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Abstract.The use of wildtype recombinant alpha-synuclein preformed fibrils (aSyn PFFs) to induce endogenous alpha-
synuclein to form pathological phosphorylation and trigger neurodegeneration is a popular model for studying Parkinson’s
disease (PD) biology and testing therapeutic strategies. The strengths of this model lie in its ability to recapitulate the
phosphorylation/aggregation of aSyn and nigrostriatal degeneration seen in PD, as well as its suitability for studying the
progressive nature of PD and the spread of aSyn pathology. Although the model is commonly used and has been adopted
by many labs, variability in observed phenotypes exists. Here we provide summaries of the study design and reported
phenotypes from published reports characterizing the aSyn PFF in vivo model in rodents following injection into the brain,
gut, muscle, vein, peritoneum, and eye. These summaries are designed to facilitate an introduction to the use of aSyn PFFs
to generate a rodent model of PD—highlighting phenotypes observed in papers that set out to thoroughly characterize the
model. This information will hopefully improve the understanding of this model and clarify when the aSyn PFF model may
be an appropriate choice for one’s research.
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INTRODUCTION

Parkinson’s disease (PD) is a neurodegenerative
disorder affecting approximately 1% of the popu-
lation over the age of 60. Characterized by motor
disturbances as well as non-motor symptoms, the
pathology of PD involves deposits of aggregated,
phosphorylated alpha-synuclein (aSyn) protein in
affected tissues and brain structures and degeneration
of dopaminergic neurons in the substantia nigra pars
compacta (SNpc). Given that PD is a human-specific
condition, various models have been developed to
enable research and therapeutic development for this
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disease. Common models include injection of neu-
rotoxins to trigger degeneration of the dopaminergic
neurons of the SNpc, transgenic rodent models car-
rying PD-related genetic mutations, and induction of
aSyn pathology through viral vector-mediated over-
expression of aSyn, among others [1–3]. All models
present with advantages and disadvantages, so selec-
tion of the model should be based on the desired
pathology for the intended research question.

In the last 10 years, a model has arisen that
capitalizes on the observations made by Braak
and colleagues that aSyn pathology progressively
accumulates in different brain regions following a
spatiotemporal pattern that suggests spreading [4–7].
This model, dubbed the aSyn preformed fibril (PFF)
model, uses injection of recombinant aSyn protein
that has been stimulated to form aggregates and son-
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icated to produce short fibrils [8–10]. These aSyn
PFFs cause templating of endogenous aSyn into
pathological species characterized by phosphoryla-
tion at S129 (pS129 aSyn), beta-sheet formation,
and aggregation, followed by increases in autophagy
and neuronal dysfunction [11]. The flexibility of this
model allows injection of different forms of aSyn
PFFs (e.g., mouse vs. human aSyn, mutated aSyn),
unilateral or bilateral injection, targeting of differ-
ent brain regions and administration through different
peripheral routes to model distinct aspects of the dis-
ease. This flexibility is a strength of the model but also
serves as a weakness, as the distinct protocols lead
to different pathologies which has hampered cross-
study comparisons. To better understand the various
study designs employed for the aSyn PFF model
and the resulting pathologies, a survey of the liter-
ature was performed and is summarized within this
manuscript.

GUIDE TO READING AND
INTERPRETING THE TABLES

As hundreds of studies using the aSyn PFF model
have been published, Tables 1–9 herein contain infor-
mation specifically from publications that sought to
phenotype the effects of injection of recombinant
wildtype aSyn PFFs into rodents to develop a PD
model. As a result, the tables are not comprehensive
in nature but do contain reports from a variety of
studies across laboratories.

