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Abstract. The convergence of human molecular genetics and Lewy pathology of Parkinson’s disease (PD) have led to a robust,
clinical-stage pipeline of alpha-synuclein (a-syn)-targeted therapies that have the potential to slow or stop the progression
of PD and other synucleinopathies. To facilitate the development of these and earlier stage investigational molecules, the
Michael J. Fox Foundation for Parkinson’s Research convened a group of leaders in the field of PD research from academia
and industry, the Alpha-Synuclein Clinical Path Working Group. This group set out to develop recommendations on preclin-
ical and clinical research that can de-risk the development of a-syn targeting therapies. This consensus white paper provides
a translational framework, from the selection of animal models and associated end-points to decision-driving biomarkers as
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well as considerations for the design of clinical proof-of-concept studies. It also identifies current gaps in our biomarker

toolkit and the status of the discovery and validation of a-syn-associated biomarkers that could help fill these gaps. Further, it
highlights the importance of the emerging digital technology to supplement the capture and monitoring of clinical outcomes.
Although the development of disease-modifying therapies targeting a-syn face profound challenges, we remain optimistic
that meaningful strides will be made soon toward the identification and approval of disease-modifying therapeutics targeting

a-syn.
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neuroimaging

INTRODUCTION AND OVERVIEW

Parkinson’s disease (PD) is the second most com-
mon neurodegenerative disorder, affecting approxi-
mately 1.2% of the world population over the age
of 70. In the United States, an estimated 630,000
people had PD in 2010. With anticipated demo-
graphic changes due to an aging population, and if no
disease-modifying treatment is found, the prevalence
is expected to reach 930,000 by 2020 and 1.24 million
by 2030 [1-3]. Recent years have seen the approval
of several new therapies that address motor or non-
motor symptoms of PD, however no therapeutic is
available yet to slow disease progression.

In 2017, The Michael J. Fox Foundation (MJFF)
convened a group of leaders in the field of PD
research from academia and industry, the Alpha-
Synuclein Clinical Path Working Group. This
working group was tasked to develop a strategic con-
sensus and put forth recommendations on preclinical
and clinical research directed at the development of
alpha-synuclein (a-syn) targeted, potentially disease-
modifying therapies for PD. a-syn has become one of
the most attractive targets for new therapeutic agents
to slow or arrest the progression of PD and other synu-
cleinopathies, including Dementia with Lewy Bodies
(DLB), Multiple System Atrophy (MSA), and Pure
Autonomic Failure. A detailed discussion on a-syn as
a target for PD is beyond the scope of this consensus
paper. However, the interest in targeting o-syn stems
from the following three converging lines of evidence
that implicate a pathogenic role of a-syn in PD: 1)
mutations in the gene encoding a-syn, SNCA, cause
autosomal dominant PD, suggesting that a gain of
toxic function may underlie the pathogenesis in famil-
ial PD cases (reviewed in [4]); 2) several polymorphic
variants at the SNCA locus affect the expression of
a-syn and are risk factors of sporadic PD, which con-
stitutes over 90% of PD incidence [5-7]; 3) a-syn
is the major protein component of Lewy bodies and
Lewy neurites, the intracellular inclusions that are the

pathological hallmarks of PD [8, 9]. Based on these
observations, proposed therapeutic strategies primar-
ily aim to reduce the pathogenic burden of a-syn by
decreasing its production, reducing its aggregation,
augmenting its clearance, or neutralizing its toxic
effects via sequestration (Table 1).

In this regard, a-syn-targeting strategies are
heavily informed by the amyloid hypothesis of
Alzheimer’s disease (AD) that posits, in an analo-
gous manner to the a-syn hypothesis of PD, a toxic
gain of function of beta-amyloid (A3), an extracellu-
lar proteinaceous deposit. In recent years, results of
multiple clinical studies testing the amyloid hypoth-
esis have emerged, which provide critical insights
into designing clinical trials of a-syn targeted ther-
apies. Although some recent early-phase data on
ApB-targeted therapies for AD are encouraging [10],
most have not met their primary efficacy end-points
or demonstrated clinically meaningful effects in reg-
istration trials [11]. Analyses of the AB-targeted AD
trials that have failed in the past suggest a number of
factors contributing to their failures: 1) insufficient
evidence of target engagement [12, 13]; 2) inclusion
of patients who did not have A pathology; 3) enroll-
ment of subjects at a stage of the disease that may
have been too advanced to permit attaining a mean-
ingful clinical benefit; 4) lack of sensitivity of clinical
endpoints used; and 5) selective targeting of a single
pathogenic mechanism. Finally, an additional option
is that AP simply is not a valid therapeutic target in
sporadic AD [14], raising the mirror-image possibil-
ity that a-syn may not be a suitable therapeutic target
for non-SNCA PD (Espay et al., 2018, submitted).

