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Abstract. In the last two decades it has become clear that Parkinson’s disease (PD) is associated with a plethora of gastroin-
testinal symptoms originating from functional and structural changes in the gut and its associated neural structures. This is
of particular interest not only because such symptoms have a major impact on the quality of life of PD patients, but also
since accumulating evidence suggests that in at least a subgroup of patients, these disturbances precede the motor symptoms
and diagnosis of PD by years and may thus give important insights into the origin and pathogenesis of the disease. In this
mini-review we attempt to concisely summarize the current knowledge after two decades of research on the gut-brain axis in
PD. We focus on alpha-synuclein pathology, biomarkers, and the gut microbiota and envision the development and impact

of these research areas for the two decades to come.
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GASTROINTESTINAL PATHOLOGY AND
ITS ROLE IN PARKINSON’S
DISEASE ETIOLOGY

The first descriptions of alpha-synuclein (asyn)
histopathology in the enteric nervous system (ENS)
and peripheral autonomic ganglia date back as far
as 1960 [1, 2], and several groups have now con-
firmed and extended these initial findings [3, 4]. By
contrast to the substantia nigra, no overt neuronal
loss is observed in the ENS in Parkinson’s disease
(PD) [S5, 6]. Based on early pathology in the olfac-
tory bulb and dorsal motor nucleus of the vagus, the
dual-hit hypothesis posited by Braak and colleagues
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proposes that initial misfolding and aggregation of
asyn may occur in peripheral nerve terminals with
subsequent centripetal spreading through the vagus
nerve [7, 8]. This proposition gained support from
two epidemiological studies showing that full trun-
cal but not selective vagotomy seems to decrease the
risk of PD [9, 10]. Also, in studies of archived tis-
sue removed from patients up to 20 years prior to
PD diagnosis, asyn pathology in the gut was reported
more frequently than in matched controls [11, 12].
Several animal models, recently reviewed in detail
[13], have shown cell-to-cell prion-like transmission
and centripetal spreading of asyn [14, 15]. Such
studies demonstrate the mechanistic plausibility of
gut-to-brain transmission of asyn pathology. Nev-
ertheless, this gut-to-brain transmission hypothesis
is still widely debated and the arguments in favor
or against the gut as the site of origin of PD were

ISSN 1877-7171/18/$35.00 © 2018 — IOS Press and the authors. All rights reserved

This article is published online with Open Access and distributed under the terms of the Creative Commons Attribution Non-Commercial License (CC BY-NC 4.0).


mailto:filip.scheperjans@{penalty -@M }hus.fi

S32 F. Scheperjans et al. / The Gut and PD: Hype or Hope?

reviewed in two recent publications [16, 17]. The
strongest argument against such a scenario comes
from findings from the Arizona Parkinson’s consor-
tium group, which did not find a single case in which
asyn pathology was present in the ENS but not in the
CNS in their wide survey of 466 whole-body autopsy
cases [18]. This whole-body survey does not exclude,
however, that initial asyn aggregation may start in the
gut, but such hypothetical initial gut pathology would
have to be be highly localized, or alternatively consist
of immature and potentially protease-sensitive micro-
aggregates, which are difficult to detect by standard
immunohistochemistry [16].

In the coming two decades, it is likely that major
advances will be made in understanding the role of
gastrointestinal asyn pathology in the etiology of
PD. An important research goal is to elucidate the
degree of similarity between pathophysiological pro-
cesses in PD and those of true prion diseases. In
variant Creutzfeldt-Jakob disease (CJD), there is little
doubt about the occurrence of gut-to-brain propaga-
tion of prions [19]. The aggregates of disease-related
prion protein in variant CJD and bovine spongiform
encephalopathy initially form in peripheral lymphoid
tissues and in the ENS and then spread through the
autonomic nervous system [20, 21]. Importantly, the
prion aggregates in peripheral organs of variant CJD
show clear differences in glycoform ratios and pro-
tease resistance compared to prions in brain tissues
[22, 23]. It has therefore been suggested that the
long latency between peripheral lymphoid coloniza-
tion and subsequent neuro-invasion is in part due to
the need for selection of a neuro-invasive strain of
prion [24]. Such mechanisms have not been con-
sidered in the context of PD, but may explain why
asyn multimers or aggregates harvested in periph-
eral autonomic nervous tissues behave differently
than those from the substantia nigra of PD patients
[25, 26].