Studies focusing on the uptake of aSyn follow-
ing injection have been excluded as the study is
not designed to thoroughly assess resulting pathol-
ogy. Studies using the aSyn PFF model to test the
effect of an intervention have been excluded as the
focus is on the therapeutic intervention tested rather
than the characterization of the pathological process
and timelines. Studies injecting aSyn PFFs to model
another disease (e.g., Multiple System Atrophy) were
excluded to focus specifically on PD. Studies inject-
ing aSyn PFFs into non-human primates or using
aSyn PFFs in cell culture were excluded for the
sake of focus. Studies injecting rodent/patient brain-
derived material were excluded due to concerns that
the injectate is not homogenous and the concentra-
tion of aSyn and other protein components cannot
be known or compared across studies. Although a
number of studies have been published analyzing
the differences in pathogenicity of fibrils of differ-
ent conformations [12–18], different aSyn mutations

[19–22], different aSyn truncations [23–25], and
different aSyn post-translational modifications [26],
these were excluded from the summary tables as
the objective of these experiments is to compare
pathogenicity relative to wildtype aSyn PFFs and
therefore the nuanced information requires a different
venue.

Tables 1–9 are organized by categories such as:
injected species (mouse vs. rat), route of administra-
tion of aSyn PFFs, and species of aSyn PFF (human
vs. mouse). To understand the variation in observed
phenotypes within the model, readers should com-
pare only within categories rather than across
categories. Please note that there may be differences
in study design within categories (e.g., unilateral vs.
bilateral injection, wildtype vs. transgenic rodent)
that should be taken into account when drawing con-
clusions on timelines and robustness of phenotypes.

Papers included within the tables are organized
chronologically, with high-level information on study
design, outcome measures, and notes that may pro-
vide additional context for the reader. Information
on study design includes the rodent strain used, the
injectate, the dose of aSyn PFFs with information
on whether this dose was administered bilaterally
or unilaterally (for bilateral injections, the total dose
noted was for each hemisphere), and the days post-
injection (DPI) at which time the model was analyzed.
Reported phenotypes are separated by category to
facilitate comparisons of common readouts across
studies. The time post-injection at which the pheno-
type was observed is included, with a “+” indicating
the phenotype was also observed at the later time-
points. If later timepoints were analyzed within the
study but the “+” sign is absent, this indicates that
either the phenotype was not analyzed at the later
timepoints or was analyzed but not observed. If a
phenotype was observed in a particular structure, the
structure is included in parentheses. Readouts that
were not included in the study are denoted as “N/A”.
Please note, to fully understand all reported or absent
phenotypes in the models, a separate literature review
is required.

SUMMARY OF PHENOTYPES REPORTED
IN THE ASYN PFF MODEL

The earliest aSyn PFF model studies were per-
formed by injecting aSyn PFFs into the mouse
striatum. Table 1 provides a summary of studies that
used unilateral or bilateral intrastriatal injection of
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Table 1
Injection of mouse aSyn PFFs into the wildtype mouse striatum

aSyn, alpha-synuclein; PFFs, preformed fibrils; TH, tyrosine hydroxylase; DA, dopamine; N/A, not analyzed; SNpc, substantia nigra pars compacta; STR, striatum; AMY, amygdala; ROS,
reactive oxygen species.
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Table 2
Unilateral injection of human aSyn PFFs into the wildtype mouse striatum

aSyn, alpha-synuclein; PFFs, preformed fibrils; TH, tyrosine hydroxylase; DA, dopamine; N/A, not analyzed; SNpc, substantia nigra pars
compact.

Table 3
Unilateral and bilateral injection of aSyn PFFs into transgenic mouse striatum

aSyn, alpha-synuclein; PFFs, preformed fibrils; Hu, human; TH, tyrosine hydroxylase; DA, dopamine; N/A, not analyzed; SNpc, substantia
nigra pars compacta; CPu, caudate putamen; CTX, cortex.
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Table 4
Unilateral and bilateral injection of aSyn PFFs into the wildtype and transgenic mouse olfactory bulb or sublaterodorsal tegmental nucleus

aSyn, alpha-synuclein; PFFs, preformed fibrils; Hu, human; N/A – not analyzed; OB, olfactory bulb; AON, accessory olfactory nucleus;
HPC, hippocampus; SLD, subdorsolateral tegmental nucleus; SNpc, substantia nigra pars compacta; GI, gastrointestinal; RBD, REM sleep
behavior disorder; LFP, local field potential; TH, tyrosine hydroxylase; DA, dopamine.