Could past failures in AD have been prevented
or the efforts terminated at an earlier stage to re-
deploy resources toward alternative targets through
improvement in translational research, biomarker
use and clinical trial design? Indeed, emerging data
from recent early phase clinical trials of AD indicate
that a combination of patient enrichment strategy
with biomarkers of Af pathology could provide a
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Table 1
Proposed therapeutic strategies targeting alpha-synuclein

Therapeutic Objective and Mode of Action Therapeutic Examples Most Advanced Phase of Drug Development Known

Reduce a-syn levels via inhibition of ASOs, siRNA Preclinical
transcription or translation of the SNCA
gene

Reduce/prevent formation of a-syn NPT200-11* Phase I completed
aggregates™

Enhance lysosomal or proteosomal enzyme GZ/SAR402671° Phase II underway

activity to promote clearance of
intracellular a-syn

Neutralize/clear extracellular a-syn* and/or
inhibit cell-to-cell transmission of a-syn

RO7046015 (PRX002)¢, BITB054¢

Phase II underway

ASOs, antisense oligonucleotides; siRNA, small interfering ribonucleic acid. *Presumed toxic species of a-syn. *ClinicalTrials.gov Identifier:
NCT026066. PClinicalTrials.gov Identifier: NCT02906020. °ClinicalTrials.gov Identifier: NCT03100149. ClinicalTrials.gov Identifier:

NCTO03318523.

strong data package upon which a decision to initiate
registration trials could be founded with greater
confidence [10, 15, 16]. In this paper, we will apply
lessons from the AD field as well as prior therapeutic
trials in PD and other central nervous system (CNS)
disorders, to propose a framework for translational
research and early stage clinical development of
a-syn-targeted therapies. We posit that in addition
to ensuring the validity of the selected therapeutic
targets to disease biology and drug-like attributes
of an investigational therapy, the following five
types of biomarker-based evidence (adapted from
http:// www. ncbi. nlm.nih.gov/books/NBK326791/)
generated in both translational animal models and
early stage clinical studies could improve success
rates (Fig. 1):

1. Target Engagement (TE): a biomarker that indi-
cates that the intervention gets to the site of
action and engages its intended target,

2. Pharmacodynamic/Response: a biomarker used
to show that a biological response has occurred
in an individual who has received an interven-
tion or exposure,

3. Disease Monitoring: a biomarker measured
serially and used to detect a change in
the degree or extent of disease. For the
purpose of this paper, we propose that disease-
monitoring biomarkers may be used to generate
the so-called Proof of Principle (PoP) or
Proof of Concept (PoC) milestones. PoP is
achieved when a biomarker is used to indi-
cate that an intervention modifies the known
pathology/physiology of PD (e.g., a-synuclein
aggregates) whereas PoC is achieved when an
intervention produces a clinical response that
may be predictive of efficacy in patients. A

go/no-go decision on the basis of a PoP endpoint
assumes that the PoP biomarker is predic-
tive of clinical efficacy; a Disease Monitoring
biomarker may or may not be the same as one
that demonstrates the pharmacodynamic effects
of a given drug candidate,

4. Safety: a biomarker used to indicate the
presence or extent of toxicity related to an inter-
vention or exposure (the toxicity may be related
to either on- or off-target pharmacology of the
intervention),

5. Patient Selection/Stratification: one or more
biomarkers that can be used in early or late
stage clinical trials to select patients who both
possess the desired target and are at a high like-
lihood to respond to the drug candidate within
the timeframe of the planned study [17]. These
biomarkers could be accepted as Predictive
Biomarkers with evidence that the biomarker
identifies individuals who are more likely than
similar patients without the biomarker to expe-
rience a favorable or unfavorable effect from a
specific intervention or exposure.

Before trust can be placed in biomarkers for
decision-making, however, several factors must be
taken into account. These include 1) analytical val-
idation of the biomarker assays, 2) understanding
predictive value with respect to the intended util-
ity of the biomarker, and 3) rate of change in the
biomarker as associated with pathophysiology or
natural history of the disease. Importantly, for phar-
macodynamic and disease modification biomarkers,
it is imperative to assess and establish that a drug
candidate can modify a specific biomarker in careful,
dose-ranging animal studies. In the following sec-
tions of this white paper, we provide a framework for
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Stages of Di Preclinical Early Clinical Re;iistlra;ion
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formulation, etc. tolerated doses
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* Biomarkers of safety

endpoints predicting
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Fig. 1. Key Stages of Therapeutic Discovery and Development. Key stages of therapeutic discovery and development and associated objectives
aimed at improving the probability of technical success. Note the specific utility of biomarkers to inform preclinical and clinical decisions
during each stage. DMPK, drug metabolism and pharmacokinetics; ID, identification; PK, pharmacokinetics; PoC, proof of concept; PoM,

proof of mechanism; TE, target engagement.

selecting an animal model to generate clinically trans-
latable data, specific biomarkers for a-syn-targeted
therapies and clinical PoC factors, and planning that
integrates not only pathophysiologic endpoints but
also the emerging technology of wearable devices to
monitor clinical outcomes.

