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Abstract. Mitochondrial dysfunction represents a well-established player in the pathogenesis of both monogenic and idio-
pathic Parkinson’s disease (PD). Initially originating from the observation that mitochondrial toxins cause PD, findings from
genetic PD supported a contribution of mitochondrial dysfunction to the disease. Here, proteins encoded by the autosomal
recessively inherited PD genes Parkin, PTEN-induced kinase 1 (PINK1), and DJ-1 are involved in mitochondrial path-
ways. Additional evidence for mitochondrial dysfunction stems from models of autosomal-dominant PD due to mutations in
alpha-synuclein (SNCA) and leucine-rich repeat kinase 2 (LRRK2). Moreover, patients harboring alterations in mitochondrial
polymerase gamma (POLG) often exhibit signs of parkinsonism. While some molecular studies suggest that mitochondrial
dysfunction is a primary event in PD, others speculate that it is the result of impaired mitochondrial clearance. Most recent
research even implicated damage-associated molecular patterns released from non-degraded mitochondria in neuroinflamma-
tory processes in PD. Here, we summarize the manifold literature dealing with mitochondria in the context of PD. Moreover,
in light of recent advances in the field of personalized medicine, patient stratification according to the degree of mitochondrial
impairment followed by mitochondrial enhancement therapy may hold potential for at least a subset of genetic and idiopathic
PD cases. Thus, in the second part of this review, we discuss therapeutic approaches targeting mitochondrial dysfunction
with the aim to prevent or delay neurodegeneration in PD.
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INTRODUCTION

The prevalence of Parkinson’s disease (PD) has
more than doubled over the last two decades, mak-
ing it the fastest growing of all neurological diseases
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[1]. Despite significant advances in deciphering the
pathophysiology of PD [2], the etiology remains elu-
sive for the majority of cases.

On the cellular level, an involvement of oxida-
tive stress, lysosomal and mitochondrial dysfunction
has been implicated in the pathophysiology of PD
[3]. The first evidence that alterations in mito-
chondrial function may play a decisive role in the
pathogenesis of PD date back to the 1980s, when
mitochondrial toxins were reported to cause dopa-
responsive parkinsonism [4]. Subsequently, findings
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from PD genetics supported the link between mito-
chondria and PD [5]. Here, it has been shown
that mutated genes causing monogenic PD encode
proteins involved in mitochondrial function and
degradation of damaged mitochondria. This review
aims to 1) discuss the origin of the link between
PD and mitochondria, 2) summarize how pathogenic
variants in the PD genes Parkin, PTEN-induced
kinase 1 (PINK1) and DJ-1 as well as parkinsonism-
associated mutations in mitochondrial Polymerase
gamma (POLG) cause mitochondrial impairment,
and 3) present how oxidative stress leads to mitochon-
drial DNA (mtDNA) disintegration in PD. Moreover,
4) we illustrate how mitochondrial damage may cause
inflammation in the context of PD. Additionally, 5)
we summarize the interaction between mitochondrial
and lysosomal pathways as well as the endoplasmic
reticulum (ER) with a focus on calcium homeosta-
sis. Finally, 6) we discuss resulting implications for
genetic testing and highlight possible therapeutic
approaches arising from a potential mitochondrial
subtype of PD.

ORIGINS OF THE LINK BETWEEN
MITOCHONDRIA AND PD

First, the so-called “frozen addicts” suggested
a contribution of mitochondrial dysfunction to the
pathogenesis of PD. In these drug users, living in
California in the 1980s, physicians observed that
a side product of new synthetic heroin triggered
a rapid onset of a distinct form of parkinson-
ism responsive to levodopa treatment. It turned
out that the synthesis process resulted in the
unwanted generation of 1-methyl-4-phenyl-1,2,5,6-
tetrahydropyridine (MPTP), which led to inhibition
of the respiratory chain [4]. Of note, a similar obser-
vation was published already four years earlier [6].
MPTP is not toxic itself but lipophilic and thus able
to enter brain tissue by crossing the blood brain
barrier. In the brain, it is processed by monoamine
oxidase B (MAO-B) [7] to the toxic cation 1-methyl-
4-phenylpyridinium (MPP+) [8]. MPP+is selectively
taken up by dopaminergic cells [9] and inhibits mul-
tiple complexes of the respiratory chain [3, 10]. The
notion that mitochondrial dysfunction plays a role
in PD pathogenesis was supported shortly after the
description of the “frozen addicts” by the observation
of a restricted function of respiratory chain com-
plexes in postmortem brain sections from PD patients
[11]. These early findings significantly stimulated PD

research in the following years. For example, even
today, the injection of MPTP is most commonly used
to model PD in mice [12]. However, similar to other
animal models of PD, the clinical and pathological
characteristics simulated by the MPTP model differ
from PD in many ways [13].

Disturbances in respiratory chain complexes are
associated with the generation of reactive oxy-
gen species (ROS) suggesting oxidative stress as a
pathogenic mechanism in PD related to mitochon-
drial dysfunction. Highlighting the role of ROS,
evidence has arisen that oxidative stress is linked
to dopamine metabolism [14]. Later in the present
review, we will particularly focus on the aspect of
oxidative stress and mtDNA disintegration.

