Journal of Parkinson’s Disease 9 (2019) S371-S379 S371
DOI 10.3233/JPD-191802
10S Press

Review

Faecal Transplantation, Pro- and Prebiotics
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Abstract. Faecal microbiome transplantation (FMT) is an attractive technique, because the administration is relatively simple
and in general has a mild adverse effect pattern. Moreover, FMT consists of a broad mixture, which could be beneficial,
because at this moment it is not known what type of changes in the microbiome are needed. However, except from a few
cases no clinical data in Parkinson’s disease (PD) is available yet. There is some indication that FMT might be beneficial in
severe constipated PD patients, but the clinical data to support this are very scarce. So, actually there are no good data in the
public domain to support FMT at this moment in PD patients. FMT at this moment is a black box with too many unanswered
questions, also with respect to safety concerns. Only the administration of species of Lactobacillus and Bifidobacterium
over a time period of four to twelve weeks has repeatedly proven to be effective in treating constipation in PD. Also, no
solid clinical data are available about the possible effects of probiotic treatment on motor symptoms or progression of PD.
Therefore, also probiotic treatments in PD should wait until better clinical data become available, in order to select the right
target populations and to have good estimates of the clinical effects to be expected.
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INTRODUCTION

Gut dysbiosis has become an important theme in
neuroscience. In particular, a recent publication indi-
cating the gut microbiota of Parkinson’s disease (PD)
patients to influence alpha-synuclein (aSyn) aggrega-
tion in mice, has raised interest in this topic [1]. This
study illustrates how gene-dependent overexpression
of alpha-synuclein (genetic factor) critically interacts
with gut microbiota (environmental factor) to pro-
duce the PD phenotype. Besides PD, microbiome
changes have been correlated to numerous brain
disorders like autism, anxiety, Alzheimer’s disease
(AD) and multiple sclerosis (MS) [2—4]. However,
the most extensive data on gut dysbiosis are, how-
ever, derived from multiple PD cohorts [5-11]. All
studies reported differences in composition between
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PD patients and matched healthy controls, albeit with
an incongruent picture across these studies. Despite
this variance, some overlap could be detected, like
an increased abundance of Lactobacillaceae, Akker-
mansia, Enterobacteriaceae and Bifidobacterium, and
a decreased presence of Prevotellaceae, Faecalibac-
terium and Lachnospiraceae.

The question remains whether the current
knowledge on microbiome changes in PD is suf-
ficient to inform clinical trial design for microbial
therapeutic interventions in PD.

METABOLIC CONSEQUENCES OF GUT
MICROBIOME CHANGES IN PD

To evaluate possible therapeutic interventions, we
have to understand the metabolic consequences of the
described microbiome changes in PD.

Most of the above mentioned gut bacteria have
been related to PD through their metabolic products,
their interaction with the intestinal wall or their
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involvement in the gut hormonal balance. Short
chain fatty acids (SCFA) are generated in the gut
through fermentation of dietary fibers, and are
thought to play a major role in the regulation
of microbiome-gut-brain axis interactions. Bacteria
that produce SCFA’s include, but are not limited
to, Bacteroides, Bifidobacterium, Propionibacterium,
Eubacterium, Lactobacillus, Clostridium, Roseburia,
and Prevotella [12, 13]. Some SCFA (e.g. butyrate,
produced by bacteria of the genera Blautia, Copro-
coccus, and Roseburia (family Lachnospiraceae) are
putatively anti-inflammatory [6]. Reduced produc-
tion of SCFA, for instance by a reduced amount
of Lachnospiraceae, could therefore promote inflam-
matory responses, contributing to neurodegeneration
[14-16]. The fact that faeces from PD patients contain
lower amounts of SCFA [9] and show increased levels
of intestinal inflammation, supports this hypothesis
[17, 18].

SCFA play an important role in the regulation of
immune function, more specifically on promoting
the maturation of microglia [16, 19]. SCFA, like
butyrate and acetate, may also increase mucin secre-
tion, whereas bacterial species belonging to the genus
Akkermansia, which is increased in PD, are known
to degrade mucin [20-23]. Mucin lubricates the gut
wall and maintains a barrier between epithelial cells
and most microbes and toxins on the luminal surface
of the gut [24, 25]. Reduced mucin synthesis has been
associated with increased gut permeability, which
could culminate in aSyn pathology through increased
exposure of the host to environmental stressors in the
gut [26, 27]. Therefore, the effect of decreased levels
of SCFA could be potentiated by the decreased mucin
levels, as a consequence of the microbiome changes
in PD. In accordance, gut permeability was found to
be increased in PD, though these findings have to be
replicated in larger samples and might be restricted to
subpopulations of PD patients [28]. SCFA’s like pro-
pionate also have a direct influence on the blood-brain
barrier (BBB), protecting the BBB from oxidative
stress [29].

