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Abstract. As therapeutic trials target early stages of Parkinson’s disease (PD), appropriate patient selection based purely on
clinical criteria poses significant challenges. Members of the Critical Path for Parkinson’s Consortium formally submitted
documentation to the European Medicines Agency (EMA) supporting the use of Dopamine Transporter (DAT) neuroimaging
in early PD. Regulatory documents included a comprehensive literature review, a proposed analysis plan of both observational
and clinical trial data, and an assessment of biomarker reproducibility and reliability. The research plan included longitudinal
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analysis of the Parkinson Research Examination of CEP-1347 Trial (PRECEPT) and the Parkinson’s Progression Markers
Initiative (PPMI) study to estimate the degree of enrichment achieved and impact on future trials in subjects with early motor
PD. The presence of reduced striatal DAT binding based on visual reads of single photon emission tomography (SPECT)
scans in early motor PD subjects was an independent predictor of faster decline in UPDRS Parts II and III as compared
to subjects with scans without evidence of dopaminergic deficit (SWEDD) over 24 months. The EMA issued in 2018 a
full Qualification Opinion for the use of DAT as an enrichment biomarker in PD trials targeting subjects with early motor
symptoms. Exclusion of SWEDD subjects in future clinical trials targeting early motor PD subjects aims to enrich clinical
trial populations with idiopathic PD patients, improve statistical power, and exclude subjects who are unlikely to progress
clinically from being exposed to novel test therapeutics.
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BACKGROUND

Parkinson’s disease (PD) is the second most com-
mon neurodegenerative disease affecting 2% to 3%
of people over 65 years of age [1] and has been
recently reported to be the most rapidly growing
neurological disease [2, 3]. Although symptomatic
treatments are available for the disabling motor and
some non-motor symptoms of the disease, these
treatments have not been shown to slow the progres-
sion of the underlying disease pathology. Thus, the
development of drugs that modify the course of the
disease is an important aim being pursued by indus-
try, academia and non-profit organizations. Recent
advances in PD research include the discovery and
development of promising targets [4, 5]. Yet drug
developers face many challenges in advancing new
treatments aimed at disease modification [6–8]. PD
is linked to toxic accumulation of aggregated forms
of the normal synaptic protein, �-synuclein, in the
brain and peripheral nervous system. �-synuclein
is the major component of Lewy bodies and Lewy
neurites, the hallmark pathology of PD. Rare point
mutations and the presence of extra copies of the
synuclein gene result in autosomal dominant PD
[9, 10]. Novel therapeutic development efforts are
underway targeting �-synuclein [11] and the two
most common genetic causes of PD, glucocerebrosi-
dase (GBA) deficiency [12], and mutated forms of
leucine rich repeat kinase 2 (LRRK2) [4, 13]. Cellu-
lar processes considered to be valid targets for drug
development include the molecular processes leading
to �-synuclein accumulation (synthesis, aggregation
and clearance), as well as mitochondrial dysfunction
and neuroinflammation [14]. Recent PD clinical tri-
als have focused on the following therapeutic targets:
calcium flux (Isradipine), brain levels of the antioxi-
dant, urate (Inosine), the c-Abl kinase (Nilotinib), and

insulin signalling via the GLP-1 receptor (Exenatide)
(reviewed by [5, 6]).

Regardless of molecular target, clinical studies
of agents intended to slow disease progression in
PD could benefit from application of biomarkers to
help enrich clinical trial populations with the most
appropriate patients for the study. This review high-
lights the formal qualification opinion issued by the
European Medicines Agency (EMA) for the use of
molecular neuroimaging of the dopamine transporter
(DAT) as an enrichment biomarker for use in PD clin-
ical trials. A manuscript focused on highlighting the
data analyses and regulatory aspects of this project
was recently published [62].

