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Abstract. The mechanisms and significance of basal ganglia oscillations is a fundamental research question engaging both
clinical and basic investigators. In Parkinson’s disease (PD), neural activity in basal ganglia nuclei is characterized by
oscillatory patterns that are believed to disrupt the dynamic processing of movement-related information and thus generate
motor symptoms. Beta-band oscillations associated with hypokinetic states have been reviewed in several excellent previous
articles. Here we focus on faster oscillatory phenomena that have been reported in association with a diverse range of motor
states. We review the occurrence of different types of fast oscillations and the evidence supporting their pathophysiological
role. We also provide a general discussion on the definition, possible mechanisms, and translational value of synchronized
oscillations of different frequencies in cortico-basal ganglia structures. Revealing how oscillatory phenomena are caused
and spread in cortico-basal ganglia-thalamocortical networks will offer a key to unlock the neural codes of both motor and
non-motor symptoms in PD. In preclinical therapeutic research, recording of oscillatory neural activities holds the promise
to unravel mechanisms of action of current and future treatments.
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INTRODUCTION

There are several clinico-pathological subtypes of
Parkinson’s disease (PD), but all cases share the typ-
ical motor symptoms that lead to diagnosis (poverty
and slowness of movement, resting tremor, mus-
cle rigidity, postural problems). These symptoms are
mainly caused by dopamine (DA) deficiency in the
striatum, which in turn depends on the degenera-
tion of nigrostriatal DA projections. Parkinsonian
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motor symptoms are greatly ameliorated by L-
DOPA, a DA precursor that can cross the blood-brain
barrier. Unfortunately, L-DOPA pharmacotherapy
causes complications that limit its utility. Already
within five years of treatment, 30-50% of the patients
develop L-DOPA-induced dyskinesia (LID), abnor-
mal involuntary movements that are often debilitating
[1]. Moreover, L-DOPA (and other dopaminergic
treatments for PD) can induce non-motor compli-
cations, such as psychosis (hallucinations, delusion,
excitement), a complication particularly common in
older PD patients and often associated with cognitive
deterioration (reviewed in Cenci and Odin [2]). While
LID is elicited by dysregulated DA transmission in
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the motor striatum [3], and possibly also in the sen-
sorimotor cortex [4], the emergence of psychosis in
PD has been linked to altered neurotransmission in
limbic brain regions [5].

There is vast consensus that both the primary
symptoms of PD and the complications of L-DOPA
therapy depend on altered information processing
in cortico-basal ganglia-thalamocortical pathways
[3-6], but the underlying neural mechanisms remain
to be elucidated. Clues of major importance came
from the discovery of powerful oscillations of the
local field potential (LFP) within deep basal gan-
glia nuclei in PD patients undergoing functional
neurosurgery [7, 8]. In particular, LFP recordings
in patients “off”” dopaminergic medications revealed
prominent oscillations in a broad beta band (8-30 Hz;
reviewed in Hammond et al. [9]). Similar oscil-
lations were detected also in dopamine-denervated
animals (reviewed in [6, 9, 10]). The exaggerated
activity in the beta band was found to be suppressed
by dopaminergic drugs, and the degree of drug-
induced improvement in bradykinesia and rigidity
was found to correlate with the degree of suppression
of beta band oscillations in both the STN and cortex
(reviewed in [9, 10]). Based on these observations
it was hypothesized that, in the untreated parkinso-
nian state, the basal ganglia engage in abnormally
synchronised oscillatory activities in the beta band.
Exaggerated oscillatory synchronisation of neu-
ronal activity may disturb information processing in
cortico-basal ganglia loops and therefore contribute
to both motor and cognitive problems in PD [11].

By now, basal ganglia beta band oscillations in
PD (and in animal models thereof) have been the
subject of a vast scientific literature (e.g., [8—18]).
The present review article primarily focuses on faster
oscillations with frequencies spanning the higher
end of the gamma band, in particular we discuss
the high-frequency oscillations found within a nar-
row frequency interval of the gamma band that have
recently been associated with hyperkinetic states.
Our interest in this area has been fuelled by a
serendipitous observation made in 6-OHDA-lesioned
rats treated with L-DOPA. When L-DOPA elicits
dyskinesia in this animal model, the expression of
abnormal involuntary movements (AIMs) coincides
with the appearance of gamma oscillations in a
narrow frequency-band around 80 Hz within motor
cortical and basal ganglia circuits [19, 20]. Impor-
tantly, the same type of oscillations have now been
detected in motor cortex and subthalamic nucleus in
PD patients affected by LID [21] (Fig. 1). Notably,

these narrowband gamma oscillations are quite dis-
tinct from the increased gamma activities detected
during normal voluntary movement [22]. Indeed, the
latter type of gamma-activity cannot be regarded as
proper oscillations at a well-defined frequency, but
rather appear to be non-rhythmic activities manifest-
ing in a much broader range of frequencies [19-21,
23-25].