TRANSLATIONAL RESEARCH

The current pipeline of a-syn-targeted therapies
(Table 1) is comprised of both small molecules and
biologics such as nucleic acid analogs, proteins, and
gene therapy vectors. Independent of the therapeu-
tic modality, a key translational research element
in the early discovery and lead optimization stages
(Fig. 1) is the use of animal models that recapit-
ulate relevant aspects of disease pathophysiology.
Translational research also aims to deliver clinically
translatable biomarkers of TE, pharmacodynamics,
and PoP which also inform initial clinical study
design, including dose and dosing regimens. Hence,
in the animal models and subsequent human studies,
itis critical to utilize similar, if not identical, biomark-
ers and/or endpoint methodologies. The following
sections provide an overview of animal models and
their relevance to the development of a-syn-targeted
therapies.

Animal model studies

Several rodent and non-human primate models of
a-syn aggregation exist. It is beyond the scope of this
review to describe all existing animal models of a-syn
pathology, and readers are referred to recent reviews
on the topic [18-24]. In this section, we focus on
conceptual challenges as well as the utility of current
animal models in a-syn-targeted drug discovery.

Conceptual challenges with current models

A major challenge in the field is the lack of consen-
sus on the specific molecular species of a-syn (e.g.,
oligomer or fibril and specific strains associated with
either, or post-translationally modified a-syn species,
etc.) responsible for PD pathogenesis, which engen-
ders uncertainty around the construct validity of the
models. In addition, definitive evidence of a particu-
lar a-syn species causing a specific synucleinopathy
(e.g., PD versus MSA) in humans is lacking, even
though animal models are beginning to shed light
on strain-specific synucleinopathy [25-28]. In sec-
tion 3 we detail ongoing studies to develop and test
a-syn-targeted biomarkers on human biospecimens
to garner insights into a-syn species pathogenicity.
These insights will undoubtedly refine the generation
and characterization of future animal models.
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Currently, no animal model faithfully reproduces
all the key clinical features of PD. The predictive
validity of an animal model can only be established
once an a-syn-targeted therapy is found to be effec-
tive in humans. Some have argued that because of
these factors, testing in animal models is of limited
utility in PD drug development. However, as dis-
cussed below, animal models of synucleinopathy are
critical to establish in vivo proof of mechanism and
discovery of translational biomarkers of TE, pharma-
codynamics, and PoP for novel a-syn therapies under
development.

Commonly used rodent models

Three major types of mammalian models of a-
syn aggregation have been utilized for discovery and
development of a-syn-targeted therapies: 1) trans-
genic rodents expressing wild type or mutant a-syn;
2) viral vector-mediated expression of wild type or
mutant a-syn; and 3) injection of preformed fibrils
(PFFs) of a-syn, Table 2 and the description below
briefly highlight the key characteristics of each type
of model and their translational utility. Animal mod-
els may recapitulate specific features of PD pathology
or downstream pathophysiology which can be uti-
lized to assess investigational therapies. In general,
investigational therapeutic agents should be tested
in multiple animal models to assess efficacy. On the
other hand, it is desirable to utilize a single model to
establish TE, pharmacodynamic, and PoP endpoints,
which can be used to model clinical dosing and define
safety margins.

Transgenic rodent models. Several transgenic mouse
lines have been created, expressing wild-type or
mutant a-syn under the control of a variety of pro-
moters. It is beyond the scope of this article to
describe these models in detail, and their different
features have been covered extensively by earlier
reviews [23, 29-33]. In short, none of the transgenic
a-syn mouse models can be viewed as the “perfect”
model for development of therapies targeting a-syn.
Different transgenic a-syn mouse models mimic var-
ious features of synucleinopathies and have specific
advantages depending on the scientific questions that
are asked. Here we only briefly mention some of
the overriding principles that influence pros and cons
with existing transgenic a-syn models. The various
transgenic mouse lines display different regional pat-
terns and levels of a-syn expression in the brain or
periphery. Most of these models display intraneuronal
or intraglial (MSA-like) a-syn accumulation which

offer the opportunity to establish TE or PoP for the
specific forms of a-syn aggregates being targeted.
A disadvantage of most transgenic mouse models is
that they rarely exhibit significant neurodegeneration
in the substantia nigra. As a consequence, PD-like
motor dysfunction is typically not a prominent fea-
ture. This precludes the ability to correlate TE or
PoP to motor dysfunction that is directly relevant
to PD. However, non-motor symptoms of PD such
as cognitive or olfactory deficits or gastrointestinal
symptoms may be taken advantage of, when present
in specific models. Furthermore, the level of a-syn
expression in transgenic mouse models is frequently
much greater than that seen in the human disease.
This caveat needs to be considered in the generation
of physiological pharmacokinetic-pharmacodynamic
modeling or predictive dose-response modeling.

