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Abstract. Phenotype is the set of observable traits of an organism or condition. While advances in genetics, imaging, and
molecular biology have improved our understanding of the underlying biology of Parkinson’s disease (PD), clinical pheno-
typing of PD still relies primarily on history and physical examination. These subjective, episodic, categorical assessments are
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therapies, and ultimately, improve patient care. In this paper, we explore the concept of deep phenotyping—the comprehensive
assessment of a condition using multiple clinical, biological, genetic, imaging, and sensor-based tools—for PD. We discuss
the rationale for, outline current approaches to, identify benefits and limitations of, and consider future directions for deep
clinical phenotyping.
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INTRODUCTION

Two centuries after its seminal description, Parkin-
son’s disease (PD) is now the world’s fastest growing
major neurological disorder [1, 2]. Progress in genet-
ics, imaging, and molecular biology have increased
our understanding of the condition [3–5]. How-
ever, despite advances in technology, many basic
clinical features of the disease remain elusive to
specialists and researchers. This ignorance impairs
our efforts to identify the etiologies of the dis-
ease, evaluate new therapies, and provide better care
[6, 7].

In this paper, we examine the shortcomings in our
current understanding of PD, introduce the concept
of deep phenotyping, highlight existing efforts, intro-
duce our own research, examine the benefits and
limitations of this new approach, and discuss future
directions.

SUPERFICIAL UNDERSTANDING OF
PARKINSON’S DISEASE

Today, the principal means for assessing PD are
categorical, episodic assessments conducted in the
clinic [8]. The 99.9% of the time during which
individuals with PD are not directly observed by
clinicians, until recently, has not been assessed [9,
10]. Diaries completed by patients concerning their
response to medications provide a window into how
individuals are affected by the disease in their natural
environment, have helped evaluate the benefits of new
treatments, and have been the basis for new approvals
[11–13]. However, these diaries are episodic, burden-
some, primarily focus on motor function, and often
require individuals to evaluate their disease using
unfamiliar clinical terms.

In the 19th century, Drs. Parkinson, Charcot, and
Gowers provided detailed descriptions of PD based
on observation and examination [14–16]. However,
basic characteristics, such as what proportion of the
day an individual with PD has tremor, are known
only to those affected by the disease. These mea-
sures, which extend beyond the time that individuals
are directly observed in clinic, are poorly charac-
terized in the scientific literature by wide-ranging
estimates.

For the past decade, accelerometers have helped
quantify motor features of PD [17–22]. However,
most of these studies (Table 1) have limited their

assessments to tasks performed in the clinic [18]. A
2018 systematic review of 24 wearable sensor studies
in PD found only seven that assessed the disease in a
“free-living environment” [18].

Wearable sensors and smartphone embedded sen-
sors are providing glimpses into how PD affects
individuals in everyday life [23]. A recent ambu-
latory monitoring study of individuals with newly
diagnosed PD employed a wrist-worn sensor (Global
Kinetics; Parkville, Australia) and detected clini-
cally meaningful tremor among a few participants
for over half the day. Studies of smartphone embed-
ded sensors, some large-scale, have captured remote,
objective assessments of PD (Table 2). In general,
though, these studies are limited by small sample size
and short duration, rely on participants to conduct
active tasks (e.g., tapping on the screen), and lack
companion sensors which can paint a more complete
picture of the disease [24].

Despite advances in our ability to assess motor fea-
tures using technology, details, like when the tremor
occurs, for how long, and at what amplitude and fre-
quency, are still lacking. In addition, most sensor
studies only assess tremor in one limb, even though
its presence in multiple limbs has been known for
centuries [14, 15, 25].

Similarly, the extent of intra- and inter-day dis-
ease variability remains largely unassessed in the
21st century. A recent smartphone study found
that the magnitude of inter-day variability of motor
impairment was far greater than the overall aver-
age progression of motor features over six months
[26]. Variability in non-motor features like sleep, neu-
ropsychiatric, and autonomic dysfunction is even less
well characterized. Moreover, assessing the impact of
these features on the lives of individuals with PD is
almost exclusively limited to pen-and-paper surveys
[27–29].