In addition to the LID-associated oscillations,
narrowband high-frequency oscillations in the
100-200 Hz range have recently been observed in
limbic nodes of the cortico-basal ganglia system upon
pharmacologic treatment with psychotomimetic
drugs and in disturbed cognitive states [26, 27]. These
recent data suggest a more general pathophysiologi-
cal role of high-frequency oscillations in conditions
involving cortico-basal ganglia dysfunction [23]. In
addition to these two types of high-frequency oscil-
lations, dopamine-dependent oscillatory activity of
even higher frequencies (above 200 Hz) have been
reported in the STN [28] and the GPi [29] in PD
patients.

Mechanistically, narrowband oscillations of the
LFP are thought to reflect rhythmic synchronizations
of transmembrane currents among a local population
of neurons. Synchronization appears spontaneously
in neural networks even without rhythmic exter-
nal input. This is a consequence of resonances that
naturally appear in any dynamic system endowed
with feedback mechanisms when the feedback tends
to amplify certain frequencies and suppress others.
Feedback mechanisms exist at the level of individ-
ual neurons (e.g., voltage-dependent ion channels),
at the microcircuit level (e.g., reciprocally connected
interneurons), in the interaction between cell popula-
tions (e.g., the excitation-inhibition balance between
glutamatergic and GABA-ergic cells), and in the
interaction between connected brain structures (e.g.,
the cortico-basal ganglia-thalamic loop). Since res-
onances are readily and spontaneously appearing in
any feedback-controlled system, it is possible that
some LFP oscillations are merely epiphenomena
without significant consequences to neural infor-
mation processing, even when they are strongly
correlated to specific behavioral states. However,
there is considerable and growing support for the
notion that LFP oscillations play an important role
in both normal brain function and brain pathologies
[23, 30-33].

In this review article, we discuss cortico-basal gan-
glia high-frequency narrowband oscillations from the
following perspectives: 1) methodological aspects
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Fig. 1. Levodopa-induced dyskinesia is strongly associated with 80 Hz cortical oscillations in both Parkinson’s disease patients and in
rodent models of the disease. This gives unique opportunities to search for the network mechanism underlying motor symptoms. (a-b) Rat
data (ON/OFF levodopa denoted in red/black). (c-d) Human data (ON and OFF levodopa represented in (c) and (d), respectively). Note
the striking similarity of the high-frequency oscillations associated with dyskinesia in rats/humans and the difference of these narrowband
resonant oscillations compared to physiological broadband gamma. Figures adapted from Halje et al. and Swann et al. [19, 21]).

and taxonomy, 2) principal experimental findings, 3)
possible underlying mechanisms, and 4) translational
importance.

On how to measure oscillatory activities
in the brain

Measures of oscillatory neuronal activities can be
obtained using a range of techniques offering differ-
ent spatiotemporal resolutions and sensitivities.

Scalp electroencephalography (EEG) is the most
widely used method to probe oscillatory electrical
activities in the human brain. For steady-state oscil-
latory activity in the cortex/thalamocortical system,
EEG can be regarded as a spatially and temporally
smoothed version of the local field potential [34]. This
smoothing arises mainly because the signal in each
EEG electrode correspond to the integrated LFPs over
several cm?, but also because of the electrical fil-
tering properties of the tissues located between the
electrodes and the brain [34].

Non-invasive recordings of brain electrical activity
can also be obtained using magnetoencephalography

(MEG), which records magnetic fields generated by
the electrical currents in the brain. By measuring the
magnetic rather than the electric component of the
field created by neuronal currents, MEG is expected
to improve both the spatial and temporal resolution
of the recorded signals, although this is not always
the case [35].

Electrocorticography (ECoG) utilizes high-density
subdural electrodes to record electrical activity
directly from the surface of the cerebral cortex.
This technique can enable recordings of higher fre-
quency components with a high spatial resolution and
a significantly improved signal-to-noise, essentially
resembling the signal of cortical LFPs [36]. Com-
pared to non-invasive approaches, ECoG recordings
are also less susceptible to muscle artefacts.