Besides the production of SCFA, Prevotellaceae is
also involved in the biosynthesis of thiamine (vitamin
B1) and folate (B9), which are both reduced in PD
patients [30, 31]. Vitamin B1 is required as a cofac-
tor in brain oxidative metabolism, and is found in
high levels in the substantia nigra [32]. At the same
time, decreased concentrations of striatal dopamine
correlate with B1 deficiency, whereas intrastriatal
B1 administration increases dopamine release in rats
[33].

Decreased abundance of Prevotellaceae and
increased Lactobacilliceae are associated with lower
ghrelin levels [34]. This is supported by the fact
that the levels of ghrelin are already found to be
decreased in early stages of PD [35, 36]. Ghrelin is a
gut hormone which promotes healthy dopaminergic
cell function in the SN, but also stimulates appetite
and gastric motility, as well as the secretion of insulin
and growth hormone. The secretion of ghrelin is influ-
enced by gut dysbiosis.

Finally, many species of bacteria in the family
Enterobacteriaceae have been associated with PD,
putatively due to their production of hydrogen [11].
Drinking hydrogen water was shown to alleviate
PD symptoms in mice, rats, and humans [37-39].
Howeyver, this is not in line with their relative over-
abundance in PD patients, as reported previously
[5, 9]. Only one study reported on the total count
of putative hydrogen-producing bacteria in PD sub-
jects to healthy controls (HC) and found the sum
of putative hydrogen-producing bacteria to be lower
[11].

So, overall the attempts to unravel a clear-cut
microbiome composition that is strongly correlated
with PD, have produced a drizzle of partially repro-
ducible changes in the PD microbiome. The studies
do not converge on a specific signature or metabolic
pathway for PD, which is not surprising taking into
account the variability and the difficulty of cataloging
the amount, roles and components of human gut com-
mensals, which has led to large cooperative efforts
like the Human Microbiome Project [40].

GUT MICROBIOME CHANGES IN OTHER
NEUROLOGICAL DISORDERS

We have to realize that microbiome changes also
have been found in other neurological and neurode-
velopmental disorders, which raises questions about
causality and the specificity of the changes for a
given disease or a group of disorders In AD increases
in Escherichia/Shigella abundance, together with
decreases in E. rectale abundance were associated
with a peripheral inflammatory state [41]. Others
reported a lower microbial diversity in AD, distinct
from matched controls, together with a decrease in
Firmicutes and Bifidobacterium and an increase in
Bacteroidetes [42]. Children with autism spectrum
disorder showed lower levels of Bifidobacterium
and Firmicutes and higher levels of Lactobacil-
lus, Clostridium, and Bacteroidetes [43—45]. In MS
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patients higher abundances of Methanobrevibacter
(Archaea) and Akkermansia and lower Butyrici-
monas were found [46]. Other MS studies recurrently
found subtle differences between MS and control
microbiome [47-50]. Despite specific changes (eg.
increased Bifidobacterium), differentiating the PD
microbiome from other neurological disorders, a con-
siderable overlap between the microbiome signatures
of the various disorders remains. Questions regard-
ing the specificity and the causality of these findings
should therefore ideally be addressed across mul-
tiple disorders, trying to correlate the microbiome
changes not only to disorders, but also to com-
mon underlying disease characteristics, like central
nervous system (CNS) inflammation, gut permeabil-
ity, reduced levels of vitamin B1 and B9, reduced
levels of ghrelin, or reduced levels of hydrogen.
The most promising of these mechanisms seem to
be SCFA-mediated gut-brain communication, due to
the extensive research on the subject and the robust
relation between inflammation and neurodegenera-
tion [51]. On the other hand, mucin-producing (or
mucin-degrading) bacteria and PD are related by
many indirect associations (between bacteria abun-
dance and low mucin, between low mucin and a
leaky gut, and, lastly, between a leaky gut and PD),
while the research on the role of hydrogen in PD,
as well as on the connection between ghrelin and
Lactobacilliceae/Prevotella abundance is scarce and
doesn’t justify any conclusions yet.