Viral vector-mediated a-syn overexpression Adeno-
associated viruses (AAV) are currently the vector of
choice to transduce a-syn in the rodent or non-human
primate nigrostriatal system. Although AAV mod-
els are relatively more labor-intensive and variable
compared to transgenic rodent models, the marked
a-syn overexpression in nigral dopaminergic neu-
rons following localized AAV delivery can lead to
impaired striatal dopamine (DA) release, axonal a-
syn pathology in the nigrostriatal pathway, death of
nigral dopaminergic neurons with neuroinflamma-
tion, and varying degrees of motor deficits [34-38].
Thus, tests of motor function can be used to assess
effects of therapies in these models. MS A-like pathol-
ogy has also been produced in viral transduction
models by using specific promoters to drive expres-
sion in oligodendrocytes [39, 40]. As with transgenic
a-syn models, concerns remain around the rele-
vance of studying a-syn aggregation or downstream
sequelae such as neurodegeneration, motor deficits,
or neuroinflammation driven by exceptionally high
a-syn levels.

Injections of a-syn preformed fibrils or pathologi-
cal extracts. Over the past six years, several rodent
and non-human primate models based on injec-
tion of recombinant a-syn PFFs or extracts of
pathogenic human brain-derived a-syn into the brain
of rodents have been developed [21, 22]. Typically,
PFF injections trigger progressive development of
intraneuronal a-syn aggregates with associated neu-
rological deficits, the distribution and behavioral
correlates of which depend on the brain regions
and the type of a-syn injected [21, 22, 41-43]. The
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Table 2
Alpha-synucleinopathy-directed therapeutic approaches evaluated in animal models
Type of Model Key Characteristics Exemplary Endpoints to Inform Clinical

Translation

Transgenic rodents
expressing wild-type or
mutant human a-syn
under the control of
different promoters

e Each transgenic strain displays a specific
regional pattern and level of a-syn
overexpression

e None reproduce the development the full
repertoire of neuropathology

e a-syn expression in these models is
frequently much greater than that seen in
the human disease

o TE: Therapeutic antibody bound to its
targeted a-syn species in the brain and/or
accessible biofluids such as CSF and blood
compartments

e PoP: Reduction in the load of a-syn
aggregates

Viral vector-mediated
over-expression of WT or
mutant o-syn in select
brain regions

e Labor intensive with relatively high
inter-animal variability

o Possible to achieve marked a-syn
overexpression in nigral dopaminergic
neurons

e Can lead to impaired striatal DA release,
axonal a-syn pathology in the striatum,
death of nigral dopaminergic neurons with
neuroinflammation and varying degrees of
motor deficits

o TE: Therapeutic antibody bound to its
targeted a-syn aggregates or species

e PoP: Reduction in the load of a-syn
aggregates, dopaminergic axonal
degeneration measured by DAT density,
neostriatal dopamine release, nigral
dopaminergic neuroprotection,
neuroinflammation

o Functional outcomes: Basal
ganglia-mediated behavioral deficits (e.g.,
hypokinesia)

Injection of a-syn PFFs
injected into rodent brain
or administered
systemically (IV, IM)

e “Prion-like” propagation of the pathology
which follows neural pathways after
intracerebral injections

o Following intrastriatal injection:
progressive loss of nigral dopaminergic
neurons and development of motor deficits

e PFFs injected into the olfactory bulb
triggers formation of a-syn aggregates
which cause a gradual spread of pathology
in multiple brain regions (no reported
dopaminergic neuron loss)

e Systemic injections of PFFs are also
reported to trigger synucleinopathy in the
nervous system

o TE: Therapeutic antibody bound to its
targeted a-syn aggregates or species

e Pharmacodynamics: a-syn mRNA or
protein levels induced by transcription or
translation inhibitors

e PoP: Reduction in the propagation of c-syn
pathology, dopaminergic neuroprotection

e Functional efficacy: Behavioral deficits
(e.g., hypokinesia, hyposmia)

AAV, adeno-associated virus; CSF, cerebrospinal fluid; DA, dopamine; DAT, dopamine transporter; IM, intramuscular; IV, intravenous;

mRNA, messenger ribonucleic acid; PFF, preformed fibrils; PoP, proof of principle.

mechanism underlying the PFF models is thought to
involve “prion-like”, trans-cellular propagation of the
pathology, dependent on endogenous a-syn. Thus,
the development of pathology is more rapid when
injections are made into transgenic a-syn mice, or
animals with viral vector-mediated overexpression
of a-syn, than wild-type mice and no pathology
develops in a-syn null mice [44-46]. The pathol-
ogy appears to propagate along connected neuronal
pathways in a manner that has been suggested to
occur with PD progression [47]. Models where the
PFFs are injected into the nigrostriatal system can
also show progressive loss of nigral dopaminergic
neurons, reduction in striatal DA, and development
of motor deficits, allowing for motor testing of
functional effects of therapies [44, 45, 48]. More
recently, PFFs injected into the olfactory bulb have
been shown to produce o-syn aggregation and

neurodegeneration in olfactory structures and a grad-
ual development of specific olfactory deficits akin
to hyposmia in prodromal PD [49, 50]. Thus, PFF
mouse models appear to be relevant when testing ther-
apies intended to mitigate a-syn pathology in early
disease by reducing a-syn expression or increasing
clearance of extracellular a-syn. Other variations on
the PFF models include injections through peripheral
routes, (i.e., intravenous or intramuscular) [26, 51] or
directly into the gastrointestinal tract [52-54]. Anal-
ogous to the PFF injections into the olfactory bulb,
targeting the gastrointestinal tract with PFFs or other
forms of a-syn has been suggested to be relevant as
a model of prodromal PD. Recent reports, however,
suggest that brainstem a-syn pathology triggered by
PFF injections into the gut of wild type mice is tran-
sient and that there is little or no further propagation
to other brain regions [53, 54].