DEEP PHENOTYPING OF PARKINSON’S
DISEASE

What PD needs is deep phenotyping. Phenotype
is a set of observable traits of an organism or con-
dition [30]. In medicine, phenotyping comes from
a medical history, physical examination, imaging,
and blood tests. Deep phenotyping “shows the dif-
ferent dimensions of a disease” and leverages all
available data sources to gather details specific to
the individual [30]. Current phenotyping efforts that
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rely on subjective characterizations about an indi-
vidual’s walking ability, for example, have been
described as “sloppy or imprecise” [30]. In a 2015
Nature piece, deep phenotyping is described as
gathering “details about disease manifestations in
a more individual and finer-grained way, and uses
sophisticated algorithms to integrate the resulting
wealth of data with other kinds of information” [31].
This approach results in large data sets that require
data fusion algorithms to integrate the results [30,
32].

Many deep phenotyping efforts have used molec-
ular tools, such as genomics, proteomics, and
metabolomics, or electrophysiological tools, like
electroencephalography, to develop new insights [33,
34]. Such studies have advanced our understanding of
pathophysiology in diseases ranging from diabetes to
osteoarthritis [35, 36]. In addition to evaluating those
with a disease, this approach can track individuals
as they transition from a healthy to a diseased state
[35].

In this paper, we instead focus on deep clinical
phenotyping, which can be integrated with molecu-
lar approaches. Deep clinical phenotyping has four
principal characteristics. First, the effort begins with
the history and examination as in a traditional clini-
cal appointment. Second, deep clinical phenotyping
uses sensors or other tools to provide objective mea-
surement of the individual or the condition. Third,
multiple domains (e.g., activity and respiratory func-
tion) of the disease of interest are assessed. Fourth,
these assessments extend to real-world settings like
the home. The depth of the phenotype is a function
of the quality of the assessment of each domain, the
number of areas evaluated, and the duration of obser-
vation.

New sensors can generate large volumes of data
that are measured in number of observations per per-
son per second [37]. These tools can thus provide
high-definition descriptions of previously unobserv-
able clinical features. For example, a recent study
used digital sensors, including a smartphone, smart-
watch, a digital assessment application, and a bed
sensor, to provide a “minute-level behaviorgram”
of individuals with either Alzheimer’s disease, mild
cognitive impairment, or no evidence of cognitive
deficit [38]. This behaviorgram combined assess-
ments of physical activity (e.g., steps taken), sleep
(e.g., duration of sleep), and phone usage (e.g., text
messages received) to a paint a picture of how cog-
nitive impairment affects individuals in their daily
lives.

CURRENT DEEP PHENOTYPING
STUDIES IN PARKINSON’S DISEASE

Deep clinical phenotyping studies in PD have
begun (Table 3) [39, 40]. For over a decade,
the Parkinson’s Progression Markers Initiative has
sought to identify biological markers of disease pro-
gression and in so doing has collected a wealth of
clinical, genetic, imaging, and biological data [41].
Recently, it added sensors, including a smartwatch
and a smartphone application, to the current clini-
cal assessments. The expectation is that the sensor
data will provide more objective and frequent assess-
ments of PD both in and outside the clinic. Together
with the biological assessments, a more complete
picture of cohorts with and at risk for PD can be
created.

Additional studies are using smartwatch embedded
sensors to assess PD. The 650-person Personalized
Parkinson Project in the Netherlands has started
enrolling individuals with PD who will be followed
annually in clinic and with a smartwatch [39]. In
addition, the study is collecting multiple biologi-
cal samples, including blood, cerebrospinal fluid,
and stool, and capturing structural and functional
MRIs from research participants. The study aims to
address the stagnation in our understanding of the
etiology, pathophysiology, and progression of PD
by developing “deep and repeated multi-dimensional
phenotyping” of PD enabled by continuous mon-
itoring with a wearable device for two years
[39].

