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Abstract. Increasing evidence points to biological sex as an important factor in the development and phenotypical expression
of Parkinson’s disease (PD). Risk of developing PD is twice as high in men than women, but women have a higher mortality
rate and faster progression of the disease. Moreover, motor and nonmotor symptoms, response to treatments and disease risk
factors differ between women and men. Altogether, sex-related differences in PD support the idea that disease development
might involve distinct pathogenic mechanisms (or the same mechanism but in a different way) in male and female patients.
This review summarizes the most recent knowledge concerning differences between women and men in PD clinical features,
risk factors, response to treatments and mechanisms underlying the disease pathophysiology. Unraveling how the pathology
differently affect the two sexes might allow the development of tailored interventions and the design of innovative programs
that meet the distinct needs of men and women, improving patient care.
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INTRODUCTION

Parkinson’s disease (PD) is the second most
common, age-related neurodegenerative disorder,
affecting about 3% of the population by the age of
65 and up to 5% of the people over 85 years [1].
The main pathological feature of PD is the progres-
sive loss of midbrain dopaminergic (DA) neurons
in the substantia nigra pars compacta (SNc) and
the presence of alpha-synuclein positive cytoplas-
mic inclusions, termed Lewy bodies, in surviving
neurons [2]. Degeneration of the nigrostriatal DA
pathway leads to the primary motor symptoms of
PD, which include bradykinesia, rigidity, resting
tremor and gait disturbances. The most common
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non-motor symptoms associated with the disorder
include autonomic dysfunctions, cognitive abnor-
malities, psychiatric symptoms such as anxiety,
depression and apathy, and sleep disorders with high
prevalence of insomnia and REM behavior disorder
[3]. The vast majority of PD cases occur sporadically,
only 10% of patients carrying disease-causing genetic
mutations.

Together with aging, genetics, environment and
immune status, the role of biological sex as an impor-
tant factor in the development of PD has been widely
discussed in the past decade. There are clear sex-
related differences in epidemiological and clinical
features of the disease: PD affects men twice more
often than women [4, 5], but women have a higher
mortality rate and faster progression of the disease
[6]. Moreover, women show distinctive symptoms as
well as differences in the response to pharmacolog-
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ical therapies and deep brain stimulation procedure,
and in the personal evaluation of the quality of life
compared with men [7].

Although women diagnosed with PD are a siz-
able portion of the PD population, their specific
needs are still partially overlooked. A retrospec-
tive observational study looking at Medicare data—a
government-financed health insurance program for
the elderly and disabled in the United States—
highlighted that women are less likely to have
specialist (neurologist) care, together with non-
whites [8]. Accordingly, an a posteriori analysis
of multiprofessional treatment approach PD-MCT
(i.e., “Parkinson’s disease multimodal complex
treatment”) conducted in Germany in the years
2010–2016 and involving pharmacological and non-
pharmacological treatment options such a physical
therapy, occupational therapy, and speech therapy,
revealed that more male than female patients were
treated under this program [9]. A recent study cover-
ing 7209 patients at 21 centers in the United States,
Canada, the Netherlands, and Israel, disclosed that
women are also less likely than men to have informal
caregiver support (i.e., support from spouse, fam-
ily or friends). As a result, more women use paid
caregiver services than men. The reasons for this dis-
crepancy may be linked to the longer average lifespan
of women and their natural inclination toward being
caregivers rather than receivers of care, even when
their spouse or caregiver is still present in their lives
[6].

Studies considering female sex as a crucial vari-
able to consider are highly under-represented in PD
research. In line with this, a notice disseminated by
the National Institutes of Health in 2015 exhorts sci-
entists to factor sex into the design, analysis and
reporting of vertebrate animal and human studies
(NOT-OD-15-102). Together with the NIH initiative,
the World Health Organization (WHO) also stated
the necessity of the “adequate demographic (includ-
ing gender) characterization, analysis and assessment
of the patient population together with separate ICH
(International Council for Harmonisation of Techni-
cal Requirements for Registration of Pharmaceuticals
for Human Use) guideline on women as a special pop-
ulation in clinical trials” as the priority for European
and world medicine [10].

This review summarizes the most recent knowl-
edge concerning differences between women and
men in PD clinical features, PD risk factors, response
to treatments and mechanisms underlying the disease
pathophysiology.

