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Abstract.

Background: The emergence of new technologies measuring outcomes in Parkinson’s disease (PD) to complement the
existing clinical rating scales has introduced the possibility of measurement occurring in patients’ own homes whilst they
freely live and carry out normal day-to-day activities.

Objective: This systematic review seeks to provide an overview of what technology is being used to test which outcomes in
PD from free-living participant activity in the setting of the home environment. Additionally, this review seeks to form an
impression of the nature of validation and clinimetric testing carried out on the technological device(s) being used.
Methods: Five databases (Medline, Embase, PsycInfo, Cochrane and Web of Science) were systematically searched for
papers dating from 2000. Study eligibility criteria included: adults with a PD diagnosis; the use of technology; the setting of
a home or home-like environment; outcomes measuring any motor and non-motor aspect relevant to PD, as well as activities
of daily living; unrestricted/unscripted activities undertaken by participants.
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Results: 65 studies were selected for data extraction. There were wide varieties of participant sample sizes (<10 up to hundreds)
and study durations (<2 weeks up to a year). The metrics evaluated by technology, largely using inertial measurement units
in wearable devices, included gait, tremor, physical activity, bradykinesia, dyskinesia and motor fluctuations, posture, falls,

typing, sleep and activities of daily living.

Conclusions: Home-based free-living testing in PD is being conducted by multiple groups with diverse approaches, focussing

mainly on motor symptoms and sleep.

Keywords: Parkinsonian disorders, basal ganglia diseases, technology, algorithms, patient outcome assessment

INTRODUCTION

Parkinson’s disease (PD) is a chronic, progressive,
disabling disorder of the central nervous system with
a wide heterogeneity of clinical presentations and
rates of progression. It is the second most common
neurodegenerative disease, with the Global Burden of
Disease Study [1] estimating a worldwide prevalence
of around 6.1 million people.

PD is characterised by a large variety of motor
symptoms (including bradykinesia, rigidity, tremor
and dyskinesia) and non-motor symptoms (including
sleep disturbance, cognitive impairment, genitouri-
nary dysfunction, fatigue and pain) [2]. PD is a
complex disease exerting a large burden upon patients
and their carers, and financially upon healthcare sys-
tems [3].

Issues with clinical rating scales

The MDS-UPDRS (Movement Disorder Society-
Sponsored Revision of the Unified Parkinson’s
Disease Rating Scale) [4] is the current gold-standard
way of measuring disease severity in PD. It is a
revised version of its predecessor clinical rating scale,
simply called the UPDRS. The MDS-UPDRS has
four parts, numbered I (with sub-sections A and B),
II, IIT and IV, looking at non-motor and motor expe-
riences of daily living, motor examination and motor
complications. Parts IB and II are completed by the
patient; otherwise the scale is completed by the rater.
Sections or sub-sections of the MDS-UPDRS are fre-
quently used in trials as primary outcome measures.
The MDS-UPDRS is a valid [5] tool to measure a
wide variety of different aspects of PD. However, it
is also arguably a subjective [6], non-linear [7] scale
which is biased toward certain aspects of the condi-
tion and which displays a ‘floor effect” which renders
it insensitive to early-stage disease [8]. In addition,
the inter-rater variability of the MDS-UPDRS part I11
is up to 16 points [6]—to illustrate how substantial
this variability is, it is notable that a change in UPDRS

motor scores of 11 points in one person given a novel
therapy in a clinical trial would represent a large clini-
cally important difference (CID) and of about 3 points
a minimal CID [9]. The MDS-UPDRS is predomi-
nantly used for clinical trials comparing therapeutic
effects between groups on treatment versus placebo,
to track longitudinal changes in PD cohorts over time
or to guide clinical decision-making at the individual
level in specific circumstances. However, the scale
is not validated to permit comment upon what con-
stitutes a clinically important difference (CID) in a
single measured individual, given the test-retest vari-
ability at the single patient level is high. Similarly,
scores comparing between small groups of individu-
als are also problematic and this, in-part, underlies
the need for better ways of measuring outcomes.
This is in order that true variability in symptoms,
both intra-patient and inter-patient, can be measured
with validity and accuracy. Moreover, the nature of
the observed testing situation that the MDS-UDPRS
requires means that confounds of observer bias and
the ‘Hawthorn Effect’ (where aspects of performance
are modified because the person is being observed)
are introduced [10]. Finally, the single or episodically
repeated ‘snap-shot’ of the person’s symptoms and
clinical signs is perhaps under-evaluating the symp-
tomatology of some patients with PD, which can
fluctuate from day to day and hour to hour. Never-
theless, it remains the gold standard against which all
other measures are compared, including sensor-based
assessments.

Technology in PD

There is recognition within parts of the PD
academic community, voiced by the International
Parkinson and Movement Disorders Society Task
Force on Technology, that technology could pro-
vide a rich source of granular data which captures
the disease and treatment-related fluctuations of
this complex condition [11]. Technological sensors
have the potential to continuously and unobtrusively
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measure aspects of PD, and the activities in the lives
of those with PD, to give more reliable and objective
evaluations of outcomes in PD.

The past 10-15 years has seen the emergence of
a variety of technologies which have the potential to
harness data to capture illness and health outcome
measures, including smartphones [12, 13], wearable
devices [11, 14], ‘smart homes’ (a home equipped
with, e.g., lighting, heating, and electronic devices
that can be controlled remotely by smartphone or
computer) [15], advanced analytics and the Internet
of Things (IoT) which is the interconnectivity via
the internet between computing devices embedded
in everyday objects [16].

Currently technology cannot replace may be able
to assist the experienced clinician performing a
detailed history and examination or a qualitative
patient-reported experience of the disease. There are
some symptoms which may prove extremely chal-
lenging to quantify using technology, such as pain,
fatigue and rigidity. However, technology provides an
opportunity to find a more sensitive and reliable way
of measuring an individual’s symptoms, which in turn
could answer the need in clinical trials for improved
ways of evaluating disease-modifying therapies [17].
In clinical practice, its use could be adjunctive to
routine face-to-face patient-clinician interactions; it
remains to be seen how much this would change man-
agement plan formulation although some reports are
encouraging [18].