A separate U.S. study called Watch-PD is using a
different smartwatch along with wearable sensors in
the clinic to assess PD. In contrast to the Personalized
Parkinson Project, which has broad inclusion crite-
ria, Watch-PD is focused on developing novel digital
assessments of individuals with early, untreated PD
[42]. The hope is that the resulting digital assessments
could be used as outcome measures or endpoints in
future clinical trials in this population.

The Luxembourg Parkinson’s Study is another
deep phenotyping study that is addressing the “sub-
stantial gaps in our understanding of the underlying
mechanisms and the complex clinical presentation”
of PD [43]. To do so, the Luxembourg study is uti-
lizing a smartphone application and a shoe sensor
to develop “rater-independent” measures of the clin-
ical disease features. These will be combined with
detailed biological assessments from at least blood,
saliva, and urine to develop a “data driven approach”
to evaluate the disease [43].
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Fig. 1. Picture of the digital devices that will be used in our deep clinical phenotyping study.

A NEW EFFORT

To complement these efforts, we launched a study,
Super-PD, that uses multiple sensors to enable deep
clinical phenotyping of individuals with and with-
out PD (Fig. 1). We are enrolling fifty individuals,
thirty-five with PD, and fifteen age- and sex-matched
controls in a two-year prospective cohort study.

Compared to prior work, this study combines mul-
tiple sensors that significantly increase the depth and
breadth of signals collected. The first measure is the
second generation of the mPower smartphone appli-

cation originally released on Apple’s open-source
ResearchKit platform in March 2015 [44]. The ini-
tial study enrolled over 15,000 participants with
and without PD throughout the U.S. and used the
smartphone’s sensors to assess voice, finger tap-
ping, gait, and balance [44]. The second- generation
application is much like the first but has additional
tremor assessments and allows for passive monitoring
using the Global Positioning System (GPS). Analy-
sis of results from a similar application with similar
assessments generated a “mobile Parkinson’s disease
score,” which allows a frequent, objective assessment
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of disease severity by anyone with a smartphone any-
where in the world [26, 45].

The second measure is a set of wearable sensors
(MC10; Lexington, MA) that can be placed almost
anywhere on the body. In an initial study, five sen-
sors (one on each limb and one on the chest) were
used to quantify what proportion of a day individ-
uals with PD are lying, sitting, standing, or walking
[25]. These sensors can also assess tremor, gait, sleep,
and potentially dyskinesias. The second generation
of the sensor adds electrocardiogram (ECG) capa-
bilities. Compared to the smartphone assessment, the
wearable sensors, which will be applied using double-
sided adhesives to the chest and most affected arm and
leg, provide a more accurate measure of movement
for the body parts where they are placed. However,
over the course of the study, participants will likely
wear the sensors less often than they carry their smart-
phone.

The third assessment is a video analytics tool,
broadly available via computer browser, which uses
machine learning rather than raters to assess move-
ments in PD. Participants are asked to perform
elements of the motor portion of the Movement
Disorder Society—Unified Parkinson’s Disease Rat-
ing Scale (MDS-UPDRS) in front of a web camera
on a laptop computer [8]. Using machine vision,
a computer algorithm can automatically and pre-
cisely identify subtle movement of the facial muscles,
hands and fingers and characteristics of spoken words
and syllables and correlate these features with man-
ually annotated MDS-UPDRS scores. Based on a
task that asks participants to maintain a neutral
face, the computer algorithm has identified facial
microexpressions around the lips and eyebrows that
can differentiate those with PD from those without
[46].

Finally, the Super-PD study utilizes a radio wave
sensor called Emerald (Cambridge, MA) that is
installed in an individual’s home and uses electro-
magnetic waves to assess individuals in their natural
environment [47, 48]. Low power radio waves trans-
mitted by the device reflect off non-stationary objects,
most notably people and pets, and are used to detect
location, movement, gait trajectories, sleep, and other
activities in the home. An initial study quantified gait
speed and tracked sleep patterns, including the time,
duration, and interruptions when individuals were in
bed [47]. The entirely passive sensor monitors up to
a range to of 1,200 square feet (110 square meters)
and works best when only 2–3 individuals regularly
occupy the space.