MONOGENIC PD AND MITOCHONDRIAL
DYSFUNCTION

Over the past two decades, intensive research
has resulted in significant progress regarding the
elucidation of monogenic causes of PD. After the
initial description of pathogenic variants in the alpha-
synuclein gene (SNCA) as of cause PD in 1997 [15],
several genes have been identified that are associ-
ated with the development of PD signs resembling
those of idiopathic PD. These genetic alterations are
considered as disease-causing or as genetic risk fac-
tors. In particular, the autosomal dominantly inherited
genes SNCA, Leucine-rich repeat kinase 2 (LRRK2),
and Vacuolar protein sorting-associated protein 35
(VPS35) [16] and the autosomal recessively transmit-
ted genes Parkin, PINK1, and DJ-1 [17] are both well
established and validated to cause PD when mutated.
In addition, a number of genes have been shown to
cause atypical parkinsonism [18].

In the context of autosomal dominantly inherited
PD, several links to mitochondrial dysfunction have
been described in the past decade. For instance, the
protein encoded by the first PD-linked gene SNCA
is a component of Lewy bodies [19], which were
recently also identified to contain organelles includ-
ing mitochondria [20]. Alpha-synuclein has been
shown to accumulate in mitochondria, interfering
with complex I function and increasing mitophagy
[21]. Thereby, calcium can trigger alpha-synuclein-
mediated mitochondrial dysfunction [22, 23]. In
keeping with these findings, the N-terminal domain
of alpha-synuclein is associated with respiratory
chain complex I [24]. Moreover, neuroepithelial stem
cells (NESCs) harboring PD-causing SNCA muta-
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tions showed reduced mitochondrial function [25].
In addition, a nonfibrillar, phosphorylated species of
alpha-synuclein has been shown to target mitochon-
dria, thereby inducing mitochondrial fragmentation,
energy deprivation and mitophagy [26]. The role of
alpha-synuclein at the mitochondria-associated endo-
plasmic membrane (MAM) will be discussed below
in a separate section on inter-organellar crosstalk.

There is also evidence for a role of LRRK2 in
the regulation of mitochondrial function. Mutations
in LRRK2 cause the most common and autoso-
mal dominantly inherited form of monogenic PD
clinically indistinguishable from IPD [27, 28]. As
described later in this review, Parkin and PINK1 play
a well-established role in a common pathway medi-
ating mitophagy, the process of degrading damaged
mitochondria. Similarly, LRRK2 is involved in the
initiation of mitophagy by regulating mitochondrial
motility [3]. Further evidence for an involvement of
LRRK2 in mitochondrial clearance comes from our
own observation of elevated mtDNA deletion lev-
els specifically in affected LRRK2 mutation carriers,
implicating mtDNA integrity as potential pene-
trance marker for LRRK2-linked PD [29]. Concerning
mutations in VPS35, another cause of autosomal
dominantly inherited PD [30], there is also evidence
for an association with mitochondrial dysfunction.
For example, VPS35-mutant fibroblasts exhibited an
impaired configuration of complex I of the respi-
ratory chain [31]. In dopaminergic neurons, VPS35
depletion leads to the accumulation of �-synuclein
and mitochondrial dysfunction [32]. An additional
mechanistic link between VPS35 and mitochondria
was demonstrated when the fission factor dynamin-
like protein (DLP) 1 emerged as interactor of VPS35
[33].

Moreover, the PD-associated protein CHCHD2
[34] has been found to accumulate in mitochondria
under the influence of stress [35]. Further studies
will be needed to shed light on its interaction with
CHCHD10 [36].

However, the most compelling evidence for a direct
link between mitochondria and PD has been estab-
lished for the autosomal recessively inherited PD
genes Parkin, PINK1, and DJ-1, as illustrated by
a PubMed search: Combining “Parkinson’s disease
AND mitochondria” with any of these three gene
names results in over 4500 publications in total.
Interestingly, patients with genetic alterations in the
mitochondrial disease-associated gene POLG also
exhibit parkinsonism, albeit a clinically more atypical
form.

Parkin-linked PD

Clinically, biallelic mutations in Parkin cause
typical levodopa-responsive PD with early disease
onset, slow progression and dystonia as prominent
(initial) symptom, while non-motor features like
olfactory dysfunction, psychiatric symptoms or cog-
nitive impairment are less frequent compared to IPD
[17] (Table 1).

In 1997, an unidentified gene mapping to chromo-
some 6q25.2–27 was initially linked to an autosomal
recessive juvenile form of parkinsonism [37]. Shortly
thereafter, the sequence of Parkin was unveiled,
with subsequent reports furthering its significance
for the etiology of PD [38]. To date, more than
130 different mutations in Parkin have been docu-
mented in about 1000 PD patients [17], making it
the most prevalent autosomal recessive form of PD
[39]. Parkin is an E3 ubiquitin ligase with established
neuroprotective activities. Furthermore, Parkin has an
extensive array of putative substrates [40], which can
be differentially modified either through mono- or
poly-ubiquitination with different patterns of ubiq-
uitin lysine linkage. This results in a complex, yet
insufficiently characterized array of regulatory nodes
associated to this protein. Parkin exerts its function
through three independent mechanistic axes [41]:
1) enhanced ubiquitination of toxic substrates to be
degraded by the proteasome, 2) regulation of cell
death pathways through non-degradative ubiquitin
signaling, and 3) regulation of mitochondrial quality
control through mitophagy and vesicular transport.
Although initial reports failed to detect mitochondrial
localization of Parkin [42], it is currently established
that this protein is intimately related to the regulation
of mitochondrial homeostasis.