There is therefore an urgent need to better charac-
terize the biochemical characteristics of both native
and pathological asyn in the ENS (Fig. 1). This can
best be achieved by performing a comprehensive
inventory of synuclein forms present in the ENS from
PD patients using two-dimensional electrophoretic
analysis and mass spectroscopy or luminescent con-
jugated oligothiopenes, as such approaches have
proven successful for characterizing the dominant
pathological modification of synuclein and amyloids
in the brain [27, 28]. Also, much work needs to be
done within the field of animal PD models in the com-
ing years. Although the concept of species barrier, i.e.

the inability of some prion strains to cause disease
in other species, is well described in prion disease
[29, 30], it has yet received little attention in PD. It
has been shown, however, that sequence homology
between asyn and the host protein is proportional to
the rate of seeding initiation, e.g., human asyn fibrils
efficiently seed monomeric human asyn, while seed-
ing of mouse asyn is inefficient (reviewed in [31]).
In addition, the importance of aging and other modu-
latory factors including intestinal hyperpermeability,
concurrent inflammation, and microbiota alterations
needs to be studied in detail before firm conclusions
can be drawn (Fig. 1).

Prion pathology in variant CJD exhibit peripheral-
to-central propagation, whereas the initial pathology
in sporadic and familial CJD cases probably arises
spontaneously within the brain. Thus, it is theoret-
ically possible that synucleinopathies can similarly
be divided into types either originating in the periph-
eral nervous system or arising spontaneously within
the CNS [16]. Note that this does not necessarily
imply that these synucleinopathies were contracted
by exogenous agents, but can be explained by
Braak’s hypothesis that the nerve terminals of long,
non-myelinated, hyperbranched axons are the most
probable (but not only) place for the first occurrence
of asyn aggregation [7].

One candidate for a peripheral-dominant subtype
of PD may be those cases, in whom rapid eye
movement sleep behavior disorder (RBD) presents
during the prodromal phase. It has been shown that
PD patients with RBD exhibit much higher fre-
quencies of phosphorylated asyn pathology in the
colon and in the skin compared to PD patients
without RBD [32]. Also, idiopathic RBD patients
exhibit marked pathology in the sympathetic and
parasympathetic nervous system, but a relatively
intact dopamine system [33]. In contrast, PD patients
without RBD often have normal cardiac sympathetic
innervation in early disease stages indicative of a
sparing of the autonomic nervous system [34, 35].
An important research goal for the coming years
will be to perform a thorough phenotypic charac-
terization of PD subgroups using objective markers
of neuronal dysfunction. It urgently needs to be
clarified whether such distinct phenotypes can be
explained by molecular characteristics of patholog-
ical asyn in the ENS and CNS (Fig. 1). An attractive
hypothesis is that some specific post-translationally
modified forms of asyn and/or assemblies (strains)
could be associated with a more aggressive disease
progression [36].
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Fig. 1. The four most important issues that need to be addressed in the next 10 years regarding the gut in PD. (1) Alpha-synuclein deposits are
observed in the ENS of PD patients (the microphotography shows phospho-alpha-synuclein immunostaining in the colonic myenteric plexus
of a PD patient, scale bar 20 uM). However, it remains to be determined if the alpha-synuclein aggregates in the ENS are biochemically
similar to the ones found in the brain as this might be critical in our understanding of the role of the gut in PD pathogenesis. The picture
shows lysates from colonic biopsies (left lane, ENS) and brain samples (right lane, CNS) from two PD patients that have been analyzed
by western blot using C-20R total asyn antibody. Using this simple approach, no difference is observed between the ENS and the CNS
and there is therefore a critical need to perform a comprehensive inventory of synuclein forms present in the ENS from PD patients using
proteomic approaches. Molecular weight in kDa is indicated on the right. (2) Triggering of initial alpha-synuclein aggregation in enteric nerve
terminals through extrinsic factors could be facilitated by intestinal hyperpermeability. It remains to be definitely demonstrated that intestinal
permeability is increased in PD. (3) Results of immunohistochemistry-based studies on alpha-synuclein deposits in the ENS of PD patients
have provided conflicting results. There is therefore a critical need to develop alternative techniques to detect alpha-synuclein aggregates in
the gut. The inset illustrates a dot blot from gastrointestinal biopsy lysates of a control subject, stained with Syn-1 alpha-synuclein antibody.
(4) Alterations of gut microbiota composition in PD have been shown in multiple cross-sectional studies from diverse populations. It will
be crucial to determine the mechanisms that connect gut microbiota and PD in large multicenter studies of prodromal and de novo PD
patients as well as animal models employing multiomics approaches. Eventually, the clinical diagnostic and therapeutic potential of the
gut microbiota must be determined. The inset illustrates differently shaped bacteria and the molecular structures of the SCFAs butyrate,
acetate and propionate. Drawings were modified from Servier Medical Art, licensed under a Creative Commons Attribution 3.0 Unported
License.
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BIOMARKERS