Participants will also undergo in-clinic assess-
ments with traditional rating scales to assess motor
function, mood, sleep, and cognition and provide a
blood sample to be stored for analysis as part of the
Parkinson’s Disease Biomarker Program [8, 49–54].
The scales will be augmented by the recently devel-
oped, online Patient-Reports of Problem (PROP)
assessment. The PROP assessment, which was devel-
oped to give participants the opportunity to express
themselves in their own words, covers three domains:
general health, psychosocial wellbeing, and Parkin-
son’s disease. Each PROP survey asks individuals
what bothers them, how the problems affect daily
functioning, the severity of the problems, and what
they do to alleviate each problem [55]. Natural lan-
guage processing, standardized clinical curation, and
machine learning are used to quantify and analyze
responses [56]. Together, the PROP and digital mea-
sures will give a robust portrayal of what individuals
with PD say and do.

BENEFITS OF DEEP CLINICAL
PHENOTYPING

Deep clinical phenotyping can provide new
insights into various aspects of PD (Table 4). This
approach uses sensors to examine how PD affects
people in their daily lives and extends beyond biolog-
ical markers to give a more complete characterization
of the disease.

Smartphone applications can detect subtle tremor
that is missed by trained raters [57]. In addition,
smartphone embedded sensors can readily assess gait
and global motor function. In one study, a smartphone
application detected that individuals with PD walked
about 25% less than those without the disease [57].

Wearable sensors can also quantify gait speed,
which is reduced in PD and fluctuates in response to
levodopa and deep brain stimulation [58–62]. In geri-
atric medicine, “gait speed” is the “sixth vital sign”
[63], and reductions are associated with increased
mortality [64, 65]. For the past decade, Dr. Jef-
frey Kaye at Oregon Health Sciences University
and colleagues have outfitted homes of older adults
with multiple sensors to assess motor, functional,
and social behavior [66]. They have quantified the
gait speed of individuals in their natural environ-
ment, and they and others have found that declines
in walking speed predict cognitive impairment and
dementia [66–68]. Similarly, reductions in daily
physical activity are associated with an increased
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risk of Alzheimer’s disease and potentially PD
[69–71].

Multiple non-motor features, including autonomic
function and sleep, can also be evaluated. The
physiologic oscillation in the time interval between
heartbeats, known as heart rate variability, is reduced
in PD [72–74]. Prior studies of heart rate variabil-
ity in PD have collected observations on up to 150
participants for 24 hours with an ambulatory ECG,
generating around 3600 hours of data [72, 75]. In
contrast, deep phenotyping studies such as ours, can
generate data volumes that dwarf more traditional
studies with serial ECG assessments over longer peri-
ods of time (e.g., weekly intervals). In addition, as
with motor features, the effect of exercise, medica-
tion, walking, and sleep on heart rate response can be
assessed.

Sleep has also been inadequately assessed in
PD. Most studies use polysomnography for sin-
gle night observations in artificial sleep labs
[76–78]. Accelerometers have helped measure differ-
ent aspects of sleep at home [17, 18]. These studies
have quantified various aspects of sleep and have
found that individuals with PD turn fewer times but
leave the bed more often [79, 80]. In our study,
the number and duration of naps, duration of sleep,
number of sleep interruptions, and large movements
during sleep will all be quantified. The latter could
be used to assess rapid eye movement (REM) sleep
behavioral disorder, which is an early feature of the
disease that can be identified by multiple digital
devices [81–83].

Sensor technology also enables functional assess-
ments in the home. The Emerald device can quantify
number of visits to the bathroom and time spent in
the bathroom. Such assessments can provide new
insights into the impact of urinary urgency and
constipation and supplement current measures of
these symptoms, which rely on diaries, surveys, and
patient-reported outcomes [84].