METHODOLOGICAL LIMITATIONS OF
EXISTING STUDIES ON THE
MICROBIOME IN PD

In spite of having uncovered some potentially
relevant connections between specific bacteria and
PD pathophysiology, these case-control studies face
clear limitations. The first one is that case-control set-
tings do not enable causal connections. These studies
can only provide correlational evidence and can-
not exclude reverse causation (they cannot exclude
the possibility that PD itself results in dysbio-
sis/constipation). Also, the influence of possible
confounders of gut microbiome composition was
often inadequately assessed. An important confouder
is the presence and or severity of constipation. Con-
stipation might be the origin, as well as a promotor,
or even a consequence of microbiome changes or
PD [52-54]. Microbiome studies on patients suf-
fering from idiopathic constipation report several

changes, like a decrease in obligate bacteria (e.g. Lac-
tobacillus, Bifidobacterium, and Bacteroides spp.)
and a parallel increase of potentially pathogenic
micro-organisms (e.g. Pseudomonas aeruginosa and
Campylobacter jejuni) [55], which are different from
the microbiome changes described in PD. This
disparity could be interpreted as evidence that con-
stipation very likely is not the start of PD-related
microbiome changes, i.e. chronic constipation creates
a specific microbiome configuration and PD another.
Only a longitudinal, prodromal-PD cohort, matched
with a control group in terms of presence and sever-
ity of constipation, ideally measured using objective
markers of the stool transit time, will be able to
answer this question on the role of constipation in the
development of PD. Another important confounder
could be the dopaminergic medication, only present
in the PD group, stressing the need for an assess-
ment of gut microbiome changes in a treatment-naive
cohort [56, 57]. These examples show that results of
the different studies are difficult to compare, because
their assessment methods and adjustment for con-
founders is not consistent. Moreover, most studies
had relatively small sample sizes, which further com-
plicates comparing and integrating results.

Besides possible confounders within the study
population, technical confounders can arise
like different methods of sample collection,
shipment, storage, DNA extraction, sequencing, bio-
informatical analysis and statistical analysis, which
are known to drive artificial differences in gut micro-
biome composition studies in general [58]. Also
across microbiome studies in PD, various different
methodological approaches have been deployed [57].

Finally, the current microbiome studies predomi-
nantly looked at bacterial species, but hardly included
archaea, yeast and viruses, which are also an integral
part of the intestinal flora [7]. PD patients f.i. show
shifts of the bacteriophage(virus)/bacteria ratio for
Lactobacilliceae [59]. This route should be part of
future investigations.

FAECAL TRANSPLANTATION IN PD

One way to restore eubiosis in the gut of patients is
by means of fecal microbiota transplantation (FMT).
FMT consists of transferring liquid filtrate faeces
from a healthy, screened individual to a patient
via nasogastric or nasoduodenal tube, enema, or
colonoscope. Little is known about the differences in
long-term effects in relation to the route of adminis-
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tration. From a physiological perspective, one would
suggest that a proximal-distal spreading of trans-
planted microbiota seems to be the most natural
route. However, no comparative data are available
to support one route in special. FMT has shown a
high success rate (85-90%) in the short term treat-
ment of Clostridium Difficile infections, together
with low-risk and short-term adverse effects, most
commonly bloating, abdominal pain, diarrhea and/or
constipation [60, 61]. Since a few years back, this
attractive combination of high success rate and low
risk in treatment of C. Difficile infections has fueled
the interest on applying FMT to treat patients with
various conditions, like inflammatory bowel disease
(IBD) or idiopathic constipation [62, 63]. Currently,
many have proposed to target non-gastrointestinal
disorders like autism, MS, or PD, with FMT [64].
However, references to the potential use of FMT in
PD are restricted to a recent Chinese case study on a
PD patient with severe constipation. The constipation
as well as his PD symptoms greatly improved after
FMT [65].

Consequently, the best available source of con-
fidence on FMT as possible treatment for PD are
the amalgam of studies discussed in the previous
sections, which connect the gut microbiome to PD
in various ways. The most compelling are probably
murine studies where microbiome transplantations
are carried out [66]. These studies mimic the FMT
procedure with arguably successful results for the
model PD mice, indicating that FMT might work
in humans in spite of our incomplete insight in its
specific mechanisms.

The first clinical trial on the use of FMT in PD
patients is now on-going at the university of Ghent
(Belgium) and is scheduled to be completed at the
end of this year (2019) [67]. This clinical trial aims
to recruit forty PD patients, with follow-up intervals
of 3 months, up to one year, assessing the develop-
ment of PD symptoms. The patients will receive FMT
from healthy donors, whereas a control group will
receive autologous FMT. The inclusion criteria for
PD patients do not in- or exclude constipation, which
may complicate the interpretation of results.