CLINICAL DIFFERENCES

According to a recent meta-analysis, an age-related
rising incidence of PD is observed in both sexes,
but with a steeper increase in males in the 60–69
and 70–79 decades of life [11]. The increasing
prevalence of PD in men is reported both for dis-
ease with and without dementia [12]. Sex-based
differences have been also found for factors that influ-
ence life prognosis in PD. A recent study, using
relative survival methods, showed that a diagno-
sis of PD with dementia has a larger impact on
life expectancy in females than in males [13]. Park
and colleagues demonstrated that a low body mass
index (<18.5) is strongly associated with reduced sur-
vival time, but this reduction is significant only in
males [14].

In addition to the differences between women and
men in PD prevalence and prognosis, many studies
have reported sex-related differences in the clinical
phenotype (Fig. 1).

Motor symptoms

PD diagnosis is essentially based on the presence
of motor symptoms. The characterization of possi-
ble sex-related differences in motor symptom patterns
may play a crucial role in terms of diagnostic accuracy
and therapeutic strategies. Over the past decades, the
effect of biological sex on the expression and severity
of PD motor symptoms has been broadly discussed
in the literature. Motor symptoms emerge later in
women, with specific characteristics such as reduced
rigidity [15], tremor as a more common first pre-
senting symptom [16], higher propensity to develop
postural instability and elevated risk for levodopa-
related motor complications [17]. Male sex, on the
other hand, has been recently associated with later
development of freezing of gait—the most disabling
motor complication of PD [18]—whereas female sex
was mentioned in the list of predictors of progres-
sion to falling in PD [19]. Another specific motor
disturbance of PD is camptocormia, which refers to
abnormal severe forward flexion of the trunk that
occurs while standing or walking and abates or dis-
appears in a supine position. It has been recently
reported that PD male patients have higher risk of
developing this symptom along the disease progres-
sion [20]. An ongoing clinical trial is evaluating the
prevalence in PD and the biological sex impact on
other postural abnormalities, such as Pisa syndrome,
antecollis, scoliosis and striatal deformities related
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to hand and/or toes (ClinicalTrials.gov Identifier:
NCT03573232).

Non-motor symptoms

Martinez-Martin and colleagues performed a com-
plex study in a cohort of 951 PD patients to assess
the prevalence and severity of non-motor symptoms
according to biological sex. They concluded that
symptoms such as fatigue, depression, restless legs,
constipation, pain, loss of taste or smell, weight
change and excessive sweating are more severe and
common in women [21].

The relationship between female sex and pain has
been recently confirmed in a large clinical study
demonstrating that, together with affective and auto-
nomic symptoms, motor complications and younger
age, female sex predicts overall pain severity [22].
A clinical trial designed to study the pathophysiol-
ogy underlying spontaneous and evoked pain in PD
patients with motor fluctuations is currently ongo-
ing (NCT03648671); among other factors, the trial
aims to evaluate the impact of biological sex on the
quality and distribution of different pain syndromes
associated with PD.

Within the autonomic disturbances occurring in
PD, gastrointestinal dysfunctions play a major role,
also because of their profound impact on the qual-
ity of life. Based on the evidence that intestinal
inflammation is consistent with intestinal symp-
toms and may act as a driver of disease pathology,
Housers and colleagues conducted an extensive anal-
ysis of immune and angiogenetic factors in stool
of PD patients and healthy controls. They found
disease-associated increase in numerous immune and
angiogenesis mediators, but only in the stool of
female PD patients while the stool of male patients
did not differ significantly from controls [23]. Female
PD patients have also shown higher predisposition
to develop critical dysphagia [24], whereas male
patients are more prone to severe drooling [25].

Different studies showed that male PD patients
have worse general cognitive abilities and male sex
is the primary predictive factor for mild cognitive
impairment and its more rapid progression in the
severe stage of the disease [26–28]. Accordingly,
female PD patients perform better at the Symbol
Digit Modalities Test, verbal fluency tests and over-
all cognition measured by the Montreal Cognitive
Assessment scale, but present with worse visuospa-
tial function [29]. Significant sex differences are also
observed for frontal executive abilities (attention and

working memory), with male PD patients showing
greater deficits than female non-demented patients.