Lys-48-polyubiquitinated Parkin substrates are
directed to the proteasomal degradation pathway
[43], meaning that Parkin deficiency or inactiva-
tion can lead to accumulation of diverse noxious
substrates that are normally targeted for degrada-
tion. A good example of this is PARIS, a repressor
of the master regulator of mitochondrial biogene-
sis and respiration, PGC1-� [44], as will be further
explained below. The first indisputable evidence for
parkin’s involvement in mitochondrial homeostasis
arose from the study of Drosophila [45] and mouse
[46] parkin–/– models. Remarkably, these fly models
exhibited degenerative phenotypes, which consider-
ably overlapped with those reported soon thereafter in
pink1–/– fly models [47–49], exposing a mechanistic
link between parkin, pink1 and mitochondrial qual-
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Table 1
Overview of genes particularly associated with mitochondrial dysfunction in Parkinson’s disease and POLG as representative of genetic mitochondrial disease with parkinsonian features

Type of PD Additional reading Median age of Clinical features Frequency and type
onset (range) of mutations

PARK-Parkin (PARK2) MDSGene
https://www.mdsgene.org/d/1/g/4)

31 (3–81) years* Slower disease course, frequent
dystonia (also as presenting
feature), rarely cognitive decline;
Usually responsive to levodopa
treatment.

Relatively common; most common known
cause of early-onset PD. Many private
mutations (>100) including >50%
deletions and duplications (gene dosage
analysis necessary). Autosomal-recessive
inheritance, heterozygous mutations
possible genetic risk factors for PD.

GeneReviews
http://www.ncbi.nlm.nih.gov/
books/NBK1223/

OMIM 600116
PARK-PINK1 (PARK6) MDSGene

https://www.mdsgene.org/d/1/g/5
32 (9–67) years* Clinically very similar to

PARK-Parkin, commonly with
dystonia, rarely cognitive decline
but possibly higher rate of
psychiatric manifestations.
Atypical signs rare. Usually
responsive to levodopa treatment.

Relatively rare; second most common known
cause of early-onset PD. Private mutations
including rare deletions and duplications
(gene dosage analysis necessary).
Autosomal-recessive inheritance,
heterozygous mutations possible genetic
risk factors for PD.

GeneReviews
http://www.ncbi.nlm.nih.gov/
books/NBK1223/

OMIM 605909
PARK-DJ-1 (PARK7) MDSGene

https://www.mdsgene.org/d/1/g/3
27 (15–40) years* Early-onset PD, dystonia as common

feature. Usually responsive to
levodopa treatment.

Extremely rare, about 30 patients with about
20 different disease-causing variants; most
often missense changes, followed by
splice-site mutations and structural
variants and frameshifts.
Autosomal-recessive inheritance.

GeneReviews
https://www.ncbi.nlm.nih.gov/
books/NBK1223/

OMIM 606324
POLG GeneReviews

https://www.ncbi.nlm.nih.gov/
books/NBK26471/

About 40 years, in
some families
earlier.

Diverse phenotypic spectrum with
onset from early infancy to late
adulthood; Parkinsonism as the
most frequent movement disorder
feature associated with POLG
mutations; good response to
levodopa.

More than 300 pathogenic mutations
reported; mtDNA deletions or depletions
as consequence of POLG mutations; no
direct genotype-phenotype correlation;
both autosomal-dominant and -recessive
inheritance reported.OMIM 203700, 613662,

607459, 157640, 258450

*Taken from www.mdsgene.org; table according to [17, 144, and 145]; mtDNA, mitochondrial DNA; MDS, Movement Disorder Society; OMIM, Online Mendelian Inheritance in Man; PINK1,
PTEN-induced kinase 1; POLG, Polymerase gamma.

https://www.mdsgene.org/d/1/g/4
http://www.ncbi.nlm.nih.gov/books/NBK1223/
http://www.ncbi.nlm.nih.gov/books/NBK1223/
https://www.mdsgene.org/d/1/g/5
http://www.ncbi.nlm.nih.gov/books/NBK1223/
http://www.ncbi.nlm.nih.gov/books/NBK1223/
https://www.mdsgene.org/d/1/g/3
https://www.ncbi.nlm.nih.gov/books/NBK1223/
https://www.ncbi.nlm.nih.gov/books/NBK1223/
https://www.ncbi.nlm.nih.gov/books/NBK26471/
https://www.ncbi.nlm.nih.gov/books/NBK26471/


M. Borsche et al. / Mitochondria and PD 49

ity control processes which will be further addressed
below.

PINK1-linked PD

Autosomal recessively inherited mutations in
PINK1 cause early-onset PD with similar clini-
cal features as described for PD due to biallelic
Parkin mutations [17]. However, non-motor symp-
toms are slightly more frequent in PINK1- compared
to Parkin-linked PD [17] (Table 1).

