative tests. There is no lead location correlation
with therapeutic benefit to verify the very objec-
tive of the study. Second, the electrode position is
obtained postoperative one week after surgery, during
which brain shift remains a potential factor to error of
actual location. Postoperative imaging performed at
one month after surgery may be more reliable. Also,
we do not consider the intracranial pneumocephalus
in our study, which is suggested as a critical factor in
stereotactic accuracy [31].
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CONCLUSIONS

Our study concludes that preoperative imaging-
guided alone STN targeting resulted in approximately
14% of electrodes that require intraoperative
repositioning. Cases with intraoperative MER phys-
iological signals < 4 mm at first penetration showed
worse targeting accuracy, which can be rescued by
MER and intraoperative testing.
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