Regarding PD-associated complications, female
sex is associated with more severe, persistent and
episodic anxiety and profound depression [30, 31],
whereas impulse control disorders, such as patholog-
ical gambling and hypersexuality, are more common
in male PD patients [32–34]. Nevertheless, men show
greater sexual dysfunction and impairment of their
sexual relationship than women [35]. Biological sex
also differently impact on emotion processing in PD
with men showing worse recognition performance of
the emotion anger accompanied by reduced neural
response [36].

REM sleep behavior disorder (RBD), the strongest
known prodromal symptom of neurodegenerative
synucleinopathies, is classically associated with male
sex [37]. However, a recent large population-based
study reverted the traditional RBD clinical profile
showing no difference between men and women [38].
Women generally show less aggressive and injurious
RBD than men, thus they are less prone to present
for medical attention. According to the authors, this
factor might have introduced a bias in the previous
studies.

Quality of life

Gender also affects how clinical symptoms affect
quality of life of PD patients and their ability to
perform activities of daily living, to participate in
social activities and to access medical care. The
health-related quality of life (HrQoL) is a multi-
dimensional scale used to evaluate the impact of
disease and treatments on the lives of patients. A
recent study exploring the relationship between three
HrQoL domains (physical-functioning, cognition,
socioemotional) and sociodemographic variables did
not reveal a global gender effect [39]. However,
female gender proved to be a negative predictor
for physical-functioning and socioemotional HrQoL,
whereas male gender mainly affected the HrQoL cog-
nition domain. Conversely, in a prospective study
on a cohort of patients with idiopathic PD in Ger-
many, female patients reported more problems in
all dimensions, except selfcare [40]. At the same
time, a longitudinal study designed to analyze the
effect of PD onset on life satisfaction showed
marked reduction of life satisfaction among individ-
uals in the second half of life in men, but not in
women [41].
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DISEASE PREDICTORS AND RISK
FACTORS

The etiology of PD is not well understood. Despite
the presence of familial cases, PD is substantially
an idiopathic, multi-factorial disease caused by the
interplay between genetic and environmental factors.
Genetic studies have identified increasing numbers
of risk polymorphisms, whereas little is still known
about environmental risk factors and how these affect
PD risk.

Heinzel and coll. recently highlighted the sex-
related differences in prodromal PD. They concluded
that women and men show distinctive prodromal
markers of PD (subthreshold parkinsonism, consti-
pation, olfactory loss, depression, probable RBD,
nonsmoking, nonuse of caffeine, nigral hypere-
chogenicity), suggesting that these differences should
be taken into account to guarantee the diagnostic
accuracy of prodromal PD [42].

Genetic risk factors

Urate, an endogenous purine metabolite with
antioxidant and neuroprotectant properties, is a
genetically and environmentally determined modifi-
able factor and a potential PD biomarker, as high urate
levels are associated with reduced risk and slower
progression of idiopathic PD [43, 44]. However, the
contribution of urate levels to PD risk according
to biological sex is still controversial. Higher urate
levels were associated with reduced prevalence and
slower progression of PD in men, while the opposite
trend was observed in women [45, 46]. More recently,
a large population-based study conducted in Norway
demonstrated that the treatment with urate-lowering
drugs correlates with lower PD risk especially in
men, even if no statistically significant difference by
sex was detected. In addition, the association varied
significantly by age among women, showing a pro-
tective effect only in women above 70 years, when
urate levels are comparable to those in men [47].
The neuroprotective effect of urate in men, espe-
cially in terms of cognitive functions, seems to be
related to its ability to influence resting-state net-
works (RSN), which reflect the spontaneous neural
activities and provide indirect information regarding
brain functional status [48]. Interestingly, a recent
study focused on the potential of urate plasma levels
in subject carrying mutations in the gene encod-
ing leucine-rich repeat kinase 2 (LRRK2) [49], the
most common genetic cause of PD [50]. The study

demonstrated that subjects with a LRRK2 mutation
who had not developed PD had higher urate lev-
els than LRRK2-PD subjects; moreover, a significant
difference in urate levels between control subjects
and PD patients was observed among women with
LRRK2 mutations [49]. The strength of the urate
association observed in both women and men with
LRRK2 mutations may help to explain the compa-
rable PD penetrance of LRRK2 mutations between
sexes, in contrast to the well-established lower risk
of idiopathic PD in women. Although this seems
to be valid for the most part of variants in LRRK2,
a recent meta-analysis highlighted that carriers of
LRRK2 G2019S variant are predominantly females
[51] and show sex-dependent phenotypic differences,
with cognitive impairment and depression being less
common in G2019S male carriers compared with
females.