The need to identify clinical trial populations
using biomarkers and pathology

There is an emerging consensus among PD
researchers that, as with other neurodegenerative dis-
eases, disease modifying treatments are most likely
to be effective at an early stage of the disease,
when delaying progression and disability will be
most impactful. In fact, we have learned that motor
symptoms are only apparent after profound loss of
dopaminergic neurons in PD [15]. It can, however,
be challenging to diagnose PD, especially in early
stage disease when other neurological disorders can
present with similar signs and symptoms [16, 17].
Identifying the right participants to enroll in clinical
trials is critically important for early intervention and
is particularly challenging based on clinical criteria
alone [18]. One approach to identify the appropriate
participants is to use biomarkers, particularly in light
of increasing emphasis on precision medicine. Imag-
ing biomarkers have been employed in PD clinical
trials quite extensively primarily using dopaminergic
ligands. At present there is strong interest in devel-
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oping novel molecular imaging tracers, particularly
those such as synuclein radiotracers [19, 20] that will
enable confirmation of target engagement.

Defining enrichment

The use of biomarkers to enrich the clinical trial
population, leading to a more homogenous treat-
ment cohort, is likely to address this challenge. There
are many examples to learn from; for example, in
therapeutic development in Alzheimer’s disease [23,
24]. A biomarker may be applied as an inclusion or
exclusion criterion to distinguish the targeted indi-
cation from another condition with a similar clinical
presentation but a different cause. For example, in
contemporary Alzheimer’s disease trials, an amy-
loid PET scan has been used to enrich the clinical
trial population by excluding subjects without fibril-
lar amyloid deposits in their brain [55]. This results in
a high screen failure rate but provided a more homo-
geneous population by excluding subjects whose
memory impairment is unlikely to be caused by amy-
loid pathology.

Regulatory authorities define “enrichment” as “the
prospective use of any patient characteristic to select a
study population in which detection of a drug effect (if
one is in fact present) is more likely than it would be in
an unselected population” [21]. Health authorities in
the US and Europe have encouraged the use of enrich-
ment biomarkers in clinical trials to support drug
development [22, 23–25]. Biomarkers for enrichment
are aimed at identifying a population of trial partic-
ipants who are more likely to progress or respond
to treatment. An example is the use of low baseline
hippocampal volume as an enrichment biomarker to
identify predementia subjects more likely to progress
in a clinical trial for early Alzheimer’s disease [26].

Ensuring consensus and broad adoption:
biomarker qualification

The selection of biomarkers for use in clinical
trials conventionally merits a confidential discus-
sion between the regulator and the study’s sponsor
[5]. Regulators also offer biomarker qualification, a
public and formal review process to accelerate the
adoption of drug development tools across targets
and sponsors [23, 27, 28]. Regulatory qualification
provides a mechanism by which the regulators define
and endorse a biomarker for use in a clearly defined
way to support drug development. The development
of a strategic pathway for biomarker qualification

provides a uniform, consistent method for advancing
specific biomarkers for specific contexts. The explicit
methods of validation vary depending on the process
mapped out, yet regulatory guidance on qualification
affords clarity and transparency (21st Century Cures).
The “context of use” refers to the specific applica-
tion of the biomarker in drug development. Once
the regulators have qualified a particular biomarker
for a specified context of use, this biomarker gener-
ally does not require further regulatory review and
approval for use by sponsors in drug development
[28, 29].

Dopamine transporter imaging as an enrichment
biomarker

For therapeutic trials in patients with PD, drug
developers have an urgent need for effective biomark-
ers to enrich study patients and assess target
engagement, disease prognosis, and clinical response
[7–30]. There is not yet a reliable biofluid or imaging
biomarker of �-synuclein to enrich PD clinical trial
populations [19, 20, 30, 57]. However, neuroimaging
biomarkers, particularly ones probing the dopamin-
ergic system in the brain, have been employed in PD
clinical trials for many years [31, 32]. The dopamine
transporter (DAT), a transporter protein that is located
on the presynaptic terminal of dopaminergic neurons,
can be imaged with specific molecular radiotracers
[33]. Reductions of DAT radiotracer binding (DAT
deficit) correlate with the disease duration from early
stages of the disease [34], matching pathological find-
ings from DAT immunohistochemistry [35]. Recent
studies demonstrate DAT deficit may be augmented
in synuclein mutation PD subjects [36].