The advent of new technologies brings the threats
which perhaps are inherent to the management of
electronic data including data security. Close thought
will need to be given with regards to considering
the pathways towards regulatory approval for devices
or platforms if these technologies are to be widely
adopted in clinical trials or clinical practice [19].

Testing in the home or home-like setting

Generally, testing of new technologies takes place
either in structured laboratory or clinic environments
and/or in the home or home-like setting, otherwise
known as the ‘free-living’ or naturalistic environ-
ment. Data can be collected from new digital devices
through participants’ scripted activities (undertaken
in a pre-determined sequence according to a script)
or unscripted activities (where the subject is able to
freely choose their activities without being told to
perform certain tasks). This review is interested in the
data gathered from unscripted activities in free living;
this data collection may be continuous or otherwise.

The choice of the home as a testing location to
focus on for this review derives from perceiving the
opportunities that this setting may bring to patients,
clinicians and researchers. For people with PD, being
tested at home could enable better appreciation of
some activities of daily living (ADLs) which occur
more naturally away from a clinic or lab environ-
ment [20], rare events such as falls [21], activities
which impact upon wellbeing and quality of life
[22] and outcomes such as sleep quality which are
costly and logistically difficult to measure longi-
tudinally in the clinic/lab. Technology deployed to
the home could provide measurements to the clini-
cian/researcher which would otherwise have required
clinician time to obtain [23], have scalability to
large numbers of people with PD remotely [24], and
reduce the cost of clinic visit/clinical trial contacts
[25]. An extrapolation is that the home setting could
improve generalisability in outcome measure results,
for example by increasing inclusivity towards those
people living outside the radius of a clinical treat-
ment unit. The aforementioned, however, are hoped
for benefits and not yet of proven utility.

However, prior to employing technology-assisted
in the home for longer-term use, hurdles include
the proof that there will be comparability in detect-
ing motor and other impairments when compared
to in-clinic assessments [26], the documentation
of acceptability of the technology in people with
PD, careful measures surrounding data management
and navigating the technology towards regulatory
approval [19].

What this review adds to existing literature

To our best knowledge, this is the first sys-
tematic review focussing on the evaluation of
technology-assisted outcomes, using both wearable
and non-wearable devices, from free living within
the naturalistic environment in PD.

This systematic review aims to find out what
is described in this area: what technologies are
being used to measure which PD outcomes in what
nature of ecological environment, and to give an
idea of how the technologies are being clinimetri-
cally tested and validated. We wish to highlight the
areas where future development is needed in order
to produce a fully-validated and clinically-relevant
set of outcomes measurable in PD from a person’s
own home, using minimally intrusive and continuous
monitoring.
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METHODS

A systematic review of all articles published from
January 2000 until May 2018 was conducted using
the following information sources: Medline, Embase,
PsycInfo, Cochrane Database of Systematic Reviews
and Cochrane Central Register of Controlled Trials
and Web of Science.

The population being studied is people with
PD; the intervention is the use of technol-
ogy/technological devices to measure activities in
the home or home-like environment; there is no spe-
cific comparator; the outcomes being measured are
symptoms of PD and also activities of daily living
evaluated from the free-living of the participants.
A review protocol is available at https://research-
information.bris.ac.uk/en/publications [27]; the sys-
tematic review is registered in the International
Prospective Register of Systematic Reviews, Pros-
pero, under the identification CRD42018095479.

A combination of MeSH (Medical Subject Head-
ings) terms and keywords were used in the search
strategy. The authors borrowed from the published
search strategy for a previous systematic review [14]
and added additional pertinent terms when devising
their strategy. Three blocks of these search terms
were introduced and connected in the search strategy:

the first relating to the condition of PD, for example
“Parkinsonian disorders,” “basal ganglia diseases,”;
the second to capture the concept of technology terms
related to PD assessment, for example “technology,”
“sensor,” “machine learning,” “accelerometer”; the
third was related to the home or a home-like environ-
ment as the setting of the study, for example “home,”
“naturalistic,” “free living”. The full list of search
terms is available in Supplementary Table 1.

The flowchart for study identification through to
the studies included for data extraction, according to
the PRISMA (Preferred Reporting Items for System-
atic Reviews and Meta-Analyses) statement, is shown
in Fig. 1. After identifying and de-duplicating the ref-
erences from the sources mentioned above, the review
was conducted in three stages:

Stage 1: Abstract screening

The studies’ abstracts were screened by C.M. with
10% of the abstracts randomly selected and screened
by an independent reviewer, M.R., to check for accu-
racy. The criteria for the articles included in the next
step were: the population of PD and the use of tech-
nology as part of the study.

Stage 2: Full-text screening and assessment to
determine eligibility to be included in this review

All of the full-text studies were read and assessed
for eligibility by C.M., 10% of these studies were

Table 1
Sample size numbers indicating number of participants participating in free-living elements of selected studies

Number of studies Studies

Cereda et al.., 2010 [74], Das et al.., 2012 [68], Godfrey et al.., 2016 [62],
Nakae et al.., 2011 [78], Pastorino et al.., 2013 [80], Perez-Lopez et al..,
2015 [81], Raknim et al.., 2016 [44], Stack et al.., 2016 [47], Vega et al..,
2016 [48], Wallace et al.., 2013 [32], Weiss et al.., 2011 [65], White et
al.., 2007 [50]

Battista et al.., 2018 [66], Bayes et al.., 2018 [83], Bhidayasiri et al.., 2016
[31], Bhidayasiri et al.., 2017 [33], Cai et al.., 2017 [29], Cancela et al..,
2011 [51], Cancela et al.., 2014 [54], Cavanaugh et al.., 2012 [49], Cole
et al.., 2010 [40], Cole et al.., 2014 [39], El Gohary et al.., 2010 [69], El
Gohary et al.., 2014 [59], Fisher et al.., 2016 [85], Haertner et al.., 2018
[57], Hale et al., 2010 [75], Iluz et al., 2014 [58], Johansson et al., 2018
[42], Liddle et al., 2014 [43], Madrid-Navarro et al., 2018 [89], Mancini
et al., 2015 [53], Ramsperger et al., 2016 [45], Rodriguez-Molinero et
al., 2015 [84], Rodriguez-Molinero et al., 2018 [82], Roy et al., 2011
[38], Roy et al., 2013 [37], Sama et al., 2014 [56], Skidmore et al., 2008
[70], Sringean et al., 2016 [93], Sringean et al., 2017 [94], Tzallas et al.,
2014 [55], Van Uem et al., 2018 [71], Van Wegen et al., 2018 [86]