However, the definition of a healthy donor very
likely is not sufficient to find an optimal donor for
a specific PD patient at this moment, because FMT
is still in its infancy. The lack of large randomized
controlled clinical trials of FMT for the treatment
of chronic diseases has meant that many observa-
tions, such as the existence of FMT super-donors,
are not yet robustly supported by empirical evidence

[68]. Considerable effort has been spent in identi-
fying the various factors which contribute to FMT
success. In a broad sense, high diversity of the gut
microbiota, particularly in the donor, appears to pre-
dict a patient’s response to FMT most optimally [68].
More specifically, the efficacy of FMT likely depends
on the ability of the donor to provide the necessary
taxa capable of restoring metabolic deficits in recip-
ients that are contributing toward disease. However,
donor-recipient compatibility also plays an influential
role in determining FMT success. Donor-recipient
compatibility can stem from genetic factors such as
differences in innate immune responses, or environ-
mental factors including diet, xenobiotic exposure,
and microbial interactions [68].

Further characterization of super-donors will likely
result in the development of more refined FMT
formulations to standardize therapy and reduce vari-
ability in patient response. In parallel, continued
optimization of FMT protocols, including a shift
toward capsule-based approaches, will help to com-
bat the longevity issues associated with FMT and
create a more patient-friendly alternative to current
disease management schemes.

The great success of FMT in treating C. Difficile
is most probably related to the fact that C.Difficile
infections are a type of dysibiosis with a clear cause
(i.e. overgrowth of C. Difficile), which is not influ-
enced by other major contributors to the disorder.
This is completely different in PD patients, with dif-
ferent subtypes, not knowing which subtype might
be related to gut dysbiosis, and even not know-
ing if the gut dysbiosis is causal to the disease or
not. In case a causal microbial factor in PD would
be identified, it is paramount to identify the rele-
vant PD subgroups in which this factor could be
a genuine therapeutic target. This must be done
either through a direct assessment of gut microbiome
composition or the rapid quantification of taxa of
interest, or indirectly through the identification of
possible clinical subtypes associated with the rele-
vant enterotype. Moreover, even if we would know
which PD subtypes are eligible for a possible FMT
treatment, it is not clear whether FMT treatment in
the “late” motor stages of the disease will still exert
a beneficial effect, as the synucleinopathy is already
established in the CNS. Although there is direct sig-
naling between the gut microbiota and the CNS that
modulates the neuropathology in a rodent PD model,
it is unclear whether this can still ameliorate the
deleterious effects of an already established synucle-
inopathy [1].
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Besides these uncertainties, there are still unre-
solved practical issues associated with FMT. FMT
replaces the luminal microbiome, but very likely
not the mucosal microbiome, which is differ-
ent from the luminal microbiome, and arguably
more long-standing [69]. Additionally, the influ-
ence of age, dietary habits of the donor, handling
of the stool transplant, elimination of particu-
lar microbes, and the optimal volume of the
transplant, as well the optimal frequency of trans-
plantation is still unclear in case of FMT in PD
patients [70, 71].

PRO- AND PREBIOTICS IN PD

Another method to restore eubiosis in the gut is
the administration of probiotic mixtures. Probiotics
are microbes with a perceived beneficial effect on
intestinal and overall health, often administered in
supplements, yoghurts or other fermented foods. In
PD, administration of species of Lactobacillus and
Bifidobacterium over a time period of four to twelve
weeks has repeatedly proven to be effective in treat-
ing constipation [72-74]. Only one study addressed
the change in motor- and non-motor symptoms after
twelve weeks of treatment with species from the
same genera [74]. Patients being treated with pro-
biotics showed an improved motor score compared
to placebo-treated patients, as well as a reduction of
clinical signs of inflammation and oxidative stress
compared to placebo-treated patients. However, all
patients were only assessed after the probiotic inter-
vention and not before. So, a solid baseline was
lacking, which make these data difficult to interprete.
Actually, referring to the microbiome studies in dif-
ferent PD cohorts, suppletion with Lactobacillus and
Bifidobacterium does not look very rational, because
both species have shown increased abundances in
different populations.

FMT may have some advantages over probi-
otics, because the filtrates contain a more complex,
complete, and stable assortment of intestinal micro-
organisms together with other substances (i.e.
specific vitamins, bile acids) that might help to restore
and maintain eubiosis, which is not the case in
selected probiotics [75]. However, given the fact that
FMT most likely only renews the luminal and not the
mucosal microbiome, the transplanted stool may be
washed out before it can foster eubiosis or a deeper
change in the mucosal microbiome. Probiotics, on the
other hand, can be administered for longer periods,

their effect could be more targeted and might be more
long- lasting.