The observation that asyn inclusions are found in
ENS of the vast majority of PD patients has led to an
increasing number of immunohistochemistry-based
studies aimed at developing biomarkers for disease
diagnosis and progression. However, the diversity of
methodology between studies, especially regarding
the immunohistochemical methods used, has led to
conflicting results regarding the sensitivity and speci-
ficity of gastrointestinal biopsies for the detection of
asyn deposits [37]. Although several studies showed a
high sensitivity of formalin-fixed paraffin embedded
(FFPE) gastrointestinal biopsies for the detection of
asyn inclusions in PD patients [38—41], other reports
have raised concerns regarding the specificity of this
approach because asyn immunoreactivity was also
observed in some healthy individuals [42-45]. This
lack of specificity, which likely results from technical
difficulties inherent in the use of FFPE samples for
the detection of asyn [46], explains why FFPE gas-
trointestinal biopsies are not currently used in routine
clinical practice as PD biomarker. Classical biochem-
ical approaches, such as one- and two-dimensional
electrophoresis did not prove to be more efficient than
immunohistochemistry for detecting aggregated asyn
in gastrointestinal biopsies [47]. As a whole, these
disappointing results might be explained by the low
amount of aggregated/pathological asyn that is usu-
ally found in the gastrointestinal tract and especially
in gastrointestinal biopsies [48]. In order to overcome
this limitation, future research could take benefit from
ultrasensitive techniques such as protein misfolding
cyclic amplification (PMCA) and real-time quaking-
induced conversion (RT-QulC) assays, which have
been recently shown to efficiently amplify aggregated
asyn in cerebrospinal fluid and in formalin-fixed
archived tissue [49, 50]. In addition, there is grow-
ing evidence that pathological changes in the gut
in PD are not limited to enteric neurons but also
involve the enteric glial cells and the intestinal
epithelial cells [51, 52], two cell types that largely
outnumber enteric neurons and are easily captured
by routine gastrointestinal biopsies. These obser-
vations support the hypothesis that this so-called
‘neuro-glio-epithelial unit’ [53] might constitute an
unparalleled source of biomarkers in PD beyond the
sole assessment of asyn deposits/aggregates. Possible
strategies to identify new enteric markers of PD might
include a joint transcriptomic and proteomic analy-
sis of the biopsies along with the analysis of biopsy
supernatant [54].