In 2001, a seminal study identified a novel
locus for autosomal recessive early-onset parkinson-
ism at chromosome 1p35–p36 [50], which would
later prove to be PINK1 [51]. PINK1 encodes a
serine/threonine kinase possessing a mitochondrial
translocation sequence, which led to the recogni-
tion of the protein’s involvement in mitochondrial
function [51]. The kinase activity of PINK1 has
been shown to be regulated by autophosphorylation
on specific sites within the kinase domain (Ser228,
Ser402 and Thr257) [52–54]—a process which is,
for example, essential for Parkin translocation to the
mitochondria upon mitochondrial stress [53] (Fig. 1).

In 2006, a series of reports on pink1-deficient
Drosophila models exposed the interaction between
pink1 and parkin [47–49]. Pink1-deficient male
flies were sterile, exhibited marked degeneration of
flight muscles and of dopaminergic neurons, and
displayed altered mitochondrial ultrastructure that
evidenced malfunction [47–49]. Strikingly, these
pink1-related phenotypes were consistently repli-
cated in parkin-deficient flies and could be reversed
by overexpression of parkin in pink1-deficient flies,
but not the inverse. These studies set the stage for
the elucidation of the molecular regulatory path-
way through which PINK1 and Parkin jointly act to
warrant mitochondrial quality control. The predom-
inant model suggests that PINK1 is constitutively
expressed and translocated to mitochondria [51],
where it functions as a sensor and tag for mitochon-
drial depolarization and malfunction [55–57]. Under
steady-state conditions, PINK1 is readily imported
into mitochondria through the TOM/TIM complex,
whereby it is processed by the mitochondrial pro-
cessing peptidase and cleaved by the PARL protease.
The released N-terminal-deleted PINK1 fragment is
ubiquitinated and degraded by the proteasome [56].
However, under dysfunctional conditions, such as
loss of the mitochondrial membrane potential, this
processing of PINK1 is inhibited [55, 58], resulting in
its stabilization on the outer mitochondrial membrane

where it phosphorylates diverse substrates (Fig. 1).
Relevant at this level is the phosphorylation of ubiqui-
tin Ser65 and, particularly, the direct phosphorylation
of Parkin on Ser65 in its ubiquitin like domain,
which has an allosteric effect [43]. This results in
the recruitment and activation of Parkin and initiates
the complex process of selective removal of damaged
mitochondria through mitophagy [55], which has
been thoroughly explained elsewhere [56]. Of note,
mutations in the PD-linked kinase LRRK2 interfere
with Parkin/PINK1-mediated mitophagy in a kinase
activity-dependent manner [59] (Fig. 1). Further link-
ing LRRK2 mutations and impaired mitophagy, a
recent study demonstrated a Parkin and PINK1-
dependent accumulation of RAB10 [60].

Besides mitophagy, the mitochondrial quality con-
trol program encompasses other mechanisms for the
specific removal of localized damaged mitochon-
drial components. This is accomplished by means
of mitochondrial-derived vesicles (MDVs), a partic-
ular type of vesicular trafficking [61]. MDVs can
be generated as a response to stress [62], and can
incorporate damaged cargo such as oxidized proteins
which might then be eliminated through lysosomal
degradation [3, 61]. Here again PINK1 and Parkin
seem to serve as instrumental factors for the for-
mation of MDVs [63] (Fig. 1). Moreover, the outer
mitochondrial membrane protein Miro1, which links
mitochondria to microtubule motor proteins during
transport, is also a target of the Parkin/PINK1 path-
way. Miro1 is degraded during the early stages of
mitophagy thereby preventing further movement of
dysfunctional mitochondria [64] (Fig. 1). In addition,
Miro1 was shown to interact with LRRK2, a func-
tion that is hampered by the presence of pathogenic
mutations, leading to reduced mitophagy and neu-
rodegeneration [65].

The mechanisms through which PINK1 regu-
lates mitochondrial homeostasis are not restricted
to the aforementioned quality control process.
Under steady-state conditions, PINK1 patient-
derived fibroblasts and neurons display diminished
complex I activity. This dysfunction was correlated
to a specific loss of phosphorylation of serine-250 in
the complex I subunit NdufA10 secondary to PINK1
deficiency [66] (Fig. 1). This is a good example of the
complex and multifaceted regulatory process exerted
by PINK1, and exposes its diverse range of actions
under steady-state and stress conditions.