K.M. Merchant et al. / Development of a-Syn-Targeted Therapies 37

What is the value of experiments in non-human
primates?

Due to the relatively low cost and the ease at which
genetic modifications can be made, rodent models of
synucleinopathy are more abundant and frequently
used than non-human primate models. Recently, non-
human primate models of synucleinopathy that use
AAV vectors to overexpress the protein and injec-
tions of PFFs have been generated [55-57]. None of
these models have been characterized in great detail
yet, and therefore, their place in a drug development
program targeting a-syn remains to be determined.
In the future, non-human primate models might pro-
vide the ability to discover and monitor biomarkers in
the cerebrospinal fluid (CSF), which remains a major
limitation of rodent models. Additionally, their larger
blood volume compartment could allow for longi-
tudinal sampling and assessment of biomarkers and
pharmacokinetic parameters.

What are relevant outcome measures and
biomarkers for clinical translation?

From a translational perspective, the major util-
ity of the animal models of a-syn aggregation
described above is to establish TE, pharmacodynamic
responses, PoP, and functional efficacy measures
(Table 2). By definition, a TE biomarker has to be
specific to the therapeutic agent under investigation,
making it hard to offer generalizable recommen-
dations. For example, for therapeutic monoclonal
antibodies, measurement of antibody-bound a-syn
versus free a-syn levels in the brain, as well as in
the CSF and peripheral matrices, can provide useful
indices of TE. Furthermore, effects on other mark-
ers of a-syn pathology (e.g., pS129-modified a-syn
or oligomeric a-syn) could be utilized as pharma-
codynamic or PoP outcomes. Similarly, therapies
that aim to reduce a-syn transcription via antisense
mechanisms can rely on direct assessment of a-syn
transcripts or protein levels for TE.

Pharmacodynamic biomarkers reflect a change
induced by the binding or modulation (activa-
tion/inhibition) of the desired target by the therapeutic
agent, and as such they provide an additional dimen-
sion of drug effect beyond TE. An example of
a pharmacodynamic endpoint is the level of the
lipid glucosylceramide, the substrate of glucocere-
brosidase, for agents that allosterically activate or
stabilize this lysosomal enzyme implicated in a-syn
clearance.

Neither TE nor pharmacodynamic biomarkers on
their own provide insights into the level of TE

or pharmacodynamic responses required to produce
clinically relevant efficacy. The integration of a PoP
biomarker that measures a key pathogenic event in
PD brains helps answer this question. For a-syn
targeted therapies, immunohistochemistry for a-syn
deposits is an important preclinical PoP endpoint,
since Lewy pathology is a defining feature of PD.
In animal models, deposits of aggregated a-syn are
often assessed by immunohistochemistry using anti-
bodies against pS129 a-syn, since pS129 a-syn also
tags Lewy pathology in PD brains [58]. Thus, a
reduction in pS129 a-syn staining could be viewed
as positive preclinical PoP. Other markers for Lewy
pathology (e.g., ubiquitination, p62, measurement or
staining of proteinase K-resistant a-syn) and bio-
chemical measures of soluble versus insoluble a-syn
aggregates have also been employed to verify or
extend PoP findings. The status of development of
biomarkers to assess Lewy pathology in humans is
detailed in sections 3. Animal models that exhibit a-
syn aggregation-associated nigral degeneration offer
the opportunity to monitor the effect of the therapeu-
tic agent on the second hallmark pathology of PD
via stereological cell counts of tyrosine hydroxylase
(TH)-immunoreactive neurons.

The dopamine (DA) transporter (DAT), a transla-
tional endpoint reflecting integrity of dopaminergic
nerve terminals in the striatum, can be measured in
the clinic using single-photon emission computed
tomography (SPECT) imaging, making assessment
of DAT in an animal model, by immunohisto-
chemistry or biochemistry, a particularly relevant
preclinical measure. Measuring DA levels or release
in the neostriatum also can provide an important
functional neurochemical endpoint. Following AAV-
mediated expression of a-syn in the substantia nigra,
reduced DA release in the striatum (measured using
in vivo voltammetry) can be seen in some, but not
all animal models [59]. Because changes in stri-
atal dopaminergic terminal function are recognized
as an indicator of early stage PD, monitoring per-
turbations in nigrostriatal neuronal function in AAV
a-syn-injected rodents is a pertinent readout. Finally,
some models show an increase in neuroinflammation,
measured by changes in microglia and increases in the
mRNA or protein levels of inflammatory cytokines
such as IL-1B, TNFa, and IL-6 [60]. These down-
stream pathophysiologic markers may be considered
for novel therapeutics targeting a-syn.