Adams et al., 2017 [87], Arroyo-Gallego et al., 2018 [30], Wallen et al.,
2015 [73], Cheng et al., 2017 [34], Del Din et al., 2016 [64], Gros et al.,
2015 [90], Klingelhoefer et al., 2016 [91], Lloret et al., 2010 [76],
Mancini et al., 2018 [60], Uchino et al., 2017 [95], Wallen et al., 2014
[72], Wallen et al., 2014 [36], White et al., 2009 [77]

Cancela et al., 2013 [52], Cohen et al., 2016 [67], Del Din et al., 2017 [61],
Silva de Lima et al., 2017 [41], Silva de Lima et al., 2018 [46], Lim et
al., 2010 [35], Morris et al., 2017 [63], Prudon et al., 2014 [92]

Sample size
Fewer than 10 12

10-49 32

50-99 13

100 or more 8
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2764 references imported for screening

642 duplicates removed

Stage 1 screening: 1912 abstracts
screened

Stage 2 screening: 345 full-text studies
assessed for eligibility

‘VV

Stage 3: 65 studies included for data
extraction

1567 studies irrelevant

280 studies excluded

Reasons for exclusions:

102 Structured assessments (as opposed to
free-living)

93 No full text available (abstract/poster only)
37 Wrong setting

23 Wrong study design

12 Wrong outcomes: e.g., EEG, imaging only,
molecular diagnostic/therapeutic techniques,
EMG

5 Wrong patient population

3 Vebhicle driving outcome measures

2 Therapeutic approach of technologies (not
outcome measurement)

1 DBS developments or magnetic transcranial
stimulation

1 Established speech recognition systems

1 Technology requiring clinician interaction

Fig. 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flowchart.

selected at random and assessed by an independent
reviewer, ML.R, to check for accuracy.

The criteria to include a study in the next step
of data extraction included: the study included a
population of adults with a PD diagnosis; tech-
nology was used, for example (but not necessarily
including) wearable and/or non-wearable devices,
wireless/remote sensing technology, machine learn-
ing and/or algorithm development; the setting
included a home-like environment or home environ-
ment, including environments where participants can
move freely; outcome was the measuring, assessing
or testing of any motor and non-motor aspect rel-
evant to PD, as well as ADLs; the study included
unrestricted/unscripted activities undertaken by
participants.

Regarding the full-text studies, exclusion criteria
for the next evaluation step were:

e The sole use of electromyography and/or
electroencephalography (EEG) to generate out-
comes;

e The sole use of questionnaires/scales;

e The sole use of technology requiring clinician
interaction (e.g., remote consultations);

e The sole use of sphygmomanometers (i.e., blood
pressure cuff with intermittent readings) to look
at autonomic function;

e Genetic/Molecular diagnostic/therapeutic meth-
ods;

e Structured assessments in the home (as opposed
to free living);
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Vehicle driving outcome measures;

Imaging techniques only;

Established speech recognition systems;

New developments in deep brain stimulation

(DBS);

Magnetic transcranial stimulation only;

e Study design not involving testing of technology
on participants at home (e.g., review, protocol,
acceptability testing only);

e Articles not written in English language

e Therapeutic approaches of technologies only (as
opposed to outcome measurement); and

e Full text was not available (through our Univer-

sity’s library access, and with cross-check using

a mainstream widely-available search engine,

Google Scholar).

The exclusion criteria were chosen to facilitate the
inclusion only of studies which matched the review’s
aims of evaluating the measurement of free living out-
comes in PD in a free-living environment, specifically
in the home as opposed to in a car for example.

A list of excluded manuscripts is provided as a
supplement to this paper (Supplementary Table 2).

Stage 3: Data extraction from the included studies

Full evaluation of the included studies was com-
pleted by C.M., with independent evaluation by M.R.
of 20% of randomly selected studies. Any mis-
matches between the two reviewers were discussed
face-to-face and resolutions were agreed by both par-
ties.

Information on several pre-selected aspects was
extracted using a customised table specifically
designed for this review in Covidence systematic
review software [28]. The aspects selected were
intended to give the reader a grasp of the type
of technologies being used, which aspects of PD
were being measured and in what nature of loca-
tion. This included the study design and any prior
work to validate the technology in PD which appeared
to have been carried out. To give an idea of the
aspects of PD being evaluated, it was delineated
whether motor, non-motor or ADLs (or a combina-
tion) were being measured, and whether single or
multiple aspects/symptoms of PD were analysed. Of
particular interest to this review is the location of
technology testing—whether at home or in a home-
like setting—and additionally the number of sensors
(single or multiple) being used. The phrase ‘home-
like setting’ is taken to mean a place which closely
resembles a participant’s real home in terms of fur-
niture/appliances where a participant can stay and

move/live freely, but which is not in fact their true
home.

Data was also extracted on each study’s inclusion
and exclusion criteria, duration of home-based testing
and the sample size used in each article.

Finally, details of the technologies used, and the
outcomes generated, was collected. Largely, given
that these studies were observational and exploratory
in design, clinimetric properties such as repeatability
and responsiveness to a pharmacological interven-
tion were not expected to feature heavily in the
studies’ design. However, any reported clinimet-
ric properties (accuracy, responsiveness, reliability,
test-retest agreement and agreement with the gold-
standard clinical rating scale in PD) were extracted,
whether those gathered from direct testing in the
home/home-like environment in the studies or those
documented in the manuscripts relating to previous
testing.

RESULTS

A total of 2764 studies were extracted by the search
detailed above. After duplicates were removed, 1912
abstracts were screened by the authors. From these,
345 full texts were selected to be screened, of which
65 studies were included in this review.

An overview will be given about study designs
used, the nature of the home/home-like environment
in which the technologies were tested, the study
sample size range and the duration of the studies. Sub-
sequently, grouped by the metric(s) being measured,
more detail about the outcome measurement, the
nature of the technology used in measuring it, any val-
idation undertaken and finally the documented clini-
metric properties of the technology will be outlined.