The application of DAT in clinical trials can be
used to detect the absence of DAT-deficiency, termed
‘scans without evidence of dopaminergic deficit’
(SWEDD) [37]. Subjects defined as ‘SWEDD’ had
been identified at the end of specific clinical trials
when unblinding the imaging results even though
such subjects met clinically defined inclusion criteria
for PD at the study recruitment phase. The Parkinson
Progression Marker Initiative (PPMI) observational
study elected to identify a specific cohort of SWEDD
subjects at study onset and follow these subjects
longitudinally [38]. Although the pathological basis
for Parkinson-like symptoms in subjects identified
as SWEDD remains uncertain and no correlative
post-mortem data is yet available, data from mul-
tiple sources has indicated that motor deterioration
in SWEDD subjects is much slower than in sub-
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jects whose scans show evidence of dopamine nerve
terminal loss [39–44]. Data to date when looked
at collectively demonstrate that for cohorts enrolled
within one year of diagnosis approximately 10 to 15%
of subjects enrolled in PD clinical studies may lack
imaging evidence of dopamine deficiency at baseline
and that their disease progression will be significantly
slower than those who do.

Figure 2 illustrates that the proportion of SWEDD
subjects is greater in study populations closer to the
date of diagnosis. As clinical trial sponsors aim to
treat PD populations at earlier stages of the disease,
the value of enrichment with DAT imaging therefore
increases.

The radioligand (123I) �-CIT, developed as a
selective tracer of the dopamine transporter, was
shown to be useful in the evaluation of PD and has
been used in several PD clinical research studies
and trials. Fluoroalkyl analogues were subsequently
introduced, which required shorter tracer uptake
times and which were somewhat more selective [45].
One of these DAT imaging agents (the single photon
emission tomography, SPECT, radiotracer Ioflupane
or 123I FP-CIT) was developed further and subse-
quently, approved as a medical product by both FDA
(DaTscan™) and EMA (DaTSCAN). It is available
widely throughout the world. At present, this DAT
imaging agent is approved for clinical use to assist
in the evaluation of patients with suspected parkin-
sonian syndromes to distingusih PD from essential
tremor [46].

The Critical Path for Parkinson’s (CPP) is a global
public-private partnership to accelerate drug devel-
opment in PD [47]. The Critical Path Institute in the
United States and Parkinson’s UK jointly sponsor
this collaboration. CPP is comprised of pharmaceu-
tical companies, academic researchers, government
agencies and advocacy research organizations col-
laborating to share data and development drug
development tools for regulatory acceptance.

CPP has proposed the use of DAT imaging as a
biomarker during the screening phase of clinical trials
of novel PD therapies, to enrich the selected popula-
tion, by excluding SWEDD subjects and thus provide
a more homogeneous study population. Conducting a
PD clinical study in such an enriched patient popula-
tion, can optimize trial sample size, thereby reducing
trial costs. Furthermore, such enrichment will direct
the treatment to the intended patients for whom the
evaluation of benefit and safety of the intervention
is intended, without unnecessarily exposing others to
therapeutic candidates.

In 2015 and 2016 respectively, the US FDA and
the EMA issued letters of support for use of DAT
imaging as a drug development tool as an enrich-
ment biomarker in early PD clinical trials [48, 49].
The letters of support originated from the Critical
Path Institute consortia, coalition Against Major Dis-
eases (CAMD) and CPP. The purpose of these formal
public letters issued is to communicate to the exter-
nal community the growing evidence for the use of
the biomarker and encourage sponsors to collect and
share relevant data supporting the biomarker use in
ongoing and prospective clinical trials.

Qualification of DAT imaging as an enrichment
biomarker in early PD trials

The full qualification document including details
of the data analyses and imaging methodology rec-
ommendations can be found on the EMA website
[50]. The analyses that supported the qualification
opinion has been published [50, 62] and was accepted
for publication prior to the final regulatory qual-
ification. The qualification document contains the
operational details required to employ DAT SPECT
imaging in a clinical trial of patients with early motor
PD. The methodology outlining the foreseen use is
based on visual reads and fully aligns with recom-
mendations for use of DAT imaging in US [33] and
EU [51]. Figure 1 illustrates how this enrichment
biomarker is recommended for clinical trials based
on the proposed context of use.