Table 5
Unilateral or bilateral injection of aSyn PFFs into the wildtype or transgenic mouse hippocampus, cortex, or substantia nigra

aSyn, alpha-synuclein; PFFs, preformed fibrils; Hu, human; N/A, not analyzed; KI, knockin; HPC, hippocampus; CTX, cortex; SN, substantia
nigra.

mouse aSyn PFFs in wildtype (WT) mice. Table 2
provides a summary of studies that used intrastriatal
injection of human aSyn PFFs in WT mice. Table 3
provides a summary of studies that used intrastriatal
injection in transgenic mice.

Others have chosen to inject non-striatal brain
regions to model prodromal or non-motor features
of PD in mice. Table 4 provides a summary of
studies injecting aSyn PFFs into the olfactory bulb
(OB) or sublaterodorsal tegmental nucleus (SLD) to
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Table 6
Unilateral or bilateral injection of aSyn PFFs into the wildtype or knockout rat striatum or substantia nigra

aSyn, alpha-synuclein; PFFs, preformed fibrils; SNpc, substantia nigra pars compacta; WT, wildtype; KO, knockout; TH, tyrosine hydrox-
ylase; DA, dopamine; VMAT, vesicular monoamine transporter; DAT, dopamine transporter; STR, striatum.

model olfactory dysfunction and sleep disturbances,
respectively. Table 5 provides a summary of studies
injecting aSyn PFFs into the hippocampus, cortex,
and SNpc as alternate ways to induce pathology in
the mouse.

Although most studies to date have focused on phe-
notyping mice injected with aSyn PFFs, rats have also
been used for this model. Table 6 provides a summary
of studies injecting aSyn PFFs into the rat striatum or
SNpc.

In addition, both mice and rats have been used for
peripheral administration of aSyn PFFs to study the
seeding capabilities of aSyn PFFs and peripheral-
to-central spread of synuclein pathology. Table 7
provides a summary of studies injecting aSyn PFFs
into the gut of rodents to model GI dysfunction
and gut-to-brain transmissibility of aSyn pathology.
Finally, Table 8 provides a summary of studies per-
forming intramuscular injections of aSyn PFFs into
rodents and Table 9 provides a summary of studies
performing intraperitoneal, intravenous, intraneu-
ral, and intravitreal injection of aSyn PFFs into
rodents.

A visual representation of timelines of phenotypes
reported in common iterations of the aSyn PFF model
is provided in Fig. 1. Replicated phenotypes that have
been reported in more than one study are provided
along the timeline of the model. Phenotypes that
were only investigated in one study are also included
but denoted as “underexplored phenotypes”. An inset
containing phenotypes that were reported as absent
is also included.

DISCUSSION

For all studies, one of the earliest phenotypes
reported is the presence of pS129 aSyn within
brain regions innervating the injected structure.
As the model progresses, the density of pS129
aSyn pathology and regions displaying pS129 aSyn
pathology increase. This pathology is at times
accompanied by cell loss, inflammation, behavioral
deficits, and/or other readouts of pathology. Impor-
tantly, the phenotypes observed in this model are
not always reproducible and their presence/absence
varies between studies (Fig. 1). This can be noted
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Table 7
Injection of aSyn PFFs into the wildtype or transgenic rodent gut

aSyn, alpha-synuclein; PFFs, preformed fibrils; Hu, human; DMV, dorsal motor nucleus of the vagus; MG, myenteric ganglia; SC, spinal cord; GI, gastrointestinal system; CNS,
central nervous system; SNpc, substantia nigra pars compacta; DA, dopamine; KO, knockout.
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Table 8
Unilateral or bilateral injection of aSyn PFFs into the transgenic mouse muscle

aSyn, alpha-synuclein; PFFs, preformed fibrils; Hu, human; KI, knockin; SC, spinal cord; DRG, dorsal root ganglia; CNS, central nervous
system; dMRI, diffusion magnetic resonance imaging; fMRI, functional magnetic resonance imaging.