To record from deep brain nuclei, invasive record-
ing techniques are however required. The shape and
size of the recording probe, as well as the electronics
used for signal acquisition, can be optimized for the
study of single unit activity or LFPs, and trade-off
solutions are needed to record both phenomena [37].
Local field potentials (LFPs) are often the preferred
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measure to assess the degree of neuronal synchro-
nization in a certain volume of brain tissue. Despite
being a scalar quantity, the LFP is the potential dif-
ference between two points in space, and therefore
depends on the length and direction of the vector
going between the two measuring points. Hence,
the measured LFP crucially depends on the spatial
arrangement of the electrodes. The LFP is thought to
mainly reflect the local synchronization of dendritic
currents induced by excitatory and inhibitory synap-
tic inputs to the population of cells surrounding each
electrode [38]. Spiking events in the nearby cell popu-
lation are considered to give only a minor contribution
to the recorded LFP signal in most situations, but
because action potentials of cells are in many cases
entrained to the LFP, field potentials are neverthe-
less frequently used as proxy for local cell activity
[39]. However, this approximation may not always
be valid because LFPs can also be generated by very
large networks of sparsely connected neurons [23,
40]. Because all neuronal activity that influences the
potential difference between the electrode pair will
contribute to the signal, it is of key importance to use
electrode pairs that are arranged in a meaningful way
with respect to the cytoarchitecture (for a detailed
discussion see [40]). A good strategy is to implant
multiple electrodes into the structure of interest, and
then create differential measures between all possi-
ble pairs of electrodes. With this approach, one can
make sure that the current sources creating the field
are indeed local (in which case, different pairs of elec-
trodes would show different signals) [41]. Even when
LFPs are recorded with the best possible methods, it
will be difficult to interpret the significance of differ-
ences in LFP amplitudes between structures, since
differences in the cytoarchitectonic arrangement of
neurons in relation to the recording electrodes, and
properties of the extracellular space, will ultimately
define the recorded signal [40].

When the same microelectrodes are used to record
both unit activity and LFP, the recorded voltage signal
is split into a high-frequency and low-frequency part
to separate the two signals. Note however, that this
separation is not perfect and for higher frequencies of
LFP-oscillations a spectral leakage of spiking activity
may occur [42]. Although less explored in the context
of dyskinesia, unit activity has been shown to provide
an independent state description even when restrict-
ing the analysis to firing rate changes [20]. Large
differences in the physical size of the electrode (e.g.,
macroelectrodes used for deep-brain stimulation

vs. microelectrodes) could influence the capacity to
detect certain high-frequency oscillations that are
spatially more confined. This could for example
explain why 110-160 Hz oscillations are a common
finding in micro- but not macroelectrode record-
ings. For a more extensive discussion on extracellular
recording methods we refer the reader to more spe-
cific reviews on this subject (e.g., [39, 43]).

On the taxonomy of high-frequency oscillations

The classical EEG nomenclature was established
in the 1930s to describe the dominant, slow waves
below ~35Hz that are directly visible in unpro-
cessed EEG traces (delta, theta, alpha, and beta). The
term gamma was instead applied to indistinct fluctu-
ations faster than 35 Hz [44]. Gamma oscillations are
orders of magnitude weaker than the lower-frequency
oscillations and their existence in the neocortex was
established first in the 1990 s, with the discovery of
40 Hz oscillations in visual cortex. In the last two
decades, a plethora of even faster oscillations have
been found in EEG and LFP recordings, and these
are often collectively called high-frequency oscilla-
tions (HFOs) or fast/high gamma oscillations. There
is unfortunately no consensus on how to classify and
name these phenomena either within or beyond the
classical gamma band, or where the border to the
“high” gamma range lies. Thus, for the purpose of this
review, we need to clarify the definitions and classifi-
cations applied to different types of HFOs. First, we
exclude phenomena that are not proper oscillations. A
proper oscillation has a well-defined frequency, like
an auditory tone, as opposed to a non-rhythmic signal,
which is more comparable to a hissing sound (there
are methods that can reliably distinguish between the
two cases, see for example Wen et al. [45]). Second,
we distinguish between different HFO phenomena
based on the following questions, which we suggest
may serve as a good basis for an HFO taxonomy in
this context: (1) Is the oscillation transient or is it
continuous? (2) In which anatomical structures does
itoccur? (3) Is it related to or modulated by a specific
behavioral, pathological or pharmacological state?
(4) In what frequency range does it occur?

In this review, we will also consider any oscilla-
tion faster than the classical 40 Hz gamma oscillation
to be an HFO. Note that this definition deliberately
includes so called finely-tuned gamma (FTG) below
100 Hz as an HFO phenomenon (cf. [46]).
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EXPERIMENTAL FINDINGS

In conjunction with neuromodulatory treatment
applying deep-brain stimulation (DBS), recordings of
LFPs have been obtained from implanted brain struc-
tures in human patients during the early postoperative
period. This procedure offers an unusual opportunity
to obtain invasive recordings from deep structures in
the human brain. Under such conditions, a number of
studies involving different patient groups have char-
acterized neuronal activity, e.g., in GPi [8, 29, 47-49],
STN [8, 28, 48-52], pedunculopontine nucleus (PPN)
[53], and thalamus [54, 55]. HFOs were observed in
several of these recordings, and broadly, the observed
HFOs can be placed in three categories based on their
frequency: 60-90 Hz, 120-160 Hz and >200 Hz.