Biomarker qualification requires a clear definition
of the application, stage of drug development and
the population studied. The context-of-use of the PD
imaging biomarker qualified by the EMA is outlined
below:

CONTEXT-OF-USE (COU) STATEMENT

General Area

Enrichment biomarker for clinical trials in early
motor Parkinson’s disease.

Target population for use

Patients with early motor PD, defined by the UK
Brain Bank Criteria as outlined below:

Having at least two of the following: resting
tremor, bradykinesia, rigidity (must have either rest-
ing tremor or bradykinesia); OR either asymmetric
resting tremor or asymmetric bradykinesia. Based on
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Fig. 1. Proposed flow chart to apply DAT imaging as an enrichment biomarker in clinical trials targeting subjects with motor signs of early
PD. Each of the four inclusion criteria / steps must be met for subjects to be successfully enrolled into the PD clinical trial. The clinical
criteria must be met before subjects undergo DAT SPECT imaging (final step).

above criteria, combinations could include: resting
tremor/bradykinesia, bradykinesia/rigidity, and rest-
ing tremor/rigidity.

• Symptom(s) or signs may include bradykinesia,
a 4–6 Hz resting tremor, muscle rigidity, or pos-
tural instability not caused by primary visual,
vestibular, cerebellar or proprioceptive dysfunc-
tion.

• Hoehn and Yahr Stage I or II at baseline.
Although postural instability is a common fea-

ture in PD, based on the inclusion criterion of
Hoehn and Yahr Stage I or II, postural instability
would not be expected in the target population.

Stage of drug development for use

All clinical stages of early PD drug development,
including proof of concept, dose-ranging through to
confirmatory clinical trials. This is not intended for
candidate therapies for more advanced stages of PD
such as drugs to treat levodopa induced dyskinesias.
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Fig. 2. The proportion of subjects with absence of DAT deficit in clinical trials increases with earlier stages of PD. A number of PD clinical
studies have identified subjects defined as SWEDD by employing DAT imaging at baseline and follow up. The proportion of subjects
defined as SWEDD decreases with the time since diagnosis for those in specific PD clinical studies targeting early stages of the disease. The
proportion of SWEDD subjects is lower in studies enrolling subjects with longer duration of disease. As sponsors enroll PD subjects earlier
in the disease (i.e., sooner after diagnosis), the value (benefit) of DAT imaging for enrichment increases. References for PD clinical studies:
[38, 39, 41, 59–61]. ELLDOPA: Levodopa; PRECEPT: Mixed Lineage Kinase Inhibitor CEP 1347; REAL-PD: Ropinirole; CALM-PD:
Pramipexole; GPI1485: Immunophilin; PPMI: Parkinson’s Progression Markers Initiative.

The predictive value of DAT imaging in a
realistic clinical trial setting

To support the EMA biomarker qualification, CPP
collected, standardized, and integrated data from two
clinical studies that employed DAT imaging namely,
PPMI [38] and PRECEPT [40, 52]. These studies had
similar clinical inclusion criteria and target popula-
tions at baseline, with equivalent visual reads based
on different DAT tracers. Two different versions of
the clinical score were used to track disease progres-
sion (MDS-UPDRS part III in PPMI versus UPDRS
part III in PRECEPT); these versions were homoge-
nized to the MDS-UPDRS part III for analyses of the
integrated data.

PRECEPT and PPMI represent uniquely rich
cohorts of well characterized subjects with early stage
PD where subject-level data was available to CPP for
analyses to support regulatory science goals. Both
studies include similar patient populations from mul-
ticenter global sites with application of DAT imaging
at baseline and long term clinical follow up. The
use of both observational and randomized clinical
trial (RCT) populations aided in the confidence of
predictability of the results to prospective trial popu-
lations that align with the proposed context-of-use.

Additional considerations worth noting are that
SWEDD subjects in PPMI learned their imaging
results after the baseline scans were interpreted.

Subjects were offered the opportunity to remain
enrolled in PPMI to advance the understanding of
PD and many opted to continue. In PRECEPT, all
subjects and clinicians remained blinded throughout
the duration of the clinical trial. SWEDD status was
not defined in PRECEPT until study completion.