Finally, this study will provide novel insights into
how PD disease affects an individual’s interaction
with the environment or social function. A small
smartphone study used GPS to measure the “lifes-
pace,” or the “geographic area in which a person lives
and conducts their activities,” of individuals with PD
[85]. The lifespace can be mapped in a de-identified
way that measures time and distance away from home
without giving the specific location of participants.
Such assessments could reflect both motor (e.g.,
mobility) and non-motor (e.g., depression) features of
PD. Inside the home, the radio-wave sensor can quan-

tify how much time is spent at home, where it is spent
(e.g., bedroom), and what proportion of time an indi-
vidual is alone. In older adults, increased time outside
the home is associated with superior physical ability
and improved emotional state [86]. Conversely, lone-
liness is associated with decreased time out of the
home, motor slowing, functional decline, and death
[87–89]. Loneliness not only affects individuals with
PD but also their caregivers [90, 91].

In essence, sensors increase the precision of estab-
lished measures to capture greater variability in
symptoms and enable more frequent, seamless data
collection. Within the context of deep clinical phe-
notyping studies, sensors can identify new outcome
measures of PD and generate composite digital
biomarkers that holistically measure disease symp-
toms and progression.

LIMITATIONS OF DEEP CLINICAL
PHENOTYPING

New efforts confront many barriers and limitations.
Among them are who participates in such research
studies, their privacy, the ability to capture their data,
the validity of the data, and their subsequent analy-
sis and generalizability. Thus far, participants in deep
phenotyping studies have not been representative of
the general population. They are overwhelmingly
white, well educated, and likely have more trust
in clinicians and health care institutions than other
groups [92]. Social and economic factors also con-
tribute to the digital divide, with differential access
to the internet and digital devices [93]. Engaging in
outreach, reducing financial and travel burdens, and
bringing research tools to participants (e.g., direct-to-
consumer genetic testing, smartphone applications,
online research platforms) can address some of this
selection bias, which plagues both deep phenotyping
and traditional research studies [94].

The privacy of participants is another concern.
Deep phenotyping requires extensive monitoring of
individuals, including continuous passive location
assessment and monitoring in their homes. Despite
the intrusion, studies that have assessed privacy con-
cerns have generally found only modest concerns [23,
47]. That said, these responses come from those who
are willing to share de-identified data. Privacy con-
cerns may also be less among those with PD, who
often are either retired or disabled, have guaranteed
health insurance (e.g., Medicare in the U.S.), and are
invested in clinical research. Privacy views may differ



E.R. Dorsey et al. / Deep Phenotyping of Parkinson’s Disease 865

for those without or at risk for PD, who are likely to
be younger, employed, and less secure in their health
insurance [95].

Some sensors inform researchers not only about
the behavior of research participants but also about
those that live with them or come in close contact
to them. Sensors that allow for easy pausing of data
collection could help protect privacy. In addition,
the Emerald device, for example, filters all move-
ment patterns to isolate those from just the study
participant. In other cases, sensors may collect infor-
mation about all activity in its range. In these cases,
researchers need to ignore such data where feasible
and discard it where not. To assist with the conduct
and oversight of such studies, ethicists, consent spe-
cialists, and voices of those affected by the disease
are also valuable, if not essential.

Interest in studies utilizing sensors is high, includ-
ing among older individuals [18, 39, 96, 97].
However, maintaining that interest is difficult as par-
ticipation often wanes quickly [44, 98]. Supporting
and engaging participants throughout a study’s course
is thus important. In addition, capturing data from
participants in uncontrolled (real-world) environ-
ments is not easy. Poor connectivity (e.g., to Wi-Fi)
and limited storage capacity of sensors are potential
obstacles that need to be overcome.