Although mitophagy represents a well-established
mechanism in Parkin/PINK1-dependent PD, evi-
dence for its role in PD in general is limited.
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Fig. 1. Involvement of PINK1 and Parkin in mitochondrial processes. The most investigated function of PTEN-induced putative kinase
1 (PINK1) and Parkin is the initiation of mitophagy. A loss in membrane potential triggers the PINK1-mediated recruitment of the E3
ubiquitin ligase Parkin to mitochondria. At the outer mitochondrial membrane, Parkin ubiquitinates proteins thereby tagging dysfunctional
mitochondria for lysosomal degradation. This process can be inhibited by mutant LRRK2. In addition, both PINK1 and Parkin, in conjunction
with Snx9, are involved in the formation of mitochondria-derived vesicles (MDVs), which can transport cargo such as mitochondrial damage-
associated molecular patterns (mitoDAMPs). After engulfment of MDVs by endosomes, mitochondrial antigens are transported to the plasma
membrane, where they are presented on histocompatibility complex class I (MHC I) molecules. MitoDAMPs can also be released from
mitochondria trough the mitochondrial permeability transition pore (MPTP), which is formed under the control of Parkin – an interaction
partner of the pro-apoptotic protein BCL2-antagonist/killer (BAK). In a PINK1- or Parkin-deficient environment, mitoDAMPs accumulate
extracellularly and trigger cyclic GMP-AMP synthase/stimulator of interferon genes (cGas/STING) inflammatory signaling. However, the
exact release mechanisms of mitoDAMPs and their impact on the interplay of neuronal and glial cells remain to be studied in human-derived PD
models. In addition to its role in mitophagy, Parkin can modulate mitochondrial biogenesis by ubiquitination of the Peroxisome proliferator-
activated receptor gamma coactivator 1-alpha (PGC1-�) inhibitor PARIS or by direct interaction with the mitochondrial transcription factor
A (TFAM) at the mtDNA. Moreover, Parkin influences cell cycle progression via its ubiquitination target TANK-binding kinase 1 (TBK1).
By controlling the degradation of the microtubule adaptor protein Miro1, which links kinesin heavy chain (KHC) to mitochondria, PINK1
and Parkin regulate mitochondrial arrest as a prerequisite for mitochondrial clearance. Finally, there is also evidence for a direct interaction
between PINK1 and respiratory chain complex I. Accordingly, PINK1 influences the activity of complex I by phosphorylation of its subunit
NADH:ubiquinone oxidoreductase subunit A10 (NdufA10). The online image library Servier Medical Art (http://smart.servier.com/) was
used to create this Figure, which is partially based on our previous review [3].

Decreased mitophagy was demonstrated in IPD
in a few studies on IPD fibroblasts and induced
pluripotent stem cell (iPSC)-derived neurons [3];
however, the majority of results concerning genetic
PD still stem from overexpression models [67].
Thus, the endogenous role of Parkin and PINK1
will require further investigation. Moreover, it is
currently unknown how the genetic lack of these
proteins specifically causes dopaminergic neurode-
generation. Given the ubiquitous expression of Parkin
and PINK1 throughout the body, the absence of more
wide-spread pathology also remains puzzling. These
important research questions should be addressed in
future studies.

DJ-1-linked PD

Mutations in the gene encoding the protein deg-
lycase DJ-1 cause autosomal recessive PD [68]
(Table 1), but are less common than mutations in
Parkin or PINK1. Regarding DJ-1, several mecha-
nistic links to impaired mitochondrial function have
been described. First, the absence of DJ-1 alters
mitochondrial morphology [69]. Moreover, in line
with the already mentioned role as ROS scavenger
in PD, an association between dopamine oxida-
tion, mitochondrial, and lysosomal dysfunction was
demonstrated in iPSC-derived neurons with muta-
tions or depletion of DJ-1 in human and mice,

http://smart.servier.com/
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respectively [70]. In keeping with this finding, also
alterations in respiratory chain complex integrity
were described in DJ-1-depleted neuronal cells [71].

POLG-related parkinsonism

In 2001, a preliminary study reported an asso-
ciation between POLG mutations and progressive
external ophthalmoplegia (PEO) in three different
Belgian families [72]. Thereafter, POLG mutations
have been linked to an extraordinarily large set of dis-
orders comprising a mitochondrial component, such
as Alpers-Huttenlocher syndrome and, remarkably,
recessively and dominantly inherited parkinsonism
[73–75]. Interestingly, rare polymorphic variants of
POLG have been suggested to pose a risk factor
for IPD [76–78]. As discussed in the following,
this hypothesis is supported by the observation of
enhanced somatic variability in the mitochondrial
genome of IPD patients. POLG is the only known
mammalian polymerase present in mitochondria,
where it integrates the molecular complex responsi-
ble for mtDNA polymerization [79]. The functional
complex is composed of a catalytic subunit encoded
by the nuclear gene POLG and a homodimer acces-
sory protein encoded by the POLG2 gene [75].
Adding to its polymerase activity, POLG additionally
encompasses exonuclease function (which assures
fidelity of mtDNA replication [80]) and 5’ deoxyri-
bose phosphate lyase activity. The latter function is
instrumental for the base excision repair process nec-
essary to correct oxidative damage to mtDNA [79,
81]. Overall, the combination of these three enzy-
matic competencies place POLG as a key player in
the maintenance of mtDNA homeostasis. Therefore,
it is not surprising that mutations, which compromise
POLG function can lead to mitochondria-associated
disorders including parkinsonism. However, it is
worth mentioning that POLG-associated Alpers dis-
ease does not represent the only mitochondrial
disorder including parkinsonism in its clinical spec-
trum. For instance, parkinsonism in combination with
PEO has also been reported in patients with mutations
in TWNK [82, 83].