Study design

Of the 65 studies selected for data extraction,
the study design was most frequently observational
(57 out of 65, 88%). There were two papers detail-
ing a case-control design whereby people with PD
were directly compared to control participants when
evaluating various parameters such as activity lev-
els and keyboard typing metrics [29, 30]. In two
studies, technologies were being used in the home
environment as outcome measures in clinical ther-
apeutic trials [31, 32] and a further four were
randomised controlled trials or sub-studies thereof
[33-36].
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Nature of home-like environment

Out of 65 studies, 61 described technology use in
the participants’ own homes. When the participants’
actual home was not utilised, two studies described
a ‘100-m? laboratory arranged to simulate a home
environment’ [37, 38] and two utilised a simulated
‘apartment/home environment’ [39, 40] as a test-bed.

Sample size

The number of participants used to test techno-
logical systems in a naturalistic environment varied
greatly between studies. Almost half of the studies
(32) used between 10 and 49 participants in home
testing of their technologies. However, a significant
number used fewer than 10 or more than 100 partic-
ipants (12 and 8 studies respectively). Table 1 gives
details about the numbers of study participants.

Duration of home study

Where the study duration was specified, the major-
ity of the studies included in this review described
testing of their sensors/technology over two weeks
or less, however 10 studies detailed longer period of
study time of up to a year [32, 34, 41-48]. Data from
sensing technology was collected on more than one
occasion by three studies. Cavanaugh et al. [49] used
an ankle-worn wearable device to measure ambula-
tory activity levels. They compared the correlation
between wearable sensor outcomes and clinical mea-
sures of gait and disease severity over a period of
time (one year) by measuring ambulatory activity
levels at the beginning and then again at the end
of the year. Lim et al. [35] were investigating the
impact of home cueing training on ambulatory activ-
ity monitoring outcomes over a period of 12 weeks at
four specific times. White et al. [50] measured 2448
hours of physical activity at 3 time points, separated
by 7 days.

Which PD outcomes were measured, by which
technologies and how were these devices
validated and clinimetrically tested?

The individual metrics (e.g., tremor, bradykine-
sia) have been described in their own sections below,
however it is important to note that frequently sev-
eral metrics were tested by technologies within the
same paper, and therefore those papers are described
in more than one of the sub-sections below.

Gait

Gait, including freezing of gait, turning of gait and
missteps, was evaluated by technologies in 19 studies
included in this systematic review. Wearable tech-
nologies were used to measure this metric in 18 of
the 19 papers, with the exception of Wallace et al.
[32] who used in-depth video cameras to assess gait
in the context of the impact of wearing strategically-
weighted vests on this metric. Smartphones were
included in the ‘wearable’ category given that they
are worn on a person in a pocket or similar in order
to capture the movements which inform gait analy-
sis; these devices were utilised by two groups [34,
441]. Five of the studies outlined a multiple wearable
device platform with which to measure gait [51-55],
although four of these papers were from the same
group (Cancela et al). Accelerometers were used in
all the wearable devices detailed in the studies; gyro-
scopes were added to accelerometry in the technology
described in ten papers [34, 51-59] and magnetome-
ters were identified to also have been used in two of
these studies [56, 57]. Validation of the technology
outcomes measuring aspects of gait was referred to
in 17 of the studies. These validation efforts, prior
to the use of the technology in the free-living set-
ting (either carried out as part of the studies included
in this review themselves, or in previous clearly-
referenced work), had taken place in laboratory-style
settings where the activities were largely structured.
Videotapes had been documented to have been used
to provide ‘ground truth’ (real world accuracy pro-
vided by directing observing the activities; this can
be achieved in a number of ways) to technology out-
comes in 13 of the papers [39,40, 51-58, 60—62], with
instrumented walkways [61-64], motion analysis
[53, 60], comparison with other similarly-positioned
wearable devices [44] and direct researcher observa-
tion [58, 64, 65] also used to validate the technology.
Clinimetric properties, detailed in Table 2, showed
that 16 studies evaluating gait either evaluated clini-
metric properties of their technologies themselves or
referenced relevant other/previous work. Ten of those
papers gave accuracy statistics, whilst seven looked
at agreement between the technology-assisted out-
comes and other tools like the UPDRS [51, 53, 60,
65], or an instrumented walkway [61, 63, 64].

Tremor

Tremor was measured in 13 studies (either as a
single metric or combined with other metrics). All of
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these studies employed wearable devices, with single
devices being used in four studies [41, 56, 66, 67],
and multiple devices employed in the other papers
[37-40, 52, 54, 55, 68, 69]. All researchers measur-
ing tremor used accelerometers within the wearable
devices, with five additionally using gyroscopes [52,
54-56, 69] and four studies using surface electromyo-
graphic sensors [37—40]. Clinimetric properties were
mentioned in nine studies. These clinimetric proper-
ties are shown in Table 2; they comprise of statistics
of accuracy and/or sensitivity/specificity, with all
outcomes documented at>90% apart from the clas-
sification accuracy for tremor of 87% produced by
the PERFORM system (described in two papers [52,
55]). Validation efforts for the tremor metric were
described by three groups. Cole et al. [40] validated
algorithm development through video annotation of
the PD metrics (tremor and dyskinesia) and used this
validation to inform subsequent work [39]; Sama et
al. [56] also used videotape comparison to validate.
Silva de Lima et al. [41] described validation data
from previous work using direct clinician-measured
PD symptom severity [67].

Physical activity

Of the studies included in the review, 17 mea-
sured the metric of physical activity. 13 of these
papers described the use of single wearable devices
[29, 36, 41, 46, 49, 67, 70-76], whereas four used
multiple wearables [35, 50, 77, 78]. Each study
used accelerometry only to measure physical activity
except for Cereda et al, who used accelerometry, body
temperature, skin conductivity and the sleep-wake
rhythm to measure total daily energy expenditures,
physical activity, number of steps and metabolic rate
of their participants [74] in the context of investi-
gating the impact of a low protein diet on physical
activity and energy expenditure. Clinimetric prop-
erties were evaluated in 12 papers, with results
detailed in Table 2. Accuracy of the technology
was evaluated by Silva de Lima et al. [46], Skid-
more et al. [70] and Wallen et al. [72] with>95%
accuracy found in the former two studies. Agree-
ment with a number of different tools (including
UPDRS II & III, Functional Independence Scale,
Functional Balance Measure) was investigated by 5
papers [29, 36,49, 70, 78] with varying results. These
included the absence of agreement being noted, for
example between accelerometry measuring physical
activity and the UPDRS motor subscale (III) [29,
49]. Repeatability was looked at by White et al.