Table 9
Injection of aSyn PFFs into the wildtype or transgenic rodent peritoneum, vein, nerve, or eye

aSyn, alpha-synuclein; PFFs, preformed fibrils; Hu, human; SC, spinal cord; DRG, dorsal root ganglia; CNS, central nervous system; GI,
gastrointestinal.

when analyzing the phenotypes listed in Tables 1–9
when comparing studies of similar designs with
regard to injection site, unilateral vs bilateral injec-
tion, wildtype vs transgenic rodent, etc.

An example of this can be found in motor deficits
observed following intrastriatal injection. Despite

using the same dose of aSyn PFFs, some report
motor deficits following unilateral intrastriatal injec-
tion of mouse aSyn PFFs as early as 90 DPI [28,
30, 31] while others do not observe motor impair-
ments until 180 DPI [19, 27] (Table 1). Others still
do not observe motor impairments even at 180 days
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Fig. 1. Visual representation of the various phenotypes reported in common iterations of the alpha-synuclein preformed fibril (aSyn PFF)
model. Replicated phenotypes (reported in > 1 study) and underexplored phenotypes (observed in only 1 study) are mapped across the
timeline of the model. Phenotypes that were investigated but found to be absent are also included in an inset to the right of the table. Italicized
phenotypes are those that vary across studies by either their presence/absence (denoted by superscript A) or timing of appearance (denoted
with superscript T). For all italicized phenotypes, the most common time at which the phenotype is observed is reported.

following bilateral injection [35]. Some of these dif-
ferences may be attributed to the behavioral assays
employed. For instance, Henderson et al. (2019) used
two behavioral tests in the same cohort—grip strength
and rotarod—and demonstrated differences in grip
strength upon aSyn PFF treatment but no effect of
aSyn PFF treatment on rotarod performance [30].
These differences in detecting an effect of aSyn PFF
treatment on motor function or non-motor function
could be due to the physiology probed within these
assays, the sensitivity of the tests, or confounds that
may impact the readouts [77].

Another phenotype that greatly varies between
studies is pS129 aSyn pathology in the brain fol-
lowing injection of aSyn PFFs to the gut (Table 7).
Roughly half of the studies observe pS129 aSyn
pathology spread to the midbrain/forebrain [62, 64,

65, 68] whereas the other half observe pathology in
the periphery/brainstem that never progresses to the
midbrain/forebrain [61, 63, 64, 66, 68]. As mentioned
in a recent review by Bindas et al. (2021), the reason
for this is unclear but could relate to gastrointesti-
nal conditions, amount of pathology generated, site
of pathology, and type of pathology induced by the
aSyn PFFs [78].

When attempting to understand the variability
within the aSyn PFF model, it is important to under-
stand the various factors that can influence the
pathogenicity of the aSyn PFFs. Some factors may
be obvious and easily accounted for, such as dose or
days post-injection. Other factors are not so clear. The
source and method of preparing the aSyn PFFs can
greatly influence their pathogenicity. Multiple stud-
ies have noted that endotoxin may impact the aSyn
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PFF protein [8, 14, 78]. Endotoxin should not only
be accounted for due to its ability to generate an
immune response that is independent of the aSyn [8,
79], but also for its ability to alter the structure and
pathogenicity of the aSyn fibrils themselves [14]. The
buffers, temperature, and sonication protocol used to
generate aSyn PFFs from monomeric starting mate-
rial can also lead to variations in the structure of the
PFF aggregates that dramatically affect pathogenicity
[12–18]. In addition, downstream steps such as stor-
age (duration and temperature) can impact aSyn PFF
performance while injection coordinates can impact
the pathology observed in the various structures [8].

Taken together, the aSyn PFF model is a pop-
ular model due to its ability to recapitulate the
pathological hallmarks of PD through the templat-
ing of pathology in the endogenous aSyn protein.
The model has been used by many to study
PD biology and therapeutic interventions targeting
aSyn spread, inflammation, neurodegeneration, etc.
Although many groups have adopted the model suc-
cessfully, it is very important to acknowledge the
variation in phenotypes between labs. The tables pro-
vided in this paper will hopefully assist groups who
wish to learn more about the model and clarify which
phenotypes are reproducible between labs to prevent
issues in adopting the model for one’s studies.
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