The association between mutations in GBA1
gene, which encodes the lysosomal enzyme glu-
cocerebrosidase (GCase), and PD development has
highlighted the potential role of mutations in
lysosome-related genes as risk factors for PD.
Since lysosomes are involved in the degradation of
alpha-synuclein, lysosomal dysfunction could trigger
alpha-synuclein accumulation, thus contributing to
PD pathogenesis [52]. Alcalay and coll. showed a link
between PD status and reduced activity of galactosi-
dase alpha (GLA), a lysosomal enzyme encoded by
a gene on the X chromosome whose mutations cause
Fabry’s disease. Differently from GCase, this associ-
ation should be sex-dependent, reaching significance
among women only [53].

Lastly GAPDH gene, encoding a highly con-
served protein involved in various cellular processes
(e.g., glycolysis metabolism, mitochondria damage,
autophagy) was identified as another gene with a
potential role in PD [54]. Ping and coll. showed that
rs1136666 polymorphism of GAPDH strongly corre-
lates with sporadic PD and increases PD risk in older
male [55].

Environmental risk factors

One of the most prominent environmental factors
connected to elevated PD risk is chronic stress [56].
Adverse psychosocial work conditions are a poten-
tial source of stress relevant for public health, which
can be described by the “job demand-control” model.
This model consists of two dimensions: the “demand
component” measuring time pressure and psycholog-
ical/cognitive demands and the “control component”
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including decision making authority and skill dis-
cretion abilities. A recent study on the association
between occupational stress according to this model
and the risk for PD showed that high job demands
appear to increase PD risk in men, especially in
men with high education, whereas high job control
increases PD risk more strongly in low educated
women [57].

Occupational exposure to environmental factors
with neurotoxic potential has received considerable
attention in the PD field. Increased risk of PD has
been classically reported in specific occupational
groups, including farmers, wood workers, painters,
metallurgy and medical workers exposed to pesti-
cides, solvents and metals [58]. A recent nationwide
study conducted in France, based on a comprehen-
sive analysis of industry sectors, showed a significant
association between PD incidence and specific sec-
tors (e.g., agriculture, metallurgy, textile). However,
the difference in the distribution of occupations and
exposure patterns between men and women compli-
cate the realistic assessment of gender-related impact
of this risk factor [59].

A recent population-based, longitudinal large-
scale cohort study conducted in statin-free individ-
uals examined the association between cholesterol
levels and PD risk. The authors found that total
cholesterol levels greater than 180 mg/dL and low-
density lipoprotein cholesterol levels greater than
110 mg/dL are associated with a decreased risk of
PD in middle-aged men and elderly women [60].
The age-pooled analyses also showed a significantly
reduced PD risk for men, but not for women. Given
the absence of the potentially confounding effect of
statin use, this study could provide a relevant con-
tribution in clarifying the controversial relationship
between cholesterol and PD. Although the study was
not designed to provide mechanistic information, the
authors suggested a modulatory effect of sex hor-
mones on lipoprotein metabolism and apolipoprotein
E phenotype.

Physical activity is another important lifestyle fac-
tor that may affect PD onset, severity and progression.
High levels of exercise in midlife are associated
with lower PD risk, better disease prognosis and
lower rates of serious complications [61]. A large
international multicenter cohort study on early PD
patients showed that higher self-reported activity
scores were associated with younger age and male
gender. Older patients, especially women, may be
particularly vulnerable to inactivity and its compli-
cations [62].

BIOLOGICAL SEX AND PD THERAPY

Pharmacological therapy of motor symptoms

In the absence of a disease-modifying therapy,
PD treatment is currently based on the control
of motor symptoms by levodopa supplementation.
However, long-term therapy with levodopa is associ-
ated with the development of motor complications,
such as levodopa-induced-dyskinesia, wearing off
and on-off phenomena. It is generally assumed
that dyskinesia is associated with sustained lev-
odopa plasma levels [63]. Commonly, women present
greater levodopa bioavailability, which is further sup-
ported by lower levodopa clearance levels [64, 65].
Dopamine bioavailability in the central nervous sys-
tem is dependent on the activity of two catabolic
enzymes: catechol-O-methyltransferase (COMT)
and monoamine oxidase-B (MAO-B), whose encod-
ing genes are located on the chromosome 22 and X
chromosome, respectively [66]. A study that explored
the relationship between MAO-B or COMT func-
tional SNPs and levodopa therapy reported that male
(but not female) PD patients carrying the MAO-B G
allele had a 2.84-fold increased risk of developing
motor complications when treated with high doses of
levodopa [67].