[50] and Hale et al. [75] with test-retest evalua-
tion which demonstrated good intra-class correlation
coefficients in both papers. Responsiveness was eval-
uated by three studies: Lim et al. [35] looked at
cueing training (significant improvements seen which
declined at further follow-up), Lloret et al. [76] per-
formed a levodopa challenge in the laboratory setting
(no responsiveness of technology-assisted outcomes)
and White et al. [77] noted the responsiveness of their
accelerometry data to inter-disciplinary rehabilita-
tion (improvements seen in group with high baseline
walking activity). Validation work was referred to in
support of seven papers’ findings. Silva de Lima et
al. looked at gait detection and activity level and used
clinician-observed structured assessments to produce
a labelled training dataset [67] with which to inform
their subsequent work included in this review [41,
46]. White et al. [50, 77] referred to a previous study
using videotape to validate activity monitoring [79]
and Lim et al. [35] also referred to this study’s valid-
ity testing in their paper. Wallen et al. [72, 73] used
videotape to record a structured 3-minute walk in 15
people with PD to aid validation of their technology-
assisted outcome measures [72]. Cavanaugh et al.
compared the monitor’s step counts identified via a
flashing indicator light with visual observation [49].

Bradykinesia

Often combined with other motor outcomes such
as dyskinesia or gait, eight studies investigated
the ability of technology to measure bradykine-
sia/akinesia in their participants [42, 52, 54-56,
80-82]. All the research groups used wearable
devices to measure bradykinesia/akinesia: four used
single devices whereas four used multiple wear-
able devices. All of the devices employed to
measure bradykinesia/akinesia contained accelerom-
eters, with gyroscopes also in four devices [52,
54, 55, 80] and a gyroscope/magnetometer within
one [56]. Validation was attempted through the
use of videotape [55, 56], comparison with the
UPDRS [42, 52], the use of telephone calls from
researchers and comparison with participant study
diaries [82]. Clinimetric properties were evaluated
in six studies, and included measurements of accu-
racy [52, 55, 81, 82] and agreement (Pastorino
et al. [80] documented good correspondence of
88.2% between technological outcomes and partic-
ipant diaries). Responsiveness to dose adjustments
of levodopa/carbidopa was assessed in a study by
Johansson et al. [42], with the UPDRS motor scores
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changing significantly (P<0.05) but the wearable
device’s summary scores (bradykinesia & dysk-
inesia) showing no significant change following
dose adjustments of levodopa/carbidopa. More detail
about clinimetric properties is in Table 2.

Dyskinesia and motor fluctuations

Motor fluctuations specifically were evaluated as
a stand-alone outcome measure by two studies [83,
84], and they were evaluated alongside the dyskine-
sia outcome measure in three papers [81, 82, 85].
Dyskinesia was measured by technologies in 11 fur-
ther papers included in this review [37—40, 42, 45,
52, 54-56, 68]. Wearable devices were used in all
studies which evaluated dyskinesia and/or motor fluc-
tuations, with seven using single wearable devices.
Sama et al. [56], Rodriguez-Molinero et al. [82, 84]
and Perez-Lopez et al. [81] used devices located at
the waist or on the belt, Johansson et al. [42] and
Bayes et al. [83] used a device at the wrist and
Ramsperger et al. [45] used an ankle-worn device.
Accelerometers were ubiquitously employed; they
were used in some studies without other sensing
technology and in other papers alongside gyroscopes
[45, 52, 54-56], magnetometers [S56] and surface
electromyographs [37-40]. Validation of dyskine-
sia outcome measurements had been documented
in eight papers, with various comparators used as
ground truth to aid validation, including videotape
recordings [39, 40, 55, 56, 84], direct clinician evalu-
ation/observation [42, 83, 84], and participant diaries
plus telephone calls from a researcher [82]. The
clinimetric properties of the technologies under eval-
uation, where discovered, are detailed more fully in
Table 2. The authors of this review were able to find
some clinimetric evaluation in 14 of the papers: accu-
racy/sensitivity/specificity were the most frequently
mentioned properties [37-40, 45, 52, 55, 68, 81-85];
agreement with the UPDRS dyskinesia score [45] and
participant diaries [85] was also noted by specific
studies; the responsiveness results from Johansson et
al. [42] are noted in the sub-section above (bradyki-
nesia).

Posture

A single study looked exclusively at posture in
the context of investigating whether posture detec-
tion and subsequent vibrotactile trunk ankle feedback
could improve posture of participants [86]. The sin-
gle tri-axial accelerometer-containing device located

over the xiphoid process of the sternum was used
both to collect movement data and provide feedback
to the participant. Validation testing was not immedi-
ately evident, however responsiveness of the device’s
measurement of posture as a result of the intervention
showed a significant decrease (average 5.4 degrees)
in trunk angle from baseline period to intervention
period with the vibration cueing.

Falls

Godfrey et al. [62] looked at the identification of
falls in the free-living environment using a single
wearable tri-axial accelerometer located on the back.
The ground truth was provided by the participant
diary recording the single fall which occurred dur-
ing the study; this fall was correctly identified by the
wearable device and the pre-fall event was correctly
segmented by the algorithm, however 38 false posi-
tives (falls) were also detected by the algorithm. Stack
etal. [47] used wearable devices (tri-axial accelerom-
eters and gyroscopes worn on each wrist, each ankle
and lower back), along with the non-wearable Kinect
camera, to evaluate movement around the house in
order to identify high risk of falling in their partici-
pants.