For behavioral endpoints reflective of basal gan-
glia dysfunction or olfactory pathology, we refer the
readers to several recent reviews (see [18-24]).
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Preclinical to human translation

Integrated analysis of animal model data with
safety data for translational success

From the discussion above, one can see that
it is possible to generate therapeutic mechanism-
specific data on TE, pharmacodynamics, PoP,
or efficacy in animal models of synucleinopa-
thy. The integration of these outcomes with
pharmacokinetic data allow translational pharmacol-
ogists to generate physiologically-based pharmacoki-
netic/pharmacodynamic models to inform dose and
dosing regimens for first in human trials. These mod-
els can also take into account any dose-limiting safety
and toxicity findings observed through incorpora-
tion of toxicokinetic data from rigorous preclinical
development activities in order to identify therapeutic
widows for conducting early stage clinical trials. The
pharmacokinetic/pharmacodynamic models should
be continuously refined as new clinical pharmacoki-
netic, safety, tolerability, and biomarker data emerge
and inform subsequent clinical decisions.

Considerations for determining target
engagement and proof of principle

A recent retrospective review of delayed or denied
approval of new medical entities by the Food and
Drug Administration (FDA) between 2000 and 2012
indicates that uncertainties related to dose selec-
tion is a major factor underlying the failure of drug
development programs [61]. As described above,
establishing TE in early-phase clinical trials and uti-
lizing pharmacokinetic-TE modeling can minimize
the uncertainties in clinical dose selection. In this
regard, it is important to take into account the distri-
bution of physiologic and pathologic a-syn in central
versus peripheral biofluids and cells. Thus, while
AP and tau species targeted by investigational ther-
apies of AD are enriched in the brain and CSF as
compared to the blood compartment [62-64], -
syn levels are significantly higher in the plasma and
red blood cells than the CSF [65, 66]. This raises
the concern that peripheral a-syn could act as a
sink for a therapeutic antibody to limit the unbound
(free) fraction available for entry into the brain; an
issue that can be further accentuated by the gener-
ally low brain penetration of monoclonal antibodies
(CSF/plasma concentration ratio 0.01-0.04; [e.g. 63].
However, this critical concern may be mitigated by
data from recent Phase 1 clinical trials of two distinct
anti-a-syn therapeutic antibodies. These data demon-
strate the presence of unbound a-syn antibody in the

CSF of trial subjects [67, 68]. Moreover, therapeutic
a-syn antibodies may achieve higher brain distribu-
tion, and thus TE, by preferential or even selective
binding to brain specific conformational epitopes of
a-syn assumed to play a more essential role in a-syn
pathophysiology.

Another important TE question when designing
a-syn therapies is whether the targeted “pathogenic”
a-syn species is in the extracellular or intracellular
compartment. Consistent with the Braak hypothe-
sis [47], results of PFF-based animal model studies
indicate that a-syn aggregates can indeed be trans-
mitted trans-synaptically [18, 19, 21, 22]. Thus, it
may in fact be advantageous for antibody therapies
to target an extracellular a-syn species, a concept
that is supported by the demonstration that anti-o-
syn antibodies reduce the density of a-syn aggregates
even in animal models that do not rely upon PFF
injection.

As stated above, PoP biomarkers, when combined
with TE or pharmacodynamic markers are critical
data confirming the validity of clinical dose selec-
tion. Thus, prior to initiating large, resource-intensive
disease-modifying clinical trials, it would be ideal
to establish PoP and, if achieved, its dose depen-
dency in a small PD patient study, as exemplified
by the evaluations of amyloid plaque removal with
AP PET imaging in the Phase 1 studies of the A3
monoclonal antibody therapeutics Aducanubab [10]
and Gantenerumab [15]. Unfortunately, at the time
of writing of this review, imaging methods to mon-
itor Lewy pathology or presumed pathogenic a-syn
species in the brain or CSF still represent major gaps
in our therapeutic development toolbox (see below:
“Proof of Concept Clinical Studies”).

In summary, it is most advisable to select
an animal model pertinent to the therapeutic
mechanism of choice and integrate TE, pharmaco-
dynamic and PoP biomarkers in order to generate
PK-TE/pharmacodynamic/PoP modeling to inform
clinical dosing. Data from early stage clinical tri-
als could further refine the modeling and provide
a rationale-based approach for PoC and registration
trials.

CLINICAL BIOMARKERS OF
ALPHA-SYNNUCLEIN PATHOLOGY

With at least five a-syn-targeted therapeutics cur-
rently under clinical investigation [69], there is an
urgent need for robust and validated biomarkers. Here
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we review the current biomarker landscape, with a
particular focus on methodologies to measure a-syn
in biofluids and peripheral tissues, as well as imaging
modalities and mobile technologies. It is important
to note that currently available biomarkers have been
validated in clinically-defined cohorts of sporadic PD
rather than on non-hypothesis-driven (i.e., agnostic
to clinical criteria) cohorts of normal and abnor-
mal aging populations. Thus, data supporting the use
of these biomarkers represent statistical separations
between patients with PD and age-matched controls,
but are fraught with substantial overlap [70].