Finally, the characterization of gastrointestinal
dysfunction in patients has mostly relied on scor-
ing of subjective symptoms, which is necessarily
unable to capture subclinical disease and often shows
poor correlation with markers of objective dysfunc-
tion [55]. Accessible and affordable methods such as
radio-opaque markers to assess gastrointestinal tran-
sit times will find more widespread use in future
studies. Recently, !'C-donepezil PET scans have
demonstrated decreased cholinergic signal in the gas-
trointestinal tract of both manifest and prodromal
PD populations [33, 56]. Also, once an asyn-specific
PET ligand becomes available it may be possible to
image not only the brain but also peripheral organs
and investigate longitudinally the dual-hit hypothesis.
Although expensive, such techniques will be critical
to improve our understanding of PD etiopathogene-
sis and may have potential as progression markers in
upcoming trials of disease-modification.

GUT MICROBIOTA

The human microbiota consists of bacteria,
archaea, protists, fungi, their respective viruses, and
human viruses. Most research has been carried out on
the bacterial component of the microbiota [57]. The
number of genes encoded in the gut metagenome is
approximately 150 times larger than that of the human
genome [58]. Evidence is accumulating that there is
an intense bidirectional interaction between the gut,
its microbiota, and the brain, frequently referred to as
the microbiota-gut-brain-axis, which has important
implications for brain health [59].

Alterations of the gut microbiota composition in
PD have been revealed in multiple case-control stud-
ies from diverse populations. While there have been
variations in the reported results, in PD patients an
increased relative abundance of bacteria from the gen-
era Akkermansia, Lactobacillus, and Bifidobacterium
and decreased abundances of Prevotella, Faecalibac-
terium, and Blautia have been reproducibly shown
[60-64]. For Prevotella such reduction has also
been observed in RBD patients [64]. Based on the
attributed functional properties of these bacteria,
such alterations could affect gut barrier integrity,
short-chain fatty acid (SCFA) production, and inflam-
mation. This would be in line with reports of a leaky
gut and reduced levels of SCFAs and lipopolysac-
charide binding protein in PD patients [62, 65, 66].
However, it remains to be definitely proven that the
gut is hyperpermeable in PD [52] (Fig. 1). Also
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with respect to SCFAs, in particular butyrate, the
effects on PD pathology are not unequivocally estab-
lished, since beneficial and harmful effects have been
reported from PD animal and in vitro models [67-70].
An interesting link between gut microbiota and asyn
pathology could be cross-seeding of amyloid pathol-
ogy induced by bacterial amyloid proteins such as
curli [71]. Few studies have investigated the nasal
and oral microbiota in PD. While some alterations
were found in the oral microbiota, two studies failed
to find alterations in the nasal compartment [64, 72].
Future research on other non-bacterial microbes such
as viruses, fungi, and archaea may provide also valu-
able insights.

So far, human microbiome studies in PD have
been carried out exclusively in medicated patients,
except for one study that included also idiopathic
RBD patients [64]. While the PD associated micro-
biome alterations have been confirmed in medication
adjusted analyses, confounding effects cannot be
excluded and have in fact been shown for COMT
inhibitors [60, 73]. Another potential confounder is
colonic dysmotility, which may independently affect
microbiota composition [60, 74]. Several micro-
biota studies assessed constipation symptoms using
questionnaires and adjusted for reported constipa-
tion in their analyses. However, questionnaires may
underestimate the prevalence of objective colonic
dysfunction and thus adjustment based on these
responses may be insufficient [55]. It is not known,
whether the observed microbiome changes play a
causal role in the development of gut pathology in
PD or whether they are rather a consequence of
altered gut function. Also for the observed correla-
tions between microbiome composition and motor
[60, 64] and non-motor symptoms [75, 76] causality
has not been established in humans. However, obser-
vations that motor symptoms, neuroinflammation,
asyn pathology, and gut motility can be modulated
by manipulating the gut microbiota in transgenic
asyn-overexpressing mice suggest that such causal
influences are possible [68].