60-90 Hz oscillations

Basal ganglia LFP oscillations in the 60—90 Hz
range was first reported by Brown et al. [8], who
found a ~70 Hz peak in STN and GPi of PD patients
after levodopa treatment. This phenomenon was fur-
ther investigated in follow-up studies (see e.g., [49,
50-56]). Interestingly, in a limited number of studies,
recordings from deep structures were also combined
with EEG/MEG. These recordings suggested the
presence of cortical oscillations in this frequency
range that emerges after L-DOPA treatment, and
which may be functionally coupled to oscillations in
deeper structures since the recorded LFP signals were
reported to be coherent and displaying relatively con-
stant phase differences over prolonged time periods
[48, 49, 57, 58]. From these studies in patients, it has
however been difficult to establish whether 60—90 Hz
oscillations are associated with the beneficial pro-
kinetic effect of L-DOPA therapy or if they instead
indicate the transition to a pathological hyperkinetic
state, manifesting as dyskinetic movements [56]. In
general, it has been concluded that increased HFO
amplitude — at least in the deep basal ganglia nuclei
—is primarily associated with increased motor activ-
ity and/or a state of arousal that may enable motor
activity (for a review on this subject see [46]).

In motor cortex, on the other hand, evidence for a
physiological role of HFOs in this frequency range
is not as convincing. While investigations using
non-invasive recording technologies, such as elec-
troencephalography and magnetoencephalography
(EEG/MEG; [59-61]), or intracranial electrocor-
ticography (ECoG) recordings in epilepsy patients

[62-64] have shown that high-frequency oscilla-
tions in the 60-90 Hz frequency band can indeed be
found in the motor cortex in association with move-
ments, these findings relate only to brief episodes of
movement-related increases in gamma power rather
than sustained oscillatory activity. Thus, in healthy
individuals, activity in this band does not seem to be
characterized by clear sustained rhythms with a well-
defined frequency but rather by a transient gamma
band power increase that occur during movement
onset.

In an alternative view, a pathological role of this
HFO in motor cortex was instead first proposed
by Halje et al. [19], based on experiments using
microwire recordings from motor cortex and dorsal
striatum in unilaterally 6-OHDA lesioned rats.
The authors found prominent HFOs around 80 Hz
that were only present in the lesioned hemisphere
during levodopa-induced dyskinesia (LID) [19].
In this seminal study, it was also found that the
topical application of an antagonist to dopamine
type 1 receptor (D1R) onto the cortical surface was
sufficient to break the oscillation and concomitantly
suppress dyskinesia.

The relevance of this finding to PD was
recently demonstrated by Swann and collegues as
a result of the first long-term recordings performed
in dyskinetic patients using a combined DBS-
electrocorticography (ECoG) device [21]. Impor-
tantly, chronically implantable bidirectional elec-
trodes help circumvent experimental caveats asso-
ciated with the early postoperative phase following
DBS-electrode implantation. This phase is notideally
suited for brain recordings, as symptoms are often
significantly reduced following electrode implanta-
tion (i.e., even when no current is passed through the
electrode) — indicating that the symptomatic relief in
this case is primarily related to the lesion inflicted
by the electrode [65]. By recording neuronal activ-
ity over motor cortical areas and in the STN for 12
months, Swann and colleagues could present con-
vincing evidence that, in PD patients, dyskinesia goes
hand in hand with the same type of motor cortical
HFOs observed in the rat model of LID. A detailed
analysis of HFOs was also performed in the STN,
prompting the conclusion that this narrow-band HFO
is principally pathological rather than pro-kinetic.
More specifically, the oscillation was found to be
minimally affected by voluntary movements while its
presence proved to be a reliable biomarker of dyski-
nesia. This result is at variance with previous studies
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that have associated gamma oscillations with the ben-
eficial pro-kinetic effect of levodopa therapy [50, 56].
Such an interpretation likely stems from the increased
oscillation amplitude often observed in the STN
following levodopa-treatment, and sometimes also
in other parts of the cortico-basal ganglia-thalamic
loop (also in non-PD subjects) in direct association
with motor actions, taking the form of a transient
event-related synchronization of neuronal activity
(reviewed in Jenkinson et al. 2013, [46]; see also
[66]). However, these movement-modulated oscil-
lations may not be functionally equivalent to the
long-lasting oscillations found in dyskinetic states,
even if the two phenomena may have similar spectral
contents. Indeed, such a distinction has been pro-
posed also for beta-band oscillations by a recent study
in parkinsonian monkeys, showing that the duration
of oscillatory episodes in the beta-band is critical to
predict pathological motor states [18].