Biochemical assays in biofluids and tissue

Alpha-synuclein immunoassays

Given that accumulation of aggregated a-syn is a
hallmark pathology of PD, perhaps the most obvi-
ous choice for a TE, PoP, or disease progression
biomarker for a-syn-targeted therapies is various
conformers and species of a-syn itself (e.g., native
monomer, post-translationally-modified monomers,
or assemblies such as oligomers or fibrils). In
the absence of an a-syn imaging tracer (discussed
in greater detail below), measuring a-syn in CSF
assumes it to be a measure of brain pathology (and
therefore, a PoP biomarker), but this assumption
remains to be tested. A number of studies have mea-
sured the so-called “total” a-syn in biofluids such
as CSF, plasma, and saliva [71-74]. Although these
a-syn assays may offer the ability to establish TE
for specific drug candidates, several challenges ham-
per their utility to establish PoP or monitor disease
progression in clinical studies. First, since the pre-
cise species of a-syn being measured by current
commercially available immunoassays of total a-syn
remain unknown, it is not possible to demonstrate
that the assay reflects a species of a-syn catego-
rized as pathogenic in animal studies. Furthermore,
these assays have shown that the levels of a-syn
species measured remain unchanged in 12 month
follow-up of the Parkinson’s Progression Markers
Initiative (PPMI) cohort (Mollenhauer et al., 2018,
submitted). Whether the ongoing, longer follow-up
of the PPMI cohort or other similar studies might
help remediate this issue and enable the use of
total a-syn assays to monitor disease progression
remains to be seen. Finally, pre-analytical conditions
such as CSF collection, processing, and sample han-
dling appear to influence total a-syn measurements
[75], indicating careful studies need to be conducted
to establish pre-analytical conditions before the

existing assays could be used effectively in clinical
trials (see below).

The diagnostic utility of total a-syn has been
investigated thoroughly. Numerous studies have
demonstrated total a-syn concentrations in the CSF
are reduced by an average of 15% at the group
level in PD patients compared to healthy con-
trols (reviewed in [76]). However, at the individual
level, considerable overlap exists between PD and
healthy control subjects which renders the diagnos-
tic use of CSF a-syn problematic [71]. Notably, the
reduction in CSF a-syn in PD patients has been
demonstrated using a variety of analytically validated
immunoassay platforms, including standard chemilu-
minescent sandwich enzyme-linked immunosorbent
assays (ELISA) [71, 72], electrochemiluminescent
sandwich immunoassays [73], and bead-based cyto-
metric assays [74]. In an effort to further qualify
the total a-syn immunoassays, MJFF sponsored a
round robin assessment of four different assay plat-
forms on CSF, whole blood, and saliva samples of
50 PD and 50 healthy control subjects. The four
assays selected in this initiative were the Elecsys®
Total a-Synuclein Prototype Assay (Roche Diag-
nostics, Penzberg, Germany), the MSD U-PLEX®
Human o-Synuclein Kit (Meso Scale Discovery,
Rockville, Maryland), the BioLegend a-Synuclein
Immunoassay (BioLegend, San Diego, CA), and
the ADx a-Synuclein Immunoassay (ADx Neuro-
sciences, Gent, Belgium). Blinded analyses of the
biospecimens were conducted by both the orig-
inating laboratory that developed the assay and
satellite laboratories equipped to run the assay.
The mean intra-platform variance component ranged
from 8.12% to 9.81%, an acceptable range. Impor-
tantly, the four assays correlated well to each other,
even though the absolute concentrations of a-syn
measured in the same samples were different (Mol-
lenhauer et al., 2018, in revision). The results of this
study highlight the need for common reference mate-
rials and methods to control for inter-assay variability.
An investigation of peri- and pre-analytical variables
affecting assay performance was also undertaken as
part of this work, and recommendations from MJFF’s
Investigating Synuclein Consortium investigators for
ways to reduce a-syn assay variability through con-
trolled and consistent sample handling methods have
been published [75].

Immunoassays to detect specific, pathologically-
relevant a-syn species have also been generated
using isoform-specific antibodies. For example, an
increase in pS129 a-syn levels has been reported
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in the CSF of PD subjects compared to healthy
controls, although it is unclear whether this species
changes over the course of the disease and correlates
with disease severity [72, 77]. Likewise, higher lev-
els of oligomeric a-syn have been reported in PD
CSF compared to healthy controls, and they also
appear to increase over time [72]. These “modi-
fied” a-syn assays have mainly been developed in
academic research laboratories, have not been cross-
validated by multiple groups in blinded samples, and
are not generally available for widespread use by
the research community. For this reason, MJFF has
undertaken another initiative to analytically validate
the pS129 and oligomeric a-syn assays through a
broader round robin consortium known as LEAPS
(Linked Efforts to Accelerate Parkinson’s Solutions).
Research is also in progress to identify novel poten-
tially pathological species of a-syn for which assays
could be developed in the future (e.g., truncated, oxi-
dized, phosphorylated at sites other than S129). In
addition, biochemical properties of a-syn, such as
its ability to bind to lipids, have been investigated as
potential differentiating biomarkers, and independent
cross-validation and replication efforts are currently
underway [78].

