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Abstract. After many years of preclinical development, cell and gene therapies have advanced from research tools in the
lab to clinical-grade products for patients, and today they constitute more than a quarter of all new Phase I clinical trials for
Parkinson’s disease. Whereas efficacy has been convincingly proven for many of these products in preclinical models, the
field is now entering a new phase where the functionality and safety of these products will need to stand the test in clinical
trials. If successful, these new products can have the potential to provide patients with a one-time administered treatment
which may alleviate them from daily symptomatic dopaminergic medication.
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INTRODUCTION: WHY DO WE NEED
ADVANCED REGENERATIVE
THERAPIES FOR PARKINSON’S
DISEASE?

Ever since the discovery of Parkinson’s disease
(PD) in the early 19th century, there has been intense
focus on trying to identify the underlying cause of
the disease as well as the mechanism of disease pro-
gression. However, while the development of early
symptomatic treatments for the disease has been suc-
cessful, we have yet to develop disease-modifying
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treatments to halt or slow progression of PD. Despite
promising data from animal models, not a single
disease-modifying therapy for PD has until now
passed through Phase III clinical trial with positive
outcome. Recently, there has been much anticipation
to antibody therapies which can block propagation
of a-Synuclein (a-Syn) pathology in the brain. How-
ever, in April 2020 Prothena/Roche announced that
their therapy Prasinezumab had failed to meet the
primary endpoint of reduction on the Unified Parkin-
son’s Disease rating scale (UPDRS) [1]. More phase
IT trial results are expected this year to uncover the
clinical efficacy of a-Syn antibody technologies. The
depressing conclusions so far likely reflect the fact
that we still do not understand what triggers PD
at its infancy, or why patients display such vari-
able patterns of spread of pathology throughout the
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brain. Furthermore, the pathogenesis of PD is highly
complex, involving damaging effects due to protein
aggregation, inflammation, mitochondrial dysfunc-
tion, impaired autophagy and reactive oxygen species
just to mention a few [2], and it may be naive to
think that a single molecule can halt this multitude of
deleterious processes. It is thought-provoking that the
drugs which are currently showing most promising
disease-slowing effects in clinical trials are GLP-
1 agonists, which have an unclear mechanism of
action proposed to involve modulation of several cell
types including neurons, glia and immune cells [3,
4]. While refined and efficacious disease-modifying
treatments are still struggling to reach the market,
patients are in dire need of therapies which pro-
vide better quality of life and which are effective
beyond the initial period after diagnosis. Compared
to symptomatic dopamine (DA)-modifying medica-
tions, gene and cell therapies have the potential to
provide more refined solutions to a complex prob-
lem by restoring neuronal signaling and in some
cases even circuits in the diseased brain. As such,
cell therapies such as DA cell replacement have the
potential to significantly minimise the need for DA
medications, relieving the patients not only of pri-
mary motor symptoms, but also of the severe side
effects accompanying the ever-increasing doses of
medication required to keep the progressing disease
in check.

ADVANCED THERAPIES FOR
PARKINSON’S DISEASE PASSING
THROUGH THE PIPELINE

Until now, only few advanced therapeutic medic-
inal products (ATMPs) have been tested beyond
initial Phase I/II clinical trials for PD. Overall, tri-
als involving delivery of neurotrophic factors for
supporting DA neuron survival, i.e., AAV-Neurturin
(CERE-120) and GDNF infusion have shown dis-
appointing outcomes on efficacy parameters [5, 6].
This likely reflects the fact that damaged DA neu-
rons are difficult to rescue from cell death when
disease pathology is ongoing. A novel gene therapy
trial relying on supplying GBA1 to GBA mutation
carriers is currently in Phase-I clinical trial, and
will provide important information on whether GBA
mutations alone are central in driving the progres-
sion of the disease in already diagnosed patients [7].
Other gene therapies are based on strategies to alter
neurotransmitter production, either through hijacking

non-DA neurons to produce DA by supplying key
DA enzymes (ProSavin: AADC, TH and CHI) or
by increasing inhibitory signals from the subthalmic
nucleus (STN) through AAV-GAD expression. Both
approaches have shown moderate efficacy on UPDRS
scores in clinical trials and are being explored further
in new trials [8, 9]. However, an initiated Phase-II
gene therapy trial with AAV-AADC (VY-AADCO02)
was halted by the FDA in December 2020, and the
future development of this product is currently uncer-
tain [7, 10]. Evolving from these early efforts with
ATMPs, more advanced products are being devel-
oped and cell and gene therapies now constitute 27%
of all ongoing Phase I studies in PD (14 out of 51 tri-
als by January 2020), thereby clearly marking a new
era of advanced therapies moving in larger numbers
from the lab into the clinic [7]. New on this stage
is the emergence of DA cell replacement products
based on pluripotent stem cells (PSCs), which have
the potential to yield authentic and fully functional
midbrain DA neurons, the type which is lost in PD.