OXIDATIVE STRESS AND MTDNA
DISINTEGRATION IN PD

As summarized in the previous sections, multiple
lines of evidence point towards a role of oxidative
stress in the pathogenesis of PD. In addition to toxin-
induced or primary respiratory chain dysfunction, the

auto-oxidation of dopamine can generate free radi-
cals and active quinones [84]. These ROS have the
capacity to damage the mitochondrial genome, caus-
ing single- and double-strand breaks [85]. The 16,569
bp-long circular mtDNA codes for few but critical
subunits of the respiratory chain complexes I, III,
IV, and V. When nicks in the mtDNA are repaired
inefficiently, mtDNA point and deletion mutations
develop [86]. To protect the mtDNA from oxidative
insults, it is packaged in nucleoids by the mitochon-
drial transcription factor A (TFAM) [87]. By contrast,
in dopaminergic neurons from IPD patients, TFAM
deficiency has been observed [88, 89], suggesting an
enhanced exposure of the mitochondrial genome to
ROS.

Transmitochondrial cytoplasmic hybrid (or short
cybrid) studies first implicated mtDNA alterations
in the pathogenesis of PD. In these experiments,
cybrids were created by fusing mature platelets
(which naturally lack nuclei) from PD patients with
mtDNA-depleted control cells. Introducing patient
mtDNA into a control nuclear background sufficed
to recapitulate PD-associated mitochondrial pheno-
types in the receiving cells [3]. While there is
currently no evidence to suggest a role for inher-
ited mtDNA mutations in PD [3], somatic alterations
in the mitochondrial genome are likely part of the
disease process [90]. Investigating the mitochondrial
genome in single postmortem substantia nigra neu-
rons revealed mtDNA copy number depletion and an
accumulation of major arc deletions in IPD patients
[88, 91, 92]. Moreover, polygenic risk score analyses
of whole exome sequences from large IPD cohorts
showed increased genetic variation in the mtDNA
maintenance pathway [93].

With regard to genetic PD, an additional area of
action of Parkin, besides the regulation of mitophagy,
lies in the control of mitochondrial biogenesis. A
series of studies in mice, drosophila and cell lines
showed that the degradation of PARIS, a repressor
of PPARGC1A expression, is mediated by Parkin.
In this manner, Parkin controls the PGC-1�-induced
transcription of nuclear-encoded mitochondrial pro-
teins [44, 94, 95]. However, this finding still awaits
confirmation in endogenous PD patient-derived cells.
In addition, there is evidence that Parkin’s mito-
chondrial biogenesis-modulating effect extends to the
mitochondrial genome. As PGC-1� was identified
as an interactor of the mitochondrial transcription
factor A (TFAM) [96], Parkin could convey its
action on the mitochondrial genome in an indirect
fashion. In addition, in vivo and in vitro immunopre-
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cipitation analyses identified a direct association of
Parkin with the mitochondrial genome and TFAM
[97, 98]. By binding to the transcription factor in
the mitochondrial D-loop region, Parkin may cat-
alyze (multiple) mono-ubiquitylation [99] of TFAM
thereby modulating mtDNA gene expression. Fur-
ther supporting an involvement of Parkin in mtDNA
maintenance, crossing parkin knockout mice with
“mutator” mice that harbor a proof reading-deficient
version of mitochondrial polg revealed 1) an increase
in pathogenic mtDNA mutations, 2) enhanced loss
of nigral tyrosine hydroxylase-positive neurons, and
3) motor deficits in the double-mutant animals
[100]. These results highlight the protective action
of Parkin against mtDNA mutagenic stress —a
role which is likely intertwined with the protein’s
newly identified function in inflammatory signaling.
Inflammation triggered by mitochondrial damage
associated molecular patterns (DAMPs) as emerging
topic in PD research will be discussed in more detail
in the following section.

MITOCHONDRIAL DAMAGE-INDUCED
INFLAMMATION IN PD

First results suggesting a link between TFAM
shedding, mtDNA release and inflammation came
from fundamental studies outside of PD research.
In mouse embryonic fibroblasts (MEFs), a heterozy-
gous tfam knockout was employed to genetically
induce mtDNA stress [101]. Aberrant packaging of
the mitochondrial genome due to tfam deficiency
led to the escape of mtDNA from the mitochondria.
In the cytosol, mtDNA can act as DAMP pro-
moting cGAS/STING inflammatory signaling [101].
During apoptosis, mitochondrial DAMPs can be
released through the mitochondrial permeability tran-
sition pore. The formation of BAK/BAX [102]
or VDAC macropores [103] at the outer mito-
chondrial membrane has been shown to facilitate
mitochondrial herniation and subsequent mtDNA
efflux. Interestingly, the PD protein Parkin can ubiq-
uitinate BAK thereby suppressing pore formation
[104], cytochrome c release and consequent apopto-
sis induction [105, 106] to ensure efficient clearance
of damaged mitochondria, which could otherwise
trigger inflammation. A specific role for Parkin and
PINK1 in mitochondrial damage-induced inflam-
mation was further supported by a recent study
in the above-mentioned parkin knockout “mutator”
mouse model. The accumulation of mtDNA alter-