To further clarify the neurophysiological role of
narrow-band HFOs in LID, several studies have
further explored this phenomenon in rodents [20, 24,
67, 68]. A study by Dupre and colleagues showed
that the oscillations develop together with dyskinetic
symptoms with daily levodopa administration during
a one-week priming period [24]. During this period,
the abnormal involuntary movements became grad-
ually more severe. They also showed that similar
oscillations can be induced in L-DOPA-primed rats
by independently stimulating dopamine receptors of
the D1 or D2 type [24]. At the level of LFPs, these
oscillations are particularly strong in corticostriatal
circuits and are also observed both in the globus pal-
lidus (corresponding to the external pallidal segment
in primates) and in motor nuclei of the thalamus, but
are typically somewhat less pronounced in the STN
compared to the findings obtained in patients [21].
Overall, LFP oscillatory activities, including HFOs
around 80 Hz, can be used as very robust electro-
physiological biomarkers to classify parkinsonian
and dyskinetic states in the 6-OHDA rodent model,
as shown in Tamte et al. [20]. In this study the authors
quantitatively compared the spectral components
in eight different brain structures to assess which
components most reliably predicted brain states
associated with untreated parkinsonism versus dysk-
inesia, with or without additional pharmacological
treatment. Classification performance (as estimated
by fitting of a Gaussian mixture model to the data
[20]) improved steadily with inclusion of a broader
spectral content and/or addition of brain structures.
Interestingly, HFOs around 80Hz in the rostral

forelimb area (a premotor/supplementary motor area
in rodents) were a particularly useful physiological
marker of LID [20] (which also appears consistent
with the findings by Swann et al. [21]).

110-160 Hz oscillations

HFOs in the 110-160 Hz range have been stud-
ied intensely in the hippocampus of healthy animals
(for a review, see [69]). Recently, similar HFOs were
shown by Brys et al. to be widespread in the basal
ganglia and motor cortex of unilaterally 6-OHDA
lesioned animals, being present on both sides of the
brain (and with relatively increase in power following
L-DOPA treatment) [70]. A general feature of these
oscillations is that their amplitude is modulated by the
phase of a much slower oscillation in the theta range
(5-10Hz) as indicated by measurements of phase-
amplitude coupling. In the hippocampus literature,
an increase of theta-HFO coupling has been shown
to correlate with higher cognitive demands and brain
states associated to memory processing [42, 71]. The
role of theta-HFO coupling in this PD model is cur-
rently unknown, but both L-DOPA and antidyskinetic
treatment with 5-HT 4 agonists alter the amplitude
and frequency of this type of HFO, as well as its
coupling to lower frequencies [70].

Intriguingly, a separate line of research has
shown that acute administration of psychotomimetic/
psychedelic drugs to healthy animals often induce
similar HFOs in the prefrontal cortex and the nucleus
accumbens [26, 27], structures belonging to the lim-
bic part of the cortico-basal ganglia-thalamic loop.
It is therefore tempting to speculate that psychotic
symptoms can arise as a consequence of aberrant
HFOs (or the brain state associated with these oscil-
lations) in the cognitive and limbic loops of the
cortico-basal ganglia network in a similar way as
motor symptoms may result from oscillations in sen-
sorimotor loops. This could also explain why some
PD patients experience episodes of psychotic symp-
toms as a side effect of levodopa treatment (reviewed
[2]). Therefore, these HFOs may be important to fur-
ther study in the context of non-motor PD symptoms
and neuropsychiatric side effects of current medica-
tions [70].

Oscillations above 200 hz
LFP oscillations above 200 Hz were first observed

in the parkinsonian brain by Foffani et al. [28],
who reported distinctive peaks at 319 +33Hz in
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the STN of levodopa-treated PD patients. Moreover,
Wang et al. [72] detected HFOs above 200 Hz in part
of the STN in PD patients off medications, reporting
that the power of such oscillations was negatively
correlated with akinesia and rigidity scores [54].
Importantly, although HFOs above 200 Hz are often
disregarded as leaked spiking activity of a few neu-
rons, Wang et al. [72] were able to show that this
oscillation was not directly caused by spiking activity
(since the high-frequency power increase remained
also after subtraction of all visible unit activity) and
could thus be regarded as a proper LFP phenomenon
generated by a large population of neurons.