While these digital devices are appealing, addi-
tional work is required to ensure their validity.
Validation is the “process of ensuring that the digital
measurement tool is meeting its intended use by gen-
erating objective data that accurately represents the
concept of interest... that it purports to be measuring”
[99]. Validation seeks to answer whether researchers
built the right tool to assess measures of how some-
one feels, functions, or survives, such as gait. Validity
is divided into two components, analytic validation
and clinical validation [99, 100]. The former assesses
whether algorithms accurately process the data (i.e.,
is the calculation of gait speed from accelerometry
data true?). The latter evaluates whether the measure-
ment (e.g., gait speed) reflects an important health
domain. Large scale public-private partnerships, such
as Mobilise-D, are seeking to develop clinically valid
digital mobile assessments that can be applied to PD
and other chronic medical conditions. These efforts
in multiple sclerosis, for example, employed digi-
tal measures alongside traditional measures to assess
ambulation in the clinic and in a real-world setting
[101]. While larger scale studies and rigorous vali-
dation of novel digital measures is needed for PD,
the field should recognize that comparison against

traditional measures may not be the best approach
for such validation, particularly because many of the
digital measures can be more accurate and sensitive
than traditional “gold” standards. After confirming
their reliability and correlation with clinical scales,
digital measures may be directly validated against
pathophysiological biomarkers in PD.

Finally, analysis of data from deep phenotyp-
ing studies requires new methodologic and analytic
approaches and new collaborations. Deep phe-
notyping studies generate large datasets that are
characterized by high volume, variety, velocity,
veracity, and value [102]. Each of these character-
istics comes with its own challenges that require
multi-disciplinary teams to address. Such data is often
highly contaminated with irrelevant factors such as
idiosyncratic behaviors, environmental settings and
changes, and effects of comorbid conditions. Analy-
sis needs to account for this substantial noise in the
data [103]. Hybrid approaches that combine tech-
niques from multiple fields will be essential. In
addition to clinicians, research teams often need com-
puter scientists (artificial intelligence and machine
learning), data scientists (high dimensional data),
electrical engineers (signal processing), and persons
with PD to manage and interpret the data.

FUTURE DIRECTIONS

Deep phenotyping offers at least three great poten-
tial advances. First, deep clinical phenotyping will
enhance our understanding of the nature of the dis-
ease, including its expression, pathophysiology, and
potential modulators [7, 104]. Detailed, frequent,
real-world assessments of PD will provide a more
complete picture of the disease’s manifestations, their
sequence of development, their impact on individu-
als’ everyday life, and their relationship to pathology.
Current PD phenotypes are based on traditional scales
and likely incomplete, if not inaccurate [105]. What
we see in our clinic today is an arbitrary snapshot
that may not reflect the real-world. New tools can
monitor features of the disease inside and outside the
clinic. They will allow us to identify new potential
modulators of Parkinson’s course, such as weather,
altitude, diurnal patterns, sleep, activity, and other
factors that have either not been considered or are
difficult to measure.

Second, deep phenotyping could help us evaluate
new treatments objectively and efficiently. Current
PD clinical trials are large, long, expensive, and prone
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Fig. 2. Landscape of deep phenotyping of Parkinson’s disease.

to fail [106, 107]. In this century, the U.S. Food
and Drug Administration (FDA) has approved only
three new classes of medications for PD (adrener-
gic agonists, atypical antipsychotics, and adenosine
A2A receptor antagonists), each of which benefits a
small subset of patients. Moreover, despite extensive
discussion and large efforts [108–110], no therapies
that target the underlying pathology have emerged. A
new approach is needed, and deep phenotyping could
generate the objective, sensitive, and high-definition
assessments required to evaluate a new generation of
therapies [17].

Such approaches are gaining traction. In the U.S.,
the 21st Century Cures Act introduced the use of
real-world data, including sensor data, to support
regulatory decision making [111]. The inclusion of
real-world data and the resulting real-world evidence
reflects the rapid acceleration in the “use of comput-
ers, mobile devices, wearables and other biosensors
to gather huge amounts of health-related data” [111].
These data can, according to the FDA, “allow us to
better design and conduct clinical trials and studies
in the health care setting to answer questions previ-
ously thought infeasible” [111]. In 2019, the FDA
issued a guidance document that indicated that real-
world evidence could be used to “provide evidence
in support of the effectiveness or safety of a new drug
approval” [112] and a similar guidance for devices
[113]. Also in 2019, the European Medicines Agency
deemed top stride velocity (95th percentile measured
at the ankle) as “an appropriate endpoint in studies
to support regulatory decision making on medicines
for the treatment of Duchenne Muscular Dystrophy”
[114]. The FDA has already approved one treatment

(dalfampridine) for multiple sclerosis based on gait
speed [115, 116]. Such measures could be readily
applied to PD.