Contrary to probiotics, prebiotics do not contain
live microbes, but consists of dietary fibers that serve
to feed perceived beneficial microbes. Prebiotics have
not been used so far in clinical trials with PD patients.
Only a few PD-animal models have used oral admin-
istered sodium butyrate, which indicated beneficial
effects on the PD symptoms [76]. It is unclear how-
ever if it is better to use butyrate itself or fibers
generating butyrate locally in the gut.

RISKS OF GUT MICROBIAL
INTERVENTIONS IN PD

Despite their benign reputation, faecal transplanta-
tion, probiotics and prebiotics can pose a health risk
when used as a treatment intervention. Recently, the
US Food and Drug Administration gave out a warning
after an extended-spectrum beta-lactamase E. Coli
infection in two immuno-compromised adults who
received FMT, one of which died (June 2019) [77]. In
addition, the infamous “PROPATRIA” study (PRO-
biotics in PAncreatitis TRIAI) showed the potential
deleterious effects of a probiotic treatment, consist-
ing of six different strains of freeze-dried, viable
bacteria: Lactobacillus acidophilus, Lactobacillus
casei, Lactobacillus salivarius, Lactococcus lactis,
Bifidobacterium bifidum, and Bifidobacterium lactis
(previously classified as Bifidobacterium infantis), in
a total daily dose of 1010 bacteria, plus cornstarch
and maltodextrins [78]. This randomized controlled
trial resulted in a significantly increased mortality
in the treated group versus the placebo group. Also
other studies indicated adverse effects, including life-
threatening conditions such as sepsis [79]. Although
these deleterious effects can be ascribed to critically
ill and often immune-compromised patients, they do
support the intuitive notion that if gut microbiota can
have both positive and negative health effects, gut
microbial interventions can do the same.

For PD, the identification of beneficial microbes
becomes even more complex, as the identified
microbial shifts sometimes seem counter-intuitive
compared to what is perceived as a healthy state of the
gut microbiome in general. For example, the relative
abundance of Lactobacillaceae and Bifidobacteria,
two taxa generally associated with gastrointestinal
health and often found in probiotic mixtures, seem
to be increased in PD. Whether this represents an
absolute increase remains to be seen, but on the one
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hand it begs the question if further suppletion with
probiotics will be beneficial for PD patients. On the
other hand, the increased levels of Lactobacillaceae
and Bifidobacteria might represent a compensatory
mechanism that could be disturbed if these levels
are normalized by for instance the introduction of
a “healthy” microbiome via FMT. Also, the role of
microbial metabolites in PD sparks controversy. For
example, SCFA have been described above as gener-
ally beneficial for gut microbial health and to exert an
anti-inflammatory role. However, the seminal paper
of Sampson et al. describes how the introduction of
SCFA worsened the neuroinflammation and the PD
phenotype in their rodent PD model [1].

Despite the current ambiguity of PD microbiome
studies and the lack of solid functional evidence
on the causality and direction of the presented
differences, the hype surrounding gut microbial inter-
ventions in PD has already entered the neurological
consultation. Often sparked by companies that supply
probiotic supplements that should support gut micro-
bial health in the general sense, patients are under-
standably interested in the possibility of gut microbial
interventions for PD. Physicians should be aware that
these treatments are offered to their patients by exter-
nal parties, but are in no way tailored to the PD gut
microbiome and might therefore be more harmful
than beneficial, given the lack of well-designed trials
to assess their effectiveness and risk profile in PD.

CONCLUSIONS

FMT is an attractive technique, because the
administration is relatively simple and in general has
a mild adverse effect pattern. Moreover, FMT con-
sists of a broad mixture, which could be beneficial,
because at this moment it is not known what type
of changes in the microbiome are needed. However,
except from a few cases, no clinical data in PD is
available. There is some indication that FMT might
be beneficial in severe constipated patients, but again,
the clinical data to support this are very scarce. We
think that it would be better to wait for the results of
the ongoing trials, in order to shape future protocols,
instead of performing new trials without good evi-
dence how to design these. FMT at this moment is a
black box with too many unanswered questions.

The current data on probiotic treatment in PD are
even less indicative, so new trials should wait until
more data on microbiome changes in PD become
available.

In conclusion, there is hope for FMT being devel-
oped as a useful treatment for specific subgroups of
PD patients, but at this moment there is too much
hype around FMT as a therapeutic target in PD.
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