Typing

The analysis of the typing patterns to investigate
motor impairments in PD was conducted by three
studies. Adams et al. [87] used keystroke timing infor-
mation analysed by machine learning classification
models to successfully discriminate between early-
PD subjects and controls with a 96% sensitivity, a
97% specificity and an area under the curve (AUC)
of 0.98. Arroyo-Gallego et al. [30] employed a ‘Neu-
roQWERTY” algorithm and this had a sensitivity of
73% and specificity of 69% in home-based testing
when compared to a controlled typing test in this
environment. There was significant moderate correla-
tion with the UPDRS III with correlation coefficients
of 0.50 in clinic and 0.34 at home. Prior validation
work of this algorithm, comparing typing outcomes
of people with PD vs controls and comparing with
the UPDRS 111, had been conducted in a laboratory
setting [88]. A third study by Vega [48] employed
all of the sensors and interfaces within a smartphone,
complemented by ambient, spatial and other web data
sources, to analyse various behaviours including typ-
ing patterns, social and phone usage patterns and
motor activities [48]. They propose that these met-
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rics could signify hand movement performance and
patterns; however the study detailed early pilot work
at this stage which had not been clinimetrically tested
or validated.

Sleep

Sleep had been measured in 11 of the studies
included in this systematic review [31, 33, 41, 67,
89-95]. Wearable devices were used to measure sleep
outcomes in all of these studies. Single devices were
used in eight of the 11 studies, worn on the trunk,
wrist [41, 67, 89, 91], lower limb [92] and abdomen
[95]. The location of the technology depended on
what aspect of sleep was being evaluated, for exam-
ple Prudon et al. using lower limb placement to
measure periodic limb movements of sleep [92]. Mul-
tiple device platforms were described in three of the
studies [90, 93, 94]; of note, Gros et al. [90] were
interested in quantifying apnoea, hypopnoea, oxy-
gen desaturation and pulse rate using two respiratory
inductance plethysmography belts, a nasal pressure
cannula and a pulse oximeter. Accelerometers were
used in all of the wearable devices, accompanied by
gyroscopes in four papers (all using the ‘NIGHT-
Recorder’ device to measure nocturnal hypokinesia)
[31, 33, 93, 94]. Validation had been attempted, if
documented, in five studies, with the use of sleep
diaries [31, 33, 93, 94], polysomnography [92] and
night-time video recordings [94] to provide ground
truth. Clinimetric properties are detailed in Table 2;
however, there was arange of information about accu-
racy and agreement with clinical rating scales and
questionnaires. Two studies looked at responsiveness
of the technology-assisted outcome measures, one in
the context of Rotigotine treatment [33] (where the
Rotigotine was shown by the technology to effect a
significant difference in change from baseline score
in the number of turns in bed (p =0.001), and degree
of axial turn (p=0.042)) and the other in response
to Levodopa/Carbidopa Intestinal Gel treatment [89].
In this particular study by Madrid-Navarro et al, the
same patient was recorded three times throughout the
course of the study. She was a 61-year-old woman
with advanced PD who was monitored before, 1 week
after, and 6 months after starting intra-jejunal infusion
of Levodopa-Carbidopa Intestinal Gel by a single
tri-axial accelerometer with additional skin tempera-
ture, wrist posture and light exposure measurements
worn on the non-dominant wrist. The A/T ratio (the
ratio of acceleration during the daytime over time in
movement during sleep) increased from 0.15 to 0.75

and 1.99, 1 week and 6 months after the onset of
treatment, respectively.

Activities of daily living

Vega [48], described above in context of evaluating
typing, used the sensors and interfaces within a smart-
phone to identify latent behavioural variables which
he could use to measure outcomes in PD. These vari-
ables included daily living activities such as phone
usage patterns, social patterns and indoors routine.
Given the early nature of this pilot work there was no
validation/clinimetric testing documented. The met-
ric of ‘lifespace’, a phrase given to the number of
trips outside a home of >500 metres, the length of
distance travelled and approximate location to which
travelled, was measured by Liddle et al. [43] using a
single Global Positioning System within an Android
smartphone. No validation or clinimetric testing was
mentioned.

DISCUSSION

This systematic review is, to our best knowledge,
the first to evaluate the existing evidence around
the use of both wearable and non-wearable technol-
ogy which passively evaluates unstructured activities
(free-living) in the home or home-like environment
in order to generate outcome measures in PD. It
complements work looking at wearable technologies
specifically [96-99], outcome measures in PD using
technology in any testing environment (technologies
are largely tested in a laboratory environment) [11,
14, 100] and more specific reviews looking at indi-
vidual symptom assessment using sensors [101, 102].
Additionally, for those interested, this review pro-
vides some thoughts on future avenues to improve
and expand this approach to PD outcome measure
testing at home.

Types of studies

This review found that of the 65 studies selected
for data extraction, the study designs were mostly
observational which is perhaps intuitive given the
passive nature of free-living monitoring in which the
authors were interested. The studies were set in the
participants’ real home setting with only infrequent
exceptions [37-40]. Home-based testing may be ben-
eficial in PD partly to cater for those patients who are
limited geographically or practically from attending
frequent clinic assessments [103], partly to save costs
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[25] and importantly to achieve ecological validity in
the assessment of PD symptoms which are poorly
captured in ‘snap-shot’ reviews in a laboratory or
clinic environment [8].

The sample sizes used ranged widely from fewer
than 10 to several hundred participants. The ideal
numbers of participants to include in such studies
depend on the intent of the researchers: whilst 10-12
participants may be enough to create a training dataset
[104], smaller studies cannot sufficiently reflect the
heterogeneous spectrum of clinical PD [105], there-
fore larger studies will ultimately be needed in order
to ensure that the technologies are generalizable. The
large sample sizes displayed by a number of papers
[35, 41,46, 52, 61, 63, 67, 92] are good indicators of
the encouraging potential of technology to be scal-
able for use in clinical care and in trials but the data
required to guide power calculations for future inves-
tigations employing these types of outcome measures
remains yet to be determined.

The long duration of 10 studies of between 2
weeks and 1 year is encouraging as it demonstrates
the potential to employ technology for periods of
time sufficient to capture rare events such as falls
[106], which can be difficult to recreate for evalu-
ation in a laboratory environment. Interestingly, we
found technology-assisted outcome measures being
used in an episodic way by some groups [35, 49,
50] instead of continuously. These ‘snap-shot’ mea-
surements potentially lend themselves more towards
adjunctive outcome measurements in clinical trial
contacts or for use when a patient with PD visits the
outpatient clinic.