The main genetic variant of the DRD2 gene, encod-
ing for the D2 dopamine receptor, is TaqIA (SNP
rs1800497), which has been associated with higher
frequency of motor fluctuations and dyskinesia in
response to PD treatment [68]. The SLC6A3 gene
encodes the dopamine transporter and the most stud-
ied polymorphism of this locus (SNP rs28363170)
has been associated with an increased susceptibility
to PD in selected different populations, although not
unanimously [69]. In a very recent study conducted
in a Brazilian cohort of PD patients, an association
between rs1800497, rs28363170 SNPs and suscepti-
bility to levodopa-induced dyskinesia was described,
with a significant protective effect played by age and
male sex [70].

Pharmacological therapy of non-motor
symptoms

Antipsychotic are an important drug class for the
treatment of patients with PD or dementia with Lewy
bodies in cases where hallucinations and psychosis
can be disabling. However, these drugs have been
associated with increased mortality and morbidity
in this population, especially in older PD patients.
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Two independent studies on Canadian cohorts of PD
patients under treatment with antipsychotic drugs
showed that older age and male sex were significantly
associated with an increased rate of antipsychotic
prescriptions during follow-up [71]. As reported in
another study, male PD patients more often receive
a prescription of antipsychotic drugs in the absence
of a clear psychosis diagnosis, with respect to female
patients. This, as suggested by the authors, may be
related to the fact that male patients are more prone to
become aggressive and difficult to assist than women,
when the disease is complicated by psychosis [72].

Surgical procedures

Recently, subthalamic nucleus deep brain stimula-
tion (STN DBS) has been proposed as a promising
therapeutic tool for the management of abnormal
trunk and neck postures commonly affecting patients
in an advanced stage of the disease. Male sex
was identified as a predictor of STN DBS-induced
improvement in upper camptocormia, with a trend
towards greater improvement also in lower camp-
tocormia and global postural angle [73]. Curiously,
despite the higher motor improvement in males, qual-
ity of life measures improved more in women than in
men [74].

PD and steroids

The epidemiological evidence of sex differences in
PD suggests a possible beneficial activity of female
gonadal hormones on the dopaminergic system, par-
ticularly of circulating estradiol, which may act as
a neuroprotective agent. Therefore, several obser-
vational studies have investigated the relationship
between estrogen exposure and PD risk. Women
with higher cumulative estrogen exposure over their
lifetime have a significantly reduced PD risk [75].
Estrogens have also proved effective in improving
PD symptoms and levodopa-induced dyskinesia [76,
77]. One study reported beneficial effects of 17b-
estradiol also in a male PD patient with severe motor
fluctuations and dyskinesias [78].

Due to their peripheral action on reproductive
organs, which can promote the risk of cancer in both
sexes [79] and the feminizing effect in males, estro-
gens cannot be recommended as a treatment for PD.
A different line of reasoning may apply to selective
estrogen receptor modulators (SERMs), a promising
group of drugs that exert estrogen antagonist activity
in the mammary tissue while mimicking the effects

of estrogen in other tissues, such as bone and uterus.
SERMs are used in the clinical practice to treat and
prevent osteoporosis, and to reduce risk of breast
cancer in postmenopausal women [80]. Whereas the
effect of SERMs in patients with PD has not been
documented, there are indications that they may dis-
play beneficial effects on the of elderly brain, such
a reduced risk of mild cognitive impairment and
improvement of verbal memory in women [81, 82]
and enhancement of attention, memory and executive
function in men without inducing feminizing effects
[83].

There is some evidence that also progesterone
metabolism is impaired in PD, since the concentration
of the enzyme 5a-reductase - responsible for the con-
version of progesterone to its metabolites - has been
found reduced in the SN of PD patients [84]. The 5a-
reductase inhibitors have received attention for their
role in DA neurotransmission, with potential ther-
apeutic effects in several disorders associated with
dopaminergic hyperactivity [85]. In animal models,
these agents were shown to reduce the development
and expression of levodopa-induced dyskinesia in
both female and male rats [86], thus making this
class of drugs potential candidates for the reduc-
tion of the side effects related to dopaminergic
medications.