The frequency of these HFOs is strongly modu-
lated by dopamine, with a slowing by about 60 Hz in
the dopamine-depleted state (265 &= 33 Hz; [73]). The
amplitude is positively correlated to dopamine tone
and it is also enhanced during voluntary movement,
especially in the L-DOPA-treated state [28, 73]. This
pattern of amplitude modulation is very similar to the
modulation pattern of the 70-80 Hz HFOs observed
in the STN of PD patients [48]. Several studies have
also reported modulation of the HFO amplitude by
the phase of beta oscillations (phase-amplitude cou-
pling; [15, 73, 74]) and to other frequencies below
the beta band [72]. An oscillation with very similar
characteristics has also been reported in GPi [29].

With respect to motor signs, it has been reported
that UPDRS scores of akinesia/rigidity were nega-
tively correlated with HFO amplitude, i.e., the more
impaired patients had weaker HFOs [72]. It is how-
ever not clear if HFOs may have a direct impact on the
genesis of parkinsonian motor features or are, instead,
modulated by them.

Recently, this very high frequency HFO has been
proposed as a marker for resting tremor. In particu-
lar, Hirschmann et al. [75], showed that HFOs above
200 Hz are positively correlated with tremor at rest
(i.e., HFOs are stronger during tremor), although in
this study it was not possible to reliably distinguish
between resting tremor and voluntary movement.

POSSIBLE MECHANISMS UNDERLYING
THE GENERATION OF HIGH-
FREQUENCY OSCILLATIONS

In the parkinsonian brain, dopaminergic denerva-
tion results in a multitude of neurochemical, physi-
ological, and cellular changes that could potentially
make both cortex and striatum prone to produce oscil-
lations at a network-level, leading to the emergence

of different types of HFOs. Oscillations can however
emerge in a wide range of highly interconnected net-
works and it remains to be explored which cellular
components are predominantly responsible for the
tuning of network oscillatory properties. Thus, while
itis at present not possible to pinpoint the key drivers
of HFOs, some general candidate mechanisms appear
worth mentioning.

First, the excitability of certain groups of neu-
rons may change because of altered expression levels
of voltage-sensitive or shunting ion channels, or
other changes in intrinsic membrane properties [76],
which can in turn alter oscillatory properties (akin
to what has been reported for lower oscillation fre-
quencies [17]). Second, the synaptic weight of critical
connections may change [77, 78]. This increased
coupling can facilitate synchronization of indepen-
dently oscillating neurons, similar to how coupled
oscillators synchronize in mechanical systems. Third,
the electrical coupling between neurons, in particu-
lar fast-spiking interneurons, may change because of
altered gap-junction protein composition and/or gap-
junction density [13, 79, 80]. Fourth, the interaction
between principal cells and interneurons and/or the
balance of excitatory/inhibitory activity may alter the
resonance properties of the network [81-83].

For HFOs in the 110-160 Hz range, information
regarding the underlying mechanisms may also be
obtained from characterizing the pharmacological
profiles of different drugs known to induce HFOs
of this type. A particularly interesting aspect is that
psychotomimetic drugs known to act on different
receptor systems—for example on either 5-HT,4 or
NMDA receptors have been found to induce very sim-
ilar HFO activities in animals [26, 84]. It has been
proposed that a partial depression of NMDA-receptor
function could be a common underlying mechanism
[85]. According to some reports based on local phar-
macological manipulations, it is sufficient to interfere
with NMDA signaling in one node of the network
to induce high-frequency oscillations throughout the
limbic loop. Thus, applying an NMDA -antagonist in
PFC, hippocampus or nucleus accumbens [86, 87]
induces the same LFP oscillations as does a systemic
administration of the same drug [84, 88]. Interest-
ingly the extended amygdala network has also been
shown to have an intrinsic propensity to oscillate
at these frequencies (typically 130-160Hz), indi-
cating that broadly distributed limbic circuits may
be involved in the phenomenon [89]. Relatively few
recordings of LFP oscillations in this frequency range
have been reported involving non-limbic circuits
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following pharmacological NMDA-depression, but
at least primary motor cortex and parts of the basal
ganglia circuitry have been shown to also display this
type of activity [70, 90], whereas, for example visual
cortex, does not seem to share this propensity (at least
in rodents) [91]. For a more extensive overview on the
effects of NMDA-antagonist treatment on oscillatory
activity, we would like to refer the reader to the review
by Hunt and Kasicki [92].