Third, a prerequisite for personalized care for
PD is individual data [117]. These data can be
patient-reported, genetic, biological, or clinical.
In a 2013 review, Dr. Walter Maetzler and col-
leagues predicted such an application. They wrote,
“Measuring (Parkinson’s) disease-related outcomes
objectively . . . , continuously . . . , unobtrusively . . . ,
and with high ecological validity . . . could boost
the efficiency and relevance of (patient) visits, and
improve patient care. This clinical wish appears to
[be] coming within reach with the advent of new,
wearable technology that can quantitatively collect,
analyze, and deliver data to both the patient and the
doctor” [17].

Personalized medicine for PD is just beginning.
Current treatment decisions are largely based on ad
hoc assessments [118, 119]. Other diseases are fur-
ther ahead. Individuals with diabetes are no longer
dependent on in-clinic assessments to dose their
insulin. Now, blood glucose levels are measured con-
tinuously and dosing of medication is tailored to these
data in real time, resulting in greater potential for opti-
mal disease control. Future objective assessments of
PD (e.g., of gait) could enable tailoring of medical or
surgical treatments to the individual [120, 121]. Deep
brain stimulation parameters, for example, could be
automatically adjusted based on continuous, real-
world assessments from implanted, sensing leads, a
process that is underway [122–124]. Patients could
customize their activities and treatments based on
sensor data and foster self-efficacy [125].
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Fourth, deep phenotyping will enable the discovery
of new disease subtypes [126]. Clustering individu-
als into groups with similar progression or traits can
power new studies that seek to understand the bio-
logical differences across these groups. The future
(Fig. 2) will see expanded deep phenotyping efforts.
These may include generating phenotypes specific
to genetic sub-types of PD (e.g., due to LRRK2
or GBA mutations) that could inform gene-directed
clinical trials [127]. Previous studies using traditional
rating scales have suggested that these genetic sub-
populations have different features and progression
rates [128, 129]. Deeper phenotyping will likely be
able to confirm or refute such findings and identify
many other hidden differences. Deep phenotyping
of individuals at risk for or with prodromal PD will
permit better understanding of the nature of PD and
its evolution. This will be especially important for
assessing the effectiveness of novel interventions
aimed at these groups.

The mathematician Dr. Freeman Dyson said “New
directions in science are launched by new tools much
more often than by new concepts. The effect of the
concept-driven revolution is to explain old things in
new ways [6]. The effect of a tool-driven revolution
is to discover new things that have to be explained”
[130]. We now have these new tools. New insights
await us.
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B, Trenkwalder C (2002) The Parkinson’s disease sleep
scale: A new instrument for assessing sleep and noctur-
nal disability in Parkinson’s disease. J Neurol Neurosurg
Psychiatry 73, 629-635.

[51] Leentjens AFG, Dujardin K, Pontone GM, Starkstein SE,
Weintraub D, Martinez-Martin P (2014) The Parkinson
Anxiety Scale (PAS): Development and validation of a
new anxiety scale. Mov Disord 29, 1035-1043.

[52] Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau
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[103] Hernández-González J, Inza I, Lozano JA (2016) Weak
supervision and other non-standard classification prob-
lems: A taxonomy. Pattern Recognit Lett 69, 49-55.

[104] Heilbron K, Noyce AJ, Fontanillas P, Alipanahi B, Nalls
MA, Agee M, Auton A, Bell RK, Bryc K, Elson SL, Fur-
lotte NA, Hinds DA, McCreight JC, Huber KE, Kleinman
A, Litterman NK, McIntyre MH, Mountain JL, Noblin ES,
Northover CAM, Pitts SJ, Sathirapongsasuti JF, Sazonova
OV, Shelton JF, Shringarpure S, Tian C, Tung JY, Vacic
V, Wilson CH, Cannon P, The 23andMe Research T
(2019) The Parkinson’s phenome—traits associated with
Parkinson’s disease in a broadly phenotyped cohort. NPJ
Parkinsons Dis 5, 4.