CLINICAL TRANSLATION OF DA CELL
REPLACEMENT THERAPIES: WHERE
ARE WE NOW?

The concept of DA cell replacement therapy
has a rich clinical history based on allografting of
human fetal ventral mesencephalic tissue, with esti-
mates of over 300 PD patients transplanted over
the past 30 years [11]. Patient outcomes have been
variable, with some patients able to reduce or dis-
continue medications for years while others suffered
from graft-induced dyskinesias. Two double-blinded,
placebo-controlled trials failed to meet their endpoint
which led to a re-evaluation of fetal cell therapies for
Parkinson’s, eventually leading to the initiation of the
EU-funded TRANSEURO trial using improved pro-
tocols for fetal tissue preparation and more rigorous
patient selection [12]. This trial has recently com-
pleted transplantation of all 11 patients included in the
trial with fetal tissue, and clinical results are expected
during 2021/22 [12]. Along with earlier fetal cell
work, results from this trial will provide an important
framework for stem cell-based therapies to come.

Clinical trials using PSC-based therapies have
only just begun (see summary in Table 1). The first
PSC-based trial for PD (ISCO trial) was initiated
in Australia in 2016, using parthenogenetic PSC-
derived neural progenitor cells of a non-DA fate
[13]. These cells are proposed to have a more



Table 1
Pluripotent stem cell products in the clinical trial pipeline for PD

Clinical data trial ID

Patients included*

Trial start

Trial site Preclin. data

MoA

Immune matching

Site of development

Cell product

(Company/Institution)

N/A

12

2016

Australia [13, 38, 39]

Allogeneic, Trophic support

International Stem Cell

ISC-hpNSC (Human

NCT02452723

non-matched

Corporation (ISCO)

parthenogenetic

hESC-derived NSCs)
Human parthenogenetic

N/A

(50)

China [40] 2017

DA-CRT

Allogeneic, HLA

Chinese Academy of Sciences,

NCT03119636

matched and
non-matched

Autologous

Beijing

hESC-derived ventral

midbrain progenitors
hiPSC-derived ventral

[29]

USA [41] 2017

DA-CRT

Harvard University
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IND No. 17145

N/A

midbrain progenitors
hiPSC-derived ventral

@

2018

Japan [17, 42, 43]

DA-CRT

Allogeneic, HLA

Kyoto University

UMIN000033564

matched and

midbrain progenitors

non-matched

Allogeneic,

N/A

(10)

2021

[16, 19, 20, 44]

USA

DA-CRT

Weill Cornell/Memorial Sloan

MSK-DAO1 (hESC-derived

NCT04802733

non-matched

Kettering/

ventral midbrain
progenitors)

BlueRock Therapeutics

Lund University/

N/A

Sweden UK [30, 45-50] Est. 2022 ®)

DA-CRT

Allogeneic,

STEM-PD (hESC-derived
ventral midbrain
progenitors)

EudraCT 2021-001366-38

non-matched

Cambridge University

MoA, Mechanism of Action; NSC, Neural stem cell; DA-CRT, Dopamine cell replacement therapy; N/A, not available. *Patient numbers in brackets are total no. of planned patients in trials which

are not yet completed. Patient numbers without brackets are completed, transplanted patients.
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indirect mechanism of action, working potentially
through trophic support. However, multiple groups
have shown through genetic engineering in preclin-
ical models that it is specifically the midbrain DA
neurons which are responsible for reverting symp-
toms in animal models of PD [14-16].