The analysis of the integrated patient-level data
from both studies took careful account of the hetero-
geneity in specific variables. This integrated analysis
confirmed that, as a subpopulation, subjects who
had no evidence of DAT deficit (SWEDD subjects)
progressed more slowly than the subpopulation of
those classified with DAT deficiency. The change
from baseline of MDS-UPDRS part III at 24 months
was 4.28 points (90% CI: 3.45, 5.08) for those with
DAT deficit, and 1.12 points (90% CI: –0.98, 3.1) for
SWEDD subjects [53].

Patient-level longitudinal data of 672 early stage
PD subjects in the PPMI observational study and the
PRECEPT clinical trial were utilized in a linear mixed
effects model analysis. The rate of worsening in the
motor scores between subjects with and without DAT
deficit was different both statistically and clinically.
Since the application of the biomarker is intended
for clinical trial enrichment based on predictions of
continuous disease progression, examination of diag-
nostic sensitivity, specificity and predictive values
was not required for the analyses as this would lack
applicability in this context. Clinical trial simulations
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were carried out in order to understand the impact of
enrichment on sample sizes. For illustration, a trial
simulation analysis was based on the PPMI and PRE-
CEPT data and simulated a 24-month clinical trial
with or without enrichment with the DAT imaging
biomarker for subjects recruited soon after diagno-
sis. This analysis showed that using the DAT imaging
to include only subjects with confirmed dopamine
deficit resulted in a potential gain in statistical power
equivalent to a 24% reduction in sample size and
reduced the heterogeneity of the study population.
DAT imaging would thereby decrease the exposure
of non-PD patients to the therapeutic intervention
and increase the chance of successfully establish-
ing whether an experimental medicine is effective,
regardless of the drug’s specific mechanism of action.

Because the enrichment biomarker excludes sub-
jects that show minimal to no decline in disease
progression, this gain in statistical power is not spe-
cific to a therapeutic target but is generally applicable
to clinical trials in early motor PD soon after diagno-
sis. It is important to note that the qualification is for
the biomarker itself rather than a specific radiotracer
or commercial product.

Limitations of the biomarker

The limitations to the use of this imaging
biomarker include: 1) Any condition in which there is
loss of dopaminergic nerve terminals in the striatum,
such as progressive supranuclear palsy and multiple
system atrophy, will show reduced signal using DAT
imaging [32]. CPP is not proposing DAT imaging
for use as a diagnostic biomarker to differentiate the
various forms of degenerative Parkinsonism. 2) DAT
imaging in the present context is not to be applied
as a biomarker of target engagement in PD trials.
DAT is not specific to �-synuclein and decreased DAT
levels cannot be equated with the presence of synu-
clein pathology in the brain. 3) The operational use of
the biomarker should be managed centrally in accor-
dance with the FDA guidance on imaging endpoints
for clinical trials [54], including the use of trained
central readers and 4) the diagnostic criteria that are
included in the qualification will need to be refined
to align with new criteria recognizing multiple stages
of early disease [55].

CONCLUSIONS

The EMA qualification opinion of DAT imaging
for PD clinical trials represents the first biomarker

qualified for use for PD clinical trials as a drug
development tool and is aimed to encourage the
advancement of therapies targeting early stages of the
disease. The current target population is early motor
PD, from 1 to 2 years of diagnosis. Given emerging
data demonstrating that accurate identification of PD
pathology poses significant challenges, particularly at
early stages [16] new biomarkers are urgently needed
for identifying the right subjects to recruit into clinical
trials. Imaging of synucleinopathies will be a step for-
ward for the field [19, 33] as well as the discovery and
validation of novel biomarkers for use in clinical tri-
als [56]. Continued work is needed to refine this tool
as an enrichment marker in future trials of patients in
the prodromal and even premotor stages of PD [57].
In addition, the use of longitudinal data from PPMI,
combined with interventional data from PRECEPT,
a legacy clinical trial conducted nearly 15 years ago,
demonstrates that data sharing from past and ongo-
ing PD clinical studies can optimize the opportunity
of success of future PD clinical trials. The overall
strategy aligns with recommendations for the future
vision of PD aimed at biomarker driven phenotypes
as the key strategy to enabling precision medicine
[58].
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