IMPACT OF BIOLOGICAL SEX ON PD
PATHOPHYSIOLOGY

The distinctive clinical features as well as the con-
tribution of different risk factors support the idea
that PD development might involve distinct patho-
genetic mechanisms (or the same mechanism but
in a different way) in male and female patients. It
is clear that estrogens play a preponderant role in
the sex differences in PD, providing disease pro-
tection as demonstrated by the similar incidence of
the disease in men and post-menopausal women.
Moreover, it is noteworthy that sex hormones act
throughout the entire brain of both males and females
and sex differences are now highlighted in brain
regions and functions not previously considered as
subjected to such differences, opening the way to a
better understanding of gender-related behavior and
functions.

This section presents an overview of the most
recent evidence corroborating the hypothesis of a sex-
related PD pathophysiology, with a special focus on
the role of estrogens (Fig. 2).
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Fig. 2. Impact of biological sex on PD pathophysiology. The figure summarizes the main sex-related differences in the key players of
PD pathogenesis, focusing attention on the vulnerability of dopaminergic system (upper part), neuroinflammatory cells (central part) and
oxidative stress (lower part). IP10, interferon-inducible protein 10.

Dopaminergic neurodegeneration

Dopaminergic neurons in the substantia nigra are
highly vulnerable to stress conditions, compared to
other neuronal types. This vulnerability is ascribable
to different factors, such as high oxidative burden
during dopamine metabolism, excitotoxicity, high
iron content and low mitochondrial mass. Conse-
quently, sex differences in these factors may account
for the different propensity of dopaminergic neurons
to degenerate.

Gene expression studies in human SNc dopamine
neurons of control and PD subjects revealed a
sex-specific genomic signature: genes that are upreg-
ulated in females are mainly involved in signal
transduction and neuronal maturation, while in males

upregulated genes encode proteins involved in PD
pathogenesis, such as alpha-synuclein and PINK1
[87, 88]. Together with differential gene expres-
sion, a stereological analysis of dopamine receptor
1 (D1) and 2 (D2) distribution during development
highlighted maturational changes in the expression
of these receptors between the sexes. In particular,
females had a higher D1:D2 ratio compared to males
in all regions analyzed (including dorsal and ventral
striatum) except for the insular cortex, suggesting that
D1 dominance may make one resilient to some dis-
orders (e.g., addiction) but vulnerable to others (e.g.,
anxiety) [89].

Female dopaminergic cells generally show lesser
vulnerability to factors inducing degeneration than
male neurons. Accordingly, reserpine-treated female
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rats did not show any reduction of tyrosine hydroxy-
lase immunoreactivity in the SNc and dorsal striatum
compared to males [90]. The lack of Ras homolog
enriched in striatum (Rhes), a protein that exert
pleiotropic effects on cell function, in KO mice
induced a decrease in tyrosine hydroxylase expres-
sion in males only, while KO females showed
resistance to DA neuron degeneration, which tended
to decrease only with aging [91, 92]. Interestingly,
neuronal loss in male SNc is accompanied by a
significant reduction in total ganglioside content,
especially neuronal- or synaptic-enriched ganglio-
sides GD1a and GT1b. No significant abnormalities
were found in female PD subjects [93]. Accordingly,
it has been demonstrated that estradiol acts as home-
ostatic modulator of lipid rafts, thus preserving lipid
balance in neuronal membrane microdomains [94].

The specific impact of estradiol on dopamine
metabolism mainly accounts for the reduced vulner-
ability observed in female brain. It is well known
that estradiol increases the synthesis, release, reup-
take and turnover of DA. Moreover, this hormone
potentiates amphetamine-stimulated DA release in
the dorsolateral striatum in ovariectomized rats by
interaction with estradiol and mGlu5 receptors [95].
Nevertheless, Conway and coll. demonstrated that
dopamine production and release in female rats can
also be independent by estrogens and provide protec-
tion from kappa opioid receptors-mediated negative
effects on brain stimulation reward [96].

Neuroinflammation

Neuroinflammation is an important piece of the
pathogenic puzzle of PD. Current evidence suggests
that the physiological role exerted by microglial and
astrocytic cells could become compromised during
aging, thus contributing to PD onset and progression
[97–100]. Since estrogens have anti-inflammatory
properties, their actions throughout the lifespan could
partially account for sex-related risk and manifesta-
tion of PD.