Whether gut microbiome alterations in PD are
independent of medications and constipation can
be addressed by comparing microbiota and objec-
tive assessments of gut function between healthy
subjects and drug naive prodromal and/or de novo
patients. To establish what mechanisms link micro-
biota alterations and PD, such studies should employ
a multiomics approach involving metagenomic,
metatranscriptomic, and metabolomics analyses in
combination with an assessment of host factors such

as gut biopsies, permeability studies, cytokine lev-
els and host genotype (Fig. 1). For such studies
to succeed, multicenter consortia should collaborate
to ensure sufficient cohort sizes and standardized
methodology. Longitudinal study designs will even-
tually enable us to study the temporal relationship
between microbiota changes, disease stages, and
phenotypes. While such undertakings will be long-
lasting and very cost-intensive, further work in animal
models may be helpful to narrow down the spec-
trum of potentially relevant pathways that connect
microbiota and PD disease mechanisms and to test
interventions.

Taken together there is good reason to envision
that gut microbiota may have important implications
in the future diagnostic and therapeutic landscape of
PD. Analysis of the composition and/or functional
aspects of the microbiome combined with clinical and
genetic host factors could become a crucial element
of patient phenotyping allowing more individualized
treatments for PD. Using such biomarkers to select
suitable patients for specifically tailored therapeu-
tic interventions should improve odds for successful
clinical trials of symptomatic or disease modify-
ing treatments. Based on encouraging observations
from RBD subjects [64], such approaches could
find applications already in the prodromal phase of
PD. If disease specific microbiota profiles could be
established, these would be a valuable tool for the
differential diagnosis of parkinsonism [77].

Therapeutic applications based on the gut micro-
biome are possible through a range of approaches.
These include dietary interventions, application of
beneficial bacteria (probiotics), substances that pro-
mote growth of beneficial bacteria (prebiotics),
substances that eliminate harmful bacteria (antibi-
otics), and transfer of bacterial ecosystems (fecal
microbiota transplantation). Furthermore, a detailed
understanding of microbiome-host-interactions in
PD could identify new pathways that could be
targeted using more traditional pharmacological
approaches. Importantly, microbiome based thera-
pies could be effective independently of the causative
role of the microbiome in PD pathogenesis. This is
because the microbiome is a key regulator of neu-
roinflammation and could affect disease progression
through modulation of microglia activity [78]. Fur-
thermore, gut microbiota affect gut permeability and
the local environment in the gut lumen and mucosa
which could have an implication for the impact of
environmental toxins and other PD initiating or per-
petuating factors such as protein aggregation. Also,
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beneficial symptomatic effects may be achieved, as
has been demonstrated in a trial showing improve-
ment of constipation in PD patients receiving a
synbiotic formulation, i.e., probiotics in combination
with prebiotic fiber [79]. Finally, the microbiome may
also play arole in the pharmacologic treatment of PD,
as has been demonstrated for Helicobacter pylori and
small intestinal bacterial overgrowth [80]. This sug-
gests that benefits from traditional treatments of PD,
such as levodopa, might be enhanced by microbiome
based interventions.

CONCLUSION

In his “Essay on the shaking palsy” [81], James
Parkinson noted that “Although unable to trace the
connection by which a disordered state of the stom-
ach and bowels may induce a morbid action in a part
of the medulla spinalis [... ] little hesitation need
be employed before we determine on the probability
of such occurrence.” In line with his statement, our
understanding and appreciation of the importance of
the gut-brain connection in PD has grown rapidly in
recent years. We are confident that the coming two
decades of microbiome-gut-brain-axis research will
see an even accelerated development in this area that
will reshape our understanding of the pathogenesis
of PD. While there is a hype, there is definitely also
hope that this will translate into improved diagnos-
tic and therapeutic approaches and eventually disease
modifying treatments for PD patients.
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