Following this rationale, Jun Takahashi and col-
leagues launched the first PSC-based midbrain DA
neuron cell replacement in Japan in 2018 using an
allogenic iPSC approach [17, 18]. Just recently, a
collaborative effort between Weill Cornell, Memo-
rial Sloan Kettering, and BlueRock Therapeutics was
granted permission by the FDA to advance to Phase
1 clinical trial in the US with an hESC-based mid-
brain DA product (MSK-DAO1) originally developed
by Lorenz Studer [19-21]. This trial is anticipated to
begin later this year. In an equivalent European effort,
Malin Parmar and colleagues have provided strong
proof of concept for their hRESC-based product and are
aiming to begin clinical trials in the EU in 2022. These
groups working on PSC-based products have been
meeting annually since 2014 in the research-based
network GForce-PD with the aim of sharing expe-
riences to bring the best treatments forward for the
PD community. Building on these academically led
advancements, three additional companies, Sumit-
omo Dainippon Pharma, FujiFilm Cellular Dynamics
Inc. and Novo Nordisk have also announced the
development of PSC-based cell products for treat-
ment of PD.

The trials mentioned above are based on allogeneic
cell transplantation strategies. Induced pluripotent
stem cell technology could provide an autologous
approach with the benefit of genetic matching at
the cost of time, logistic complexity and potential
variability. For intracerebral therapies, it is not clear
that autologous approaches will be advantageous in
the immunoprivileged brain since fetal cell allografts
have demonstrated robust and long-lived survival, up
to 24 years without long term immune suppression
[22-28]. Relying on autologous grafting could limit
the accessibility of stem cell therapies due to the cost
and the complication of batch-to-batch variation in
differentiation efficacy. Nevertheless, one cannot dis-
count the possibility that the immune response to
grafted allogeneic cells can limit efficacy. A recent
single patient case led by the group of Kwang-Soo
Kim at Harvard demonstrated proof of concept for the
autologous transplantation approach [29]. The Kim
group, as well as the US-based company Aspen Neu-
roscience, is now pursuing further clinical trials using
autologous iPSCs for transplantation.
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LOOKING TOWARDS THE FUTURE OF
PSC-BASED CELL THERAPIES

It has taken around twenty years of intensive
preclinical work to produce clinically acceptable
pluripotent stem cell-derived human DA neurons that
function efficiently in PD animal models. While this
is great progress, much remains to be learned from
clinical trials to improve cell products further. Careful
work by the Parmar lab [30] has shown equiva-
lence between fetal cell and PSC-based dopamine
neurons in animal models of PD, but clinical data
will be crucial to assess this equivalence in patients.
Another unresolved question is whether transplanted
DA neurons are “self-regulating.” That is, DA neu-
rons might receive feedback from the brain that
naturally balances and limits dopamine release. This
is important since excessive dopamine release might
result in dyskinesias (involuntary movement) [31].
Understanding this biology in humans will inform
our strategy for patient dosing.

Another factor affecting dose is the observation
that many neurons die after transplantation. It is not
known why this occurs, and excess cells must be
transplanted to account for this loss and assure ade-
quate dosing. The delivery device itself creates an
injury and a localized immune reaction, and large
numbers of dead cells could alert the immune system
to the transplanted cells. Beyond just the transplan-
tation period itself, monitoring immune reactivity in
allogeneic and autologous cell transplantation trials
will be key to understanding the role of the immune
response to grafted cells and is crucial for future
cell therapy development. A better understanding of
the immune response to grafts is needed to evalu-
ate whether allogeneic cell sources can survive and
escape rejection longterm, or if the autologous cells
will provide a clinical advantage despite the many
hurdles associated with their manufacturing. Many
groups are further looking into the possibilities of
using gene-edited allogeneic cell sources which can
escape immune recognition for future universal use in
patients to avoid the complexities and cost of making
apersonalized medicine [32-35]. Such cell lines must
however be used with caution since these cells might
inadvertently function as host cells to amplify viruses
or permit uncontrolled cell growth. As such, incorpo-
ration of “suicide genes” into such engineered cells
would allow the clinical option to chemically ablate
the grafted cells if required [36, 37].

One inconvenient truth learned from the fetal
cell trials is that it can take several years after

transplantation to achieve optimal clinical function
from cell replacement therapies. This makes the
choice of a clinical endpoint critical to assure the
strongest clinical signal and reduced chance for
placebo effects. Another key piece to the puzzle
remains the patients themselves. PD has been increas-
ingly recognized as a syndrome with a range of
clinical courses. Increasing knowledge of PD sub-
types and results from stem cell trials will allow us
to better understand which patients will truly benefit
from cell replacement therapies.
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