[105] Jankovic J, McDermott M, Carter J, Gauthier S, Goetz
C, Golbe L, Huber S, Koller W, Olanow C, Shoulson I,
Stern M, Tanner C, Weiner W (1990) Variable expression
of Parkinson’s disease. Neurology 40, 1529.

[106] Adams CP, Brantner VV (2006) Estimating the cost of
new drug development: Is it really $802 million? Health
Affairs 25, 420-428.

[107] Dorsey ER, Papapetropoulos S, Xiong M, Kieburtz K
(2017) The first frontier: Digital biomarkers for neurode-
generative disorders. Digit Biomark 1, 6-13.

[108] Writing Group for the NINDS Exploratory Trials in
Parkinson Disease Investigators (2015) Effect of crea-
tine monohydrate on clinical progression in patients with
Parkinson disease: A randomized clinical trial. JAMA 313,
584-593.

[109] Kalia LV, Kalia SK, Lang AE (2015) Disease-modifying
strategies for Parkinson’s disease. Mov Disord 30, 1442-
1450.

[110] Parashos SA, Luo S, Biglan KM, Bodis-Wollner I, He
B, Liang GS, Ross GW, Tilley BC, Shulman LM, Inves-
tigators N-P (2014) Measuring disease progression in
early Parkinson disease: The National Institutes of Health
Exploratory Trials in Parkinson Disease (NET-PD) expe-
rience. JAMA Neurol 71, 710-716.

[111] Real-World Evidence, U.S. Food and Drug Administra-
tion, https://www.fda.gov/science-research/science-and-
research-special-topics/real-world-evidence, Posted May
9, 2015, Accessed November 15, 2019.

[112] Submitting Documents Using Real-World Data and
Real-World Evidence to FDA for Drugs and Biolog-
ics Guidance for Industry, U.S. Department of Health
and Human Services Food and Drug Administration,
https://www.fda.gov/media/124795/download, Accessed
November 15, 2019.

[113] Use of Real-World Evidence to Support Regulatory
Decision-Making for Medical Devices: Guidance for
Industry and Food and Drug Administration Staff, U.S.

Food and Drug Administration, https://www.fda.gov/
regulatory-information/search-fda-guidance-documents/
use-real-world-evidence-support-regulatory-decision-
making-medical-devices, Accessed January 16,
2020.

[114] Qualification Opinion, Stride velocity 95th centile as a
secondary endpoint in Duchenne Muscular Dystrophy
measured by a valid and suitable wearable device, Euro-
pean Medicines Agency, https://www.ema.europa.eu/
en/documents/scientific-guideline/qualification-opinion-
stride-velocity-95th-centile-secondary-endpoint-
duchenne-muscular-dystrophy en.pdf, Posted April 26,
2019, Accessed November 15, 2019.

[115] Lamore R, III, Jacob E, Jacob SC, Hilas O (2010) Dal-
fampridine (Ampyra): An aid to walking in patients with
multiple sclerosis. Pharm Ther 35, 665-669.

[116] Prescribing Information: AMPYRA, U.S. Food and
Drug Administration, https://ampyra.com/prescribing-
information.pdf, Accessed November 15, 2019.

[117] Tsiouris KM, Gatsios D, Rigas G, Miljkovic D, Seljak
BK, Bohanec M, Arredondo MT, Antonini A, Konitsiotis
S, Koutsouris DD, Fotiadis DI (2017) PD Manager: An
mHealth platform for Parkinson’s disease patient manage-
ment. Healthc Technol Lett 4, 102-108.

[118] Riggare S, Hägglund M (2018) Precision medicine in
Parkinson’s disease - exploring patient-initiated self-
tracking. J Parkinsons Dis 8, 441-446.

[119] Riggare S, Scott Duncan T, Hvitfeldt H, Hägglund M
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