POSSIBLE MECHANISMS UNDERLYING
THE PROPAGATION OF HIGH-
FREQUENCY OSCILLATIONS

While intrinsic network changes induced by the
disease and its pharmacotherapy, may contribute to
pushing the network towards a state that can uphold
HFOs in certain brain structures, changes in inter-
structure connectivity could, in parallel, facilitate the
transmission of oscillations of certain frequencies
between different brain structures, [68, 93, 94]. It

has, however, proven difficult to establish if oscil-
latory activity can indeed spread from one structure
to another and which structures would be the prin-
ciple drivers in this scenario. We here limit our
discussion to three alternative models. These concep-
tual viewpoints are not entirely mutually exclusive
but each emphasize somewhat different mechanistic
components.

The flowchart model

It is often presumed that the physiological signal-
ing within the basal ganglia can be directly deduced
from the anatomical connectivity in the sense that
activity in one structure will directly influence the
next downstream brain structure via synaptic excita-
tion or inhibition. According to this view, oscillatory
activity is expected to be passed on from one structure
to the next in a step-wise chain of events (Fig. 2a).
Indeed, in studies of gamma oscillations in cortico-
basal ganglia circuits, cross-structure interactions

]
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/'
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Fig. 2. Hypothetical models for the propagation of high-frequency cortico-basal ganglia oscillations in Parkinson’s disease. a) Stepwise feed-
forward propagation of oscillatory activity. b) A system of independent oscillators that are weakly coupled via direct or indirect anatomical
links. ¢) Thalamus (marked ‘A’ in diagram) acting as a central pacemaker.
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have often been inferred based on this assumption
(see e.g., [46, 49]; however, see also [58]). The pat-
tern of gamma oscillations observed in the rodent
model of LID do not however comply with connec-
tivity rules in a straightforward manner. For example,
narrowband gamma oscillations associated with LID
are detected in motor cortex and striatum in the
lesioned hemisphere, but they are never observed in
the contralateral striatum, despite the bilaterality of
corticostriatal projections [95]. Thus, the existence
of direct anatomical connections does not seem to
be sufficient for cortical gamma oscillations to be
transferred to the contralateral striatum.

Coupled oscillators

A related but somewhat different view is to con-
sider the interconnected brain structures as a system
of coupled oscillators (Fig. 2b). It is possible that
several brain structures could have an independent
propensity to oscillate in a relatively narrow part of
the frequency range under certain conditions, such
as during LID [20, 70]. In this situation, even a rel-
atively weak coupling of the oscillators could result
in prominent coherent oscillations in multiple struc-
tures [96, 97]. On the other hand, structures that do not
share the network properties needed to sustain oscil-
lations of the same type would be relatively resistant
to rhythmic input of this frequency from upstream
structures. This could for example explain why nar-
rowband gamma is not observed in the intact striatum,
if the striatal network of an intact brain has differ-
ent electrophysiological properties that do not uphold
narrowband gamma oscillations. It is, however, not
clear why brain structures with significant differences
in neuronal microcircuitry would become tuned to
similar resonance frequencies. In future studies it
will therefore be important to clarify the conditions
needed for the cortical and striatal microcircuitry
to maintain oscillatory activities of high frequencies
over extended time periods.

Thalamus as a pacemaker

Because cortex and the basal ganglia are under
strong influence of thalamic input, rhythmic thala-
mic activity has the potential to directly drive fast
oscillations in several parts of the circuit, in parallel,
via a first-order synaptic connection (Fig. 2c). Indeed,
in the visual system, the thalamocortical system has
been shown to be a key driver of narrowband corti-
cal gamma oscillations (~60 Hz) [98]. If narrowband

gamma oscillations in cortico-basal ganglia circuits
are induced by a similar mechanism, they should be
observed only in brain structures that have direct input
from thalamic nuclei of the lesioned hemisphere.
This notion is supported by preliminary experimental
findings suggesting that diffusely projecting nuclei
in thalamus, which are known to affect cortical
states [99], do in fact display coherent oscillations
with cortex during dyskinesia [100]. A pharmaco-
logical suppression of this thalamic activity will
eliminate high-frequency oscillations also in motor
cortex (although this suppression was reported to be
insufficient to alleviate LID in preliminary experi-
ments; [100]). Clearly, the role of thalamus in the
induction of narrowband gamma oscillations repre-
sents quite an important topic for future studies.

Ultimately, because changes at many different lev-
els (ranging from cellular to systems) likely act
together, computer modelling will become an indis-
pensable approach to help us understand how cellular
processes can induce network dysfunctions, reflected
in aberrant oscillatory phenomena and altered effec-
tive connectivity between the involved structures
[68, 101-104]. At present, however, more detailed
experimental data are needed to allow for mean-
ingful modelling, highlighting the importance of
joint interdisciplinary efforts by experimentalists and
theoreticians.