Transcriptomic analysis of male and female
microglia isolated from adult healthy mice revealed
that microglia is sexually differentiated and that its
sensitivity and ability to respond to specific hormonal
and environmental stimuli is affected by the neona-
tal estrogen priming which permanently induces a
sexual phenotype that is maintained in the adult
animals [101]. In particular, estrogen priming of
male microglia changes their immune capacity by
increasing the ability to react to inflammatory stimuli.

Accordingly, Hanamsagar and coll. have demon-
strated that the mechanisms driving development
and immune reactivity in microglia are dissocia-
ble in males vs. females and that male microglial
transcriptome is more developmentally mature than
female microglia [102]. As mentioned before, post-
natal sexual dimorphism persists in the adult brain,
as demonstrated by the differences in the number
and morphology of microglia in different anatomi-
cal regions (i.e., hippocampus, cortex and amygdala)
between males and females [103, 104]. This het-
erogeneity may lead to development of distinct,
sex-dependent microglia inflammatory responses in
the brain. Several studies in animal models of PD
showed that the neuroprotective and symptomatic
effect of estrogens is due to their ability to attenuate
microglia activation and to modulate microglia polar-
ization toward a cytoprotective phenotype [105–107].

Similarly to microglia, also astrocytes show sex
differences under physiological and pathological
conditions. Male and female cortical astrocytes
respond differentially to an inflammatory challenge,
such as a treatment with lipopolysaccharide [108],
leading to increased levels of distinct inflammatory
factors. In detail, male astrocytes showed enhanced
expression of IL6, TNF� and IL1� after LPS
treatment whereas the levels of interferon-inducible
protein 10 were higher in astrocytes derived from
females. Further, a recent study demonstrated sex-
dependent mitochondrial bioenergetic properties of
rat cortical astrocytes, with male astrocytes having a
higher maximal respiration than female astrocytes at
low physiologically relevant oxygen tension [109].

Astrocytes participate in the protective actions of
estrogenic compounds [110]. Recent findings point
to the role of these inflammatory cells in mediat-
ing the effect of sex hormones on cognition. The
proven role of estrogens in hippocampal plasticity
and the evidence of estrogen effects on memory, sug-
gested a positive relationship between estrogens and
cognition. Yun and coll. demonstrated that estrogens
might protect against memory impairment through
the regulation of neurogenic inflammation by inhibit-
ing NF-κB activity [111]. Analogously, the reduction
of estradiol level and the expression of its recep-
tors in hippocampus of aged female rat has been
shown to contribute to the deficit of spatial mem-
ory performance in the Morris water maze test
[112]. Nevertheless, a recent paper recommended to
carefully consider the positive effect of estrogens
on cognition, suggesting that these hormones can
enhance and impair learning depending on the mem-
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ory system [113]. In this context, astrocytes would
play the role of providers of metabolic substrates -
especially lactate - during cognition, thus mediat-
ing the opposing effects of estrogens on learning.
Most interestingly, a study on adult zebra finches
indicates that astrocytes can increase estradiol syn-
thesis through cytokine-dependent up-regulation of
aromatase and release of cytokines; this, in turn, could
alter metabolic and neural plasticity phenomena that
are essential for learning and memory [114].

Oxidative stress

Different factors seem to contribute to oxida-
tive stress in PD, including dopamine metabolism,
mitochondrial dysfunction, iron overload, neuroin-
flammation, calcium dysregulation and aging.

In particular, given the vital functions exerted
by mitochondria and the high metabolic rate and
increased sensitivity to oxidative damages of the
brain, the maintenance of mitochondrial homeostasis
is central to neuronal viability and function. Because
of their exclusive maternal transmission, mitochon-
dria exhibit a strong sex-specific behavior and exert
differential effects in males and females. Gender
indiscriminately impacts on all mitochondria func-
tions. Studies conducted in animals and postmortem
human samples showed that female neurons have
higher electron transport chain activity and greater
functional capacities compared with male neurons
[115–117]. Generally, lower oxidative stress and
damage have been observed in brain mitochondria
from female rats compared with males, indepen-
dently of age and estrus cycle [115, 118]. Contrary
to positive influence of female gender on cell res-
piration and generation of redox oxygen species,
calcium uptake capacity is lower in female than male
brain mitochondria [119], which can negatively affect
mitochondrial calcium buffering and consequently
cell homeostasis.