Technologies used

The most frequently investigated sensors for the
monitoring of PD symptoms were inertial mea-
surement units within wearable devices and/or
smartphones. This is possibly because these devices
are commercially available, low cost, easy to use,
small and are very frequently used anyway by the
general population, so are likely to be acceptable.
The development of the Internet of Things has also
made it easier to transfer large amounts of data from
wearables to electronic storage without needing to
plug the wearables in using extra hardware. The use
of non-wearable devices within our included stud-
ies was limited to depth video cameras and computer
keyboards.

We found a significant number of studies utilis-
ing multiple sensors, as opposed to a single sensor,

to measure outcomes in PD. The term ‘multiple
sensors’ could include multiple wearable sensors, a
combination of wearable and non-wearable devices,
or multiple non-wearable sensors. There is currently
no consensus on the optimum number of sensors
to use to measure outcomes in PD; the balance is
between the system being unobtrusive and accept-
able enough for deployment into a participant’s life
for prolonged periods of time versus the need to avoid
loss of potentially relevant information through using
too few sensors. When considering acceptability of
technology-observed measures in PD, the authors are
not aware of any overwhelmingly negative reports;
however publication bias favouring publication of
positive acceptability outcomes of technology is a
possibility in this circumstance. Due to the fact that
wearable devices are not completely unobtrusive and
will always carry some physical burden when com-
pared to non-wearable devices, it is possible that
alternative approaches will (continue to) find their
way into research and clinical practice. For example,
the concept of a ‘smart home’ (with inbuilt unob-
trusive sensors) added to wearables, smartphones
passively monitoring and the Internet of Things could
provide researchers with a menu of valuable tools.

What is being measured?

With respect to motor outcomes, we found that the
devices are being used to measure outcomes such as
gait, physical activity levels, bradykinesia or akinesia,
dyskinesia and tremor, but there were no papers eval-
uating rigidity and few which were measuring falls or
posture. Additionally, technology was used to mea-
sure motor fluctuations in five of the included papers
[81-85] with some encouraging results in terms of
accuracy (see Table 2). Motor fluctuations are a
relevant burden for patients [107] but are arguably
inadequately quantified by the gold-standard clinical
rating scales frequently used in clinical trials and in
clinical practice. This review demonstrates that this
metric, and other motor outcomes, are starting to be
measured in a continuous and unobtrusive way in the
home setting although much further work in this area
is required.

Considering non-motor symptoms, sleep is eval-
uated in 11 studies, predominantly using wearable
devices. This patient-relevant [108] ‘outcome’ in PD
is very complicated with various sleep diagnoses
being more common in the PD population (e.g.,
REM sleep behaviour disorder, restless legs syn-
drome, insomnia) [109]. Other non-motor outcomes
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remain largely unmeasured in the home environment.
This is important, since symptoms such as depres-
sion, cognitive dysfunction and autonomic function
are known to impact on health-related quality of
life and wellbeing [22, 71]. In one survey, almost
half the respondents felt that non-motor symptoms
had a greater impact on quality of life than motor
symptoms [110]. The methodology of how to mea-
sure non-motor symptoms such as fatigue or pain
using technology may appear challenging, however
there is potentially interesting work linking wear-
able accelerometer data used to measure bradykinesia
with constipation outcomes [111]. This provides the
hope that technology can be used in conjunction with
other tools to measure these symptoms in PD athome,
the under-measurement of which is highlighted by
this review.

Activities of daily living were quantified to an
extent in two papers, although one described early
pilot work so far only [48] and the other investigated
a metric of ‘lifespace’ which involved trips from the
home to other places and not activities within the
home itself [43]. It has been shown that ADLs and the
ability to perform them have a significant impact on
health-related quality of life [112]. Currently, ADLs
are often evaluated through clinician questions or
in the MDS-UPDRS part II, which is performed
normally in an outpatient setting on regular occa-
sions, leaving weeks/months between assessments.
Researchers have argued that the best location to
assess everyday functional abilities is in a partici-
pant’s own (home) environment [113]. Our review
highlights that the measurement of free-living ADLs
at home is an avenue for future work and is relatively
unexplored.

Validation

A home-based sensor system, continuously mon-
itoring the symptoms of PD, could be a pathway
towards personalising medical treatments and reduc-
ing hospital visits both in clinical care and in clinical
trials [96]. However, the validation of such a system
in a participant’s home, remote from researchers who
could annotate the activities and potentially with-
out a video camera system to provide ground truth,
presents challenges as described below.

There are various aspects to consider when
discussing the validation of technology-assisted out-
come measures in PD. A focus of validation can be
on the technical aspects of the study, for example to
validate whether an algorithm operating on the data

gathered from sensor(s) is meeting a defined set of
requirements. This is distinct from clinical validation
where validation is a check that the technology-
derived outcome is an accurate representation of the
symptom/behaviour/body function being measured.
Clinical validation can be achieved in a number of
ways, often including the use of study participant
diaries, direct observation by a researcher and/or
annotation of video data to give a ground truth. A
good quality validation dataset would depend on the
symptom or activity under evaluation; generally, due
to the complex and heterogeneous nature of the con-
dition, having a dataset which incorporates many
individuals would increase the generalisability of the
results of validation [104]. A ground truth involv-
ing frequent annotations [114] from expert clinical
raters (with which to compare to sensor data) should
also improve the ability to accurately validate the
technology outcomes.

This review found that 35 studies mentioned val-
idation attempts of their technologies in PD using
various methods: videotape analysis was used to val-
idate technologies described by 19 papers [39, 50,
51, 53, 55-61, 67, 72, 73, 77, 84, 85, 94], direct
clinician observation in six [41, 46, 49, 58, 65, 83],
participant diaries in seven [31, 33, 62, 82, 85, 93,
94], comparison with the MDS-UPDRS or another
clinical rating scale was used in three studies [42,
65, 80], an instrumented walkway in three [61, 63,
64], motion analysis in three [53, 59, 60], compari-
son to other wearable devices or device filter settings
in three [36, 44, 72], telephone calls from a researcher
in one [82], polysomnography in one paper [90] and
sleep respiratory home monitoring (assessing snor-
ing, nasal airflow, oxygen saturation, body position,
and respiratory and abdominal wall movements) in
another [92].