ations in the parkin null background, was shown
to increase the serum levels of circulating cell-free
mtDNA (ccf mtDNA) and of various cytokines. By
contrast, depleting stimulator of interferon genes
(STING), which regulates the activation of the DNA
inflammasome, sufficed to rescue the degeneration of
dopaminergic neurons and a motor impairment pre-
viously observed in these animals, suggesting that
these phenotypes are the result of inflammatory pro-
cesses [107]. In a trial experiment as part of this study,
we could also show upregulated inflammatory pro-
files in a small number of PD patients with Parkin
mutations [107]. Moreover, Parkin/PINK1 have been
shown to modulate cell cycle progression via the
downstream target of the cyclic GMP-AMP synthase
(cGAS)/STING pathway, TANK-binding kinase 1
(TBK1), at damaged mitochondria. Mitochondrially
localized TBK1 is sequestered by Parkin/PINK1 dur-
ing mitophagy, leading to a block in mitosis. By
contrast, loss of Parkin or PINK1 accelerated cellular
proliferation in mice [108]. While also NOD-, LRR-
and pyrin domain-containing protein 3 (NLRP3)
has been identified as a target of cGas/STING
signaling [109], the inflammasome can equally
be activated directly by mitochondrial dysfunction
and elevated ROS [110]. Treatment of lipopolysac-
charide (LPS)-primed mouse microglia with the
mitochondrial complex I inhibitor rotenone induced
NLRP3 activation, ASC (apoptosis-associated speck-
like protein containing a CARD domain) speck
formation and pro-interleukin-1� processing in a
concentration-dependent manner [111]. Moreover,
enhanced Parkin-mediated ER-mitochondrial tether-
ing and subsequent mitochondrial calcium overload
[112] as well as blockage of mitophagy [113] have
been reported to trigger NLRP3 inflammasome acti-
vation.

In addition to their role in innate immunity, Parkin
and PINK1 may also be involved in the control
of the adaptive immune response. In mice lacking
parkin or pink1, treatment with the bacteria-derived
endotoxin LPS [114] or an intestinal infection with
gram-negative bacteria [115] induced the forma-
tion of MDVs [63], which transport mitochondrial
antigens to the plasma membrane, where they are
presented on major histocompatibility complex class
I (MHC I) molecules [114, 115]. Both processes,
MDV induction and mitochondrial antigen presen-
tation (mitAP), are depending on Sorting nexin 9
(Snx9), the cellular abundance of which is regulated
by Parkin in a proteasome-dependent manner [114].
Taken together, these findings suggest that Parkin and
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PINK1 are critically involved in the orchestration of
mitophagy induction, immune surveillance and cell
cycle control in the context of PD.

CROSSTALK BETWEEN
MITOCHONDRIA, LYSOSOMES AND ER
AND ITS IMPACT ON CALCIUM
HOMEOSTASIS

Multiple lines of evidence suggest that impaired
lysosomal degradation causes an accumulation of
dysfunctional mitochondria in PD [3]. Mutations
in LRRK2 [116] and SNCA [117] have been
demonstrated to interfere with lysosomal pathways.
Furthermore, in DJ-1-mutant iPSC-derived neurons,
mitochondrial stress was shown to trigger oxidized
dopamine accumulation, which in turn led to lysoso-
mal dysfunction, and eventually the accumulation of
alpha-synuclein [70].

In addition to the crosstalk between lysosomes
and mitochondria, the ER is involved in the inter-
organellar communication in PD. Alterations of the
MAM have been described in different PD models
[118]. Exemplarily, alpha-synuclein can be found at
the MAM, and pathogenic mutations in SNCA lead
to increased mitochondrial fragmentation [119].

Furthermore, calcium homeostasis depends on a
well-orchestrated signalling between mitochondria,
the lysosome and the ER. In SNCA overexpression
models and patient-derived neurons with a triplica-
tion mutation, a reduced connection between ER and
mitochondria leads to a calcium-dependent decrease
in ATP production [120]. However, also Parkin [121],
PINK1 and LRRK2 [122], as well as DJ-1 [123] may
function in calcium-related pathways.

Emphasizing the role of calcium homeostasis in
PD, research demonstrated that isradipine, a calcium
channel antagonist, protects dopaminergic neurons
[124] by lowering mitochondrial oxidative stress and
by reducing mitochondrial turn over and mass [125].

IMPLICATIONS FOR GENETIC TESTING
AND POTENTIAL THERAPEUTIC
OPTIONS TO AMELIORATE
MITOCHONDRIAL FUNCTION IN PD

Currently, only genetic testing allows identifying
patients with probable mitochondrial dysfunction by
detection of variants in genes associated with mito-
chondrial pathways. Nevertheless, at present, only a
minority of PD patients undergo genetic testing.

A variety of drugs are used in clinical practice
to treat PD, mostly by increasing dopamine levels
in the midbrain [126]. However, these approaches
only allow for symptomatic treatment, and no neuro-
protective effect has been demonstrated with any of
the drugs approved to date. Such disease-modifying
treatment options are urgently needed as neurode-
generation progresses during the disease course, and
symptomatic treatment is not able to prevent severe
disability and a significant decrease in the quality of
life in later disease stages [127].

Various therapeutic approaches focus on a pos-
sible mitochondrial etiology of PD: First, several
approaches target the presence of ROS. Although
positive effects were observed with various sub-
stances in vitro and in vivo in animal models, only
the antioxidant substance MitoQ that was reported
to protect dopaminergic neurons in 6-OHDA-treated
mice [128] reached the testing in clinical trials. Unfor-
tunately, there was no evidence for neuroprotection
in PD patients [129].