Mitochondria are both the site of steroidogenesis
and target of sex-steroids in stimulating mito-
chondrial functions, especially biogenesis. Estradiol
counteracted the loss of mitochondria in aged female
hippocampus, restoring mitochondrial number to the
levels observed in young animals [120]. G-1, an ago-
nist of G protein-coupled estrogen receptor (GPER),
reversed the reduction of estrogen receptors in the
hippocampus of 16-month-old female rats, increased
mitochondrial membrane potential and activity of
anti-oxidant enzymes [121]. These effects are accom-
panied by a relief of anxiety and depression-like

behavior suggesting GPER as a potential therapeu-
tic target for estrogen deficiency-related affective
disorders. Analogously, estradiol and the selec-
tive estrogen receptor modulators tamoxifen and
raloxifene have been shown to reduce oxidative
stress, apoptosis, mitochondrial membrane depolar-
ization and Ca2+ influx through the inhibition of
thermosensitive transient receptor potential (TRP)
channels [122]. Nakano and coll. showed that
esculetin, a small chemical with agonist action on all
three estrogen-related receptors, enhances glycolysis
and mitochondrial respiration when added to cul-
ture media of neuronally differentiated PC12 cells,
leading to elevated cellular ATP levels [123]. Inter-
estingly, the effects of estrogens are not restricted to
neuronal cells as demonstrated by the protective out-
comes of the treatment with tibolone—a synthetic
steroid with estrogenic, progestogenic and andro-
genic actions—on astrocytic mitochondria [124].

Although the sexual dimorphism in brain mito-
chondria has been proven, few recent studies have
dealt with sex-related differences of oxidative stress
in the context of PD. Sex variance in prooxidant-
antioxidant balance and malondialdehyde levels, a
product of lipid peroxidation, has been observed
in PD patients [125]. Interestingly, a recent neu-
romelanin (NM) imaging study highlighted a bigger
normalized NM-rich volume in the women SN com-
pared with men older than 47 years, suggesting that
this difference may underpin the high male-to-female
ratio of the PD prevalence [126]. Neuromelanin, a
pigment with paramagnetic properties, acts as a scav-
enger removing potentially toxic substances through
the autooxidation of catecholamines and/or binding
redox-active metal ions such as iron. The relationship
between estrogens and iron in PD has been known for
decades. Experimental and epidemiological evidence
suggest that estrogens play a regulatory role in iron
metabolism. Striatum of male mice has been shown
more susceptible to iron accumulation than female
[127]. Analogously, a study conducted on humans
showed that at the same plasmatic concentrations of
iron, women had a lower probability of having PD
[128]. Recently, it has been clarified that estradiol-
related effects on iron metabolism exploit different
pathways between the sexes, with GPER1 mediating
the suppressive effects of estradiol on iron overload-
induced autophagy in males while estrogen receptor
� on induced lipid peroxidation in females [129].
Moreover, Xu et al., discovered a cell-dependent
regulation of iron metabolism by estrogens. Accord-
ing to these findings, estrogen would increase the



S. Cerri et al. / Parkinson’s Disease in Women and Men 511

expression of iron exporter ferroportin 1 (FPN1) and
iron importer divalent metal transporter 1 (DMT1) in
astrocytes, whereas the down-regulation of iron reg-
ulatory protein may account for the decreased DMT1
and increased FPN1 expression in neurons [130].

CONCLUSION

Increasing experimental and clinical evidence sup-
ports the idea that PD differs between women and
men. Not only do men and women experience the
disease differently, but different mechanisms seem
to be involved in the pathogenesis of the disease.
Nevertheless, we are still far away from the actual
understanding of what underlies such differences.
Studies in this area are under-represented, both from
the clinical and research perspective, especially for
females. In line with this, governmental and pri-
vate initiatives are strongly encouraging scientists
and clinicians to have special consideration for gen-
der characterization and sex-specific issues in PD.
Recently, the Parkinson’s Foundation, a US-based
national organization, created a national agenda to
identify research and care practices that better capture
the needs of women. The overall goal is to develop tai-
lored interventions and design innovative programs
that meet the distinct requirements of men and women
with PD. It is a line that is worth pursuing and will
deserve further attention by the scientific community
and policy makers.
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