In terms of location of validation efforts: partic-
ipant diaries, telephone calls from researchers and
comparison with other wearable devices or device fil-
ter settings could all be collected in the home setting.
The single paper using polysomnography performed
this validation in the laboratory [90], but an atten-
uated sleep monitoring system was deployed to the
participants’ home in another paper [92]. As far as
the authors of this review could ascertain, the valida-
tion efforts using video recordings, motion analysis,
instrumented walkways and direct clinician observa-
tions/interactions were all conducted in a laboratory
setting (either in the paper itself or in previous work)
prior to the deployment of the technology to the nat-
uralistic setting.
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The transfer of validated technology-assisted out-
comes from laboratory to home settings is not without
issues. These include the different contexts (envi-
ronment and task) which could change movement
outcomes and algorithm accuracies; the ability to pre-
vent hardware damage/accidents for example is more
limited; external factors such as mood and medica-
tion could introduce variability. Of interest, Fisher et
al. [85] used an Artificial Neural Network to iden-
tify disease states (dyskinesia, ON/OFF state) first in
the laboratory and then unsupervised at home, and
compared to diaries and clinician rating of disease
state. In the laboratory, the specificity for dyskine-
sia detection was 99%, and in the home environment
the specificity was also 93%, but the sensitivity was
low at 38% with suboptimal sensitivity for on/off
state. This demonstrates that this technology which
was validated in the laboratory was not ready for
deployment to the home; this could potentially be the
case for many such technologies if tested in a similar
way.

Validation in the home environment itself, par-
ticularly when measuring unstructured/free-living
activities, can be challenging: the presence of cam-
eras or an observer could influence the behaviour
of a study participant [10]; also the heterogeneity
of the layout of peoples’ homes could make camera
placement to achieve reliable ground truth difficult.
The use of participant diaries to validate the tech-
nology, often with a diary entry frequency of every
30 minutes, arguably would also disrupt the free
living being evaluated by technology and are also lim-
ited by self-reporting biases, cognitive impairments
limiting recording accuracy and motor impairments
which make symptom recording challenging [115].
The limitations of the MDS-UPDRS have already
been discussed and lead to this clinical rating scale
not being particularly helpful for most technology
validation needs. As it currently stands, testing the
technology against itself using test-retest repeatabil-
ity and responsiveness, for example, may be the best
way of validating results.

Clinimetric properties

The diverse study designs, methods, sample sizes
and statistical analyses of the papers included in this
review mean that clinimetric properties could not
be compared to each other. Twelve studies did not
include detail about clinimetric properties tested to
the best of the authors’ knowledge, however all other
studies tested one, or a combination of, clinimetric

properties including accuracy/sensitivity/specificity,
agreement, repeatability and responsiveness. The dis-
cussion surrounding how successful each paper was
in assessing clinimetric properties is beyond the scope
of this paper as each study was conducted in a differ-
ent manner with diverse patient populations, testing
procedures, technologies and algorithms.

Limitations

This systematic review has limitations. One author
undertook most of the abstract and full text screen-
ing work (C.M.). However, 10% of these abstracts
and full texts were cross-checked and screened by
another author (M.R.) for accuracy. There were a
number of papers for which full-texts could not be
obtained from an initial university electronic library
database search. In these instances the authors used
further search and direct enquiry within a univer-
sity library service for named manuscripts and also
employed the use of a mainstream (academic) search
engine; however if the full text still remained unavail-
able these studies were excluded and this exclusion
could have impacted upon our study results. These
excluded papers are listed in the Supplementary mate-
rial (Table 2). Another limitation is the potential for
publication bias and the potential that small positive
studies were more likely to be published than those
with negative results. The time frame for literature
search from 2000 was a bridge between two excellent
reviews detailing the previous 10 years’ literature on
the topic [14, 96] and examples of other authors who
conducted open-ended searches [11]. Relevant papers
from pre-2000 may have been omitted, however one
previous systematic review documented more than
50% of their studies included had been published in
the preceding 3 years to 2016 [96], so the likelihood
of substantial numbers of studies having been missed
by our search strategy is low.

Future directions

We found that most studies had investigated the
use of technology-assisted outcome measures to look
at motor features of PD or sleep. There is a need
for a focus to be directed towards non-motor symp-
toms and ADLs, impairment of which significantly
impacts upon the health-related quality of life of peo-
ple with PD [112]. Since there are so many separate
groups working across the world looking at similar
technological sensors to measure outcomes in PD,
it is worth noting that collaborative efforts includ-
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ing dataset sharing/cross-validation approaches will
be vital to ensure that groups avoid replicating work
that is already done and instead can move this excit-
ing field forwards. Advances in IoT technology have
brought with them privacy and data security concerns
and it is important that these are addressed robustly
to avoid data breaches and loss of confidence in what
promises to be a valuable way of measuring PD.

Additionally, a vital issue is whether regulatory
bodies (for example the Federal Drugs Agency or
European Medicines Agency) recognise and approve
the measurement systems in order to build for their
futures as widely-accessed tools in clinical care and
clinical trials. Most tools are not yet approved by
the FDA/EMA. A further point is whether these
devices have CE (Conformité Européene) marking
to provide some assurance that they comply with
the essential requirements of the relevant European
health, safety and environmental product legislation,
including enforcing legal obligations regarding data.
The latter is particularly important and brings legal
obligations regarding data privacy and ownership.
Moreover, in order for the technology to be rec-
ommended by NICE (National Institute of Clinical
Excellence) in the United Kingdom (UK) for exam-
ple, enough clinical and economic evidence needs
to be gathered that the device(s) will be beneficial
to health and good value for money for the UK’s
National Health Service [116].

There are constructive initiatives aiming to move
this field forward (with industry, academics and oth-
ers) in a collaborative and appropriate way towards
the adoption of health technologies to measure out-
comes in PD, such as the Movement Disorders
Society Taskforce on Technology’s recent ‘roadmap’
[19] and Mobilise D [117].

Conclusion

A number of groups are using technological
devices to produce outcome measures in PD through
the evaluation of free-living activities in the home
or home-like environment. This will continue to be
important as we learn how sensors can best be used
to unobtrusively and accurately measure clinically
and functionally important aspects of this common
and debilitating disease. This review provides an
overview of the current evidence in free-living home-
based sensor testing in PD. It will be vital to continue
to keep up-to-date with new advancements in this
rapidly evolving scientific field.
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