Second, approaches with mitochondrial enhancers,
i.e., substances that generally improve the func-
tion of mitochondria, were investigated. Particularly
noteworthy in this context are studies in which PD
patients were treated with coenzyme Q10 in ran-
domized double-blinded trials [130]. However, no
effect of coenzyme Q10 administration on neuropro-
tection was demonstrated in genetically non-stratified
patients. Thus, current approaches are based on the
assumption that only a subset of PD patients, namely
such suffering from a “mitochondrial form of PD”,
may benefit from therapy with coenzyme Q10. For
this, patients with autosomal recessively inherited PD
due to mutations in Parkin and PINK1 could serve as
“positive controls”. A current clinical investigator-
initiated study based on this principle divides IPD
patients using a genomic approach into patients
with high and low probability of mitochondrial dys-
function due to the presence of a polygenic risk
score composed of mitochondrially associated sin-
gle nucleotide polymorphisms (SNPs) [131]. Another
potential mitochondrial enhancer is vitamin K2. This
substance represents, as well as Coenzyme Q10, a
dietary supplement. In Drosophila, vitamin K2 has
a strong effect on rescuing motor disturbances in
pink1 knockout flies [132]. However, studies failed to
demonstrate a role for this compound as an electron
carrier in mammalian cells [133, 134].

Besides the mentioned established “mitochondrial
enhancers”, there are novel compounds that have the
potential to ameliorate mitochondrial function in PD
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patients. For example, a study testing the potential of
the neo-substrate kinetin triphosphate (KTP) demon-
strated an increase in the kinase activity of mutant
PINK1 in cell culture experiments [135], warranting
further tests in PINK1 animal models.

Third, selective MAO-B inhibitors like selegiline
and rasagiline represent a group of drugs approved
for PD treatment, which show possible evidence
for a neuroprotective effect. As described earlier,
MAO-B is responsible for the processing of MPTP
to MPP+, and, therefore, inhibition of this enzyme
might reduce oxidative stress. Early after the descrip-
tion of selegiline, findings from animal models
suggested a neuroprotective effect [7, 136] and a
clinical trial was initiated investigating the effects
of selegiline as well as of tocopherol (vitamin E).
Here, the so-called DATATOP study suggested a
disease-modifying effect of selegiline but not of toco-
pherol in early stages of PD [137]. However, as
selegiline also exhibited symptomatic effects increas-
ing levodopa levels, its neuroprotective effect was
questioned. Later, the ADAGIO trial investigated the
newer MAO-B inhibitor rasagiline and suggested
neuroprotective features in low-dose administration.
Surprisingly, this effect was absent at a higher
dose [138]. Together, the disease-modifying effect
of selective MAO-B inhibitors remains controversial
[139]. Furthermore, targeting the interplay between
mitochondrial pathways and calcium homeostasis,
a clinical trial investigated the calcium channel
antagonist isradipine. However, no beneficial effects
on motor and non-motor features of PD could be
observed [140].

In the context of monogenic PD, the function
of the encoded proteins provides a potential start-
ing point for gene-specific therapies [141]. Finally,
new treatment options might result from the cur-
rently discovered mechanistic relationship between
(monogenic) PD and inflammation [107]. In keep-
ing with this notion, the intake of ibuprofen was
found to reduce the risk of developing PD [142, 143].
However, further clarification is needed whether
inflammation contributes to neurodegeneration in
PD, or is instead a consequence of neuronal loss.

CONCLUSION AND OUTLOOK

Mitochondrial dysfunction represents a well-
established mechanism in the pathogenesis of both
idiopathic as well as monogenic PD. In recent years,
investigating monogenic PD has decisively con-
tributed to the clarification of impaired mitochondrial

pathways in the sporadic disease. In light of the mani-
fold literature on this topic, it is tempting to speculate
that several of the above-mentioned PD proteins form
a pathophysiological network surrounding mitochon-
dria. Alterations at any point of this network may
contribute to the disease, although the exact mech-
anisms orchestrating this interplay are still not fully
understood.

Despite our advances in basic PD research, clin-
ical trials targeting mitochondrial dysfunction and
oxidative stress have not demonstrated significant
beneficial effects to date. Of note, however, patients
have not yet been stratified according to the etiol-
ogy of disease in previous trials. In the meantime,
different etiologic subtypes of PD have emerged.
Stratification approaches, according to such specific
subtypes of the disease, are currently being developed
and incorporated into trial designs [131].

Most recently, a link between immunologic alter-
ations and mitochondrial dysfunction in autosomal
recessively inherited monogenic PD has been demon-
strated [107]. However, evidence that inflammation
causes neurodegeneration is limited thus far, and
the role of immunity in PD needs further eluci-
dation. Regarding monogenic PD in general, first
gene-specific therapies allowing personalized treat-
ment are already undergoing clinical trials. Together,
further in-depth investigation along with biomarker
establishment of a “mitochondrial subtype” of PD
represents a promising approach to arrive at a more
individualized treatment even of IPD patients. In the
future, continuous efforts in both basic and clinical
research with a fast translation of new insights into
clinical practice have the potential to lead to new
therapeutic approaches in “mitochondrial PD”.
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