TRANSLATIONAL IMPORTANCE OF
HIGH-FREQUENCY OSCILLATIONS AND
FUTURE OUTLOOK

A window into circuit dysfunctions in basal
ganglia disorders

Elucidating pathophysiological phenomena at both
cellular and systems levels requires studying animal
models that mimic central aspects of the disease of
interest. Consequently, the generation of valid ani-
mal models of basal ganglia disease remains a high
research priority [105, 106]. However, even for con-
ditions where reliable and well-characterized models
exist, the development of new treatments for neu-
rologic and psychiatric conditions has often been
hampered by an insufficient understanding of how
to link molecular and pathophysiological processes
that ultimately lead to disabilities. In this perspective,
high-frequency oscillations in cortico-basal ganglia
circuits in PD could provide valuable cues. The
striking similarities between rats and humans in the
characteristics of certain HFOs strongly suggests that
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shared underlying mechanisms are at work in both
species. This opens up unique opportunities to test
hypotheses and investigate candidate mechanisms in
valid models that are amenable to multiple levels of
experimental investigation. Moreover, the differen-
tial manifestations of HFOs in cognitive and limbic
circuits as compared to motor circuits observed in ani-
mals may provide important clues to the multi-faceted
symptomatology of PD.

A biomarker for developing novel therapies

Importantly, even without a full understanding
of the underlying mechanisms, HFOs can be used
as reliable biomarkers of pathological brain states
with which candidate pharmacological treatments
can be evaluated and benchmarked against each
other. Because of the great similarity of several of
these phenomena across species, the effects produced
by therapeutic interventions on HFOs are mostly
likely to be translationally relevant. In this way,
behavioral and neurochemical assessment techniques
that are already in use can be complemented with
electrophysiological readouts of changes in the brain,
providing not only a much richer description [107]
but also a biomarker of drug action that is directly
translatable. The added value of electrophysiologi-
cal recordings is exemplified by a couple of recent
studies aimed at evaluating a number of putative
antidyskinetic compounds in hemiparkinsonian rats
[20, 70]. In some cases, neurophysiological signals
can be the only available readout since not all phar-
macological treatments affecting brain states give rise
to detectable changes in motor behavior [70]. In par-
ticular, HFOs in limbic circuits (which are associated
with psychotic-like states) could offer an exciting new
opportunity to evaluate new antipsychotic treatments
in animals.

A feedback signal for closed-loop
neuromodulation

DBS is a well-established neuromodulation ther-
apy for the advanced stages of PD, although it
is an invasive method with several contraindica-
tions and some unwanted side-effects [108]. The
widespread use of DBS for the symptomatic treat-
ment of PD is therefore prompting a quest for
technological developments that can improve effi-
cacy while avoiding troublesome side-effect. In
particular, it is argued that adjusting the stimula-
tion parameters to the moment-to-moment needs

of the patient (‘adaptive stimulation’) could greatly
improve the therapeutic application of DBS [18,
109-113]. Adaptive neuromodulatory stimulation is
also referred to as ‘closed-loop’ stimulation because
an adaptive system needs to encompass a physio-
logical read-out of selected biomarkers which are
used in the feedback control of the stimulation
electrodes thus closing the control-loop. To this
end, different electrophysiological signals are being
considered, derived from LFPs, electrocorticograms
(ECoG), EEG, MEG, or indirect measures of brain
activity reflected in blood-flow changes (as detected
using near-infrared spectroscopy or functional mag-
netic resonance imaging). Alternatively, one may
simply use physical movement parameters, detected
using wearable sensors. Despite this wide variety
of options, electrophysiological measurements will
most likely be needed for more detailed characteri-
zations of brain states. For this reason, most studies
have so far been designed to improve electrical stim-
ulation paradigms based on simultaneously recorded
neuronal activity using invasive techniques [14, 110,
111]. With respect to HFOs as a potential biomarker
to be used in closed-loop DBS to treat LID, the study
by Swann and co-authors provided several impor-
tant insights on how neurophysiological recordings
in a closed-loop arrangement could be used to adjust
the stimulation parameters to the patients’ symptom
fluctuations [21]. In particular, the authors present
data that indicate how problems with stimulation-
induced dyskinesia could potentially be overcome
by feedback control of the stimulator based on the
ECoG/STN on-line recordings [21], and have also
subsequently confirmed in two patients that signifi-
cant energy savings can be achieved using this type
of adaptive DBS approach [114].

In conclusion, the high-frequency cortico-basal
ganglia oscillations discussed in this article have sig-
nificant translational and scientific implications that
deserve to be thoroughly explored. Further research
efforts in this area are clearly worthwhile, both for
gaining a deeper understanding of basal ganglia dis-
orders and for developing improved therapies.
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