Seeding and turnover assays

The immunoassays described above are dependent
on the quality and availability of antibodies for spe-
cific detection of the relevant form(s) of a-syn. New
antibody-independent assay approaches for detection
of a-syn aggregates via repeated cycles of seed-
ing, amplification, and break down, similar to DNA
amplification by polymerase chain reaction, appear
promising. Two variations of this seeding assay tech-
nology, protein misfolding cyclic amplification assay
(PMCA) and real-time quaking-induced conversion
(RT-QuIC), have demonstrated high sensitivity and
selectivity in differentiating PD from healthy control
subject CSF in initial studies [79, 80]. Efforts are
also under way to measure a-syn turnover through
stable isotope labeling kinetic (SILK) assay devel-
opment. This technique measures incorporation of a
stable isotope amino acid tracer into newly synthe-
sized a-syn, measured by mass spectrometry in CSF
collected from living subjects [81].

Immunohistochemical analysis in the periphery
Given the hypothesis that peripheral a-syn pathol-
ogy may develop prior to that in the CNS, and in
the absence of an a-syn imaging tracer, consider-
able effort has been devoted to measuring o-syn

deposition in peripheral tissues. Several studies
(reviewed in [82]) report inconsistent results in colon
and skin biopsies, possibly a result of the many
permutations in collection and processing protocols
utilized or variable distribution of a-syn in the tis-
sues examined. The submandibular salivary gland
has emerged as a potentially sensitive and specific
peripheral biomarker differentiating PD and healthy
control subjects [83], although transfer of this tech-
nique and replication by multiple groups, as well as
assessment of the feasibility of collection in a multi-
site trial, is pending. The ongoing Systemic Synuclein
Sampling Study (S4) is designed to evaluate a-syn in
three peripheral tissues, skin, colon and submandibu-
lar salivary glands, and correlate it with biofluids
levels (CSF, saliva, and blood) collected from the
same subject [84].

Physiological biomarkers

Physiological biomarkers provide additional
opportunities for segregating PD and healthy control
subjects and may be relevant as phenoconversion
markers of prodromal PD (reviewed in [85]). Func-
tional, non-invasive techniques such as heart rate
variability, electroencephalography, electromyo-
graphy, optical coherence tomography, and skin
conductance have shown potential utility as relevant
functional biomarkers of a-syn pathology. Future
replication through natural history studies of large
cohorts of PD as well as non-PD neurodegenerative
Parkinsonisms may elucidate whether a combi-
natory physiological “PD signature” will emerge,
sufficiently distinct from PD-like disorders. There
is also ongoing development of new physiological
biomarker platforms, including pilomotor reflex
[86], breath volatile organic compounds [87], eye
tracking [88] and corneal confocal microscopy [89],
facial expressivity [90], and acoustic speech [91].
Correlation of all of these physiological measures to
a-syn pathology will be an important determinant of
potential integration of these measures into clinical
trials. Wearable and interactive devices (see 3.3)
may also be considered a type of physiological
biomarker.

Imaging

While other biomarkers are evolving, the most
robust markers for assessing PD progression (and
presumably, the effects of disease-modifying inter-
ventions) are based on neuroimaging and, for now,
particularly those that assess dopaminergic neu-
ron function. Dopaminergic imaging, discussed in
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further detail below, may not be optimal for a
variety of reasons. Here we consider other possi-
ble imaging approaches to studying PD progression
(Table 3).

Structural imaging

Standard diagnostic MRI is of limited use for
confirming a PD clinical diagnosis but may be help-
ful to exclude atypical forms of Parkinsonism such
as MSA or progressive supranuclear palsy (PSP)
[92]. This is an important consideration, as inclu-
sion of patients with atypical disease could dilute
the results of any interventional study. More sophis-
ticated approaches to structural MRI may prove
informative. Striatal volume declines over time, par-
ticularly in the early stages of PD [93], while cortical
thinning and hippocampal atrophy are associated
with cognitive decline [94]. The pattern of atro-
phy in PD may progress according to a defined
network of connectivity to the substantia nigra, com-
patible with propagation along anatomical pathways
[95]. Susceptibility weighted or T2* imaging pro-
vide insight into brain levels of iron. Nigral iron
signal increases in association with clinical measures
of disease severity in PD [96, 97], and this may
accordingly represent a relatively inexpensive and
widely available approach to quantify disease state.
T2* weighted imaging at high field strengths detects
a dorsal nigral hyperintensity (DNH) deemed analo-
gous to the calbindin-negative nigrosome 1 [98]. This
DNH is lost both in PD and in a majority of subjects
with REM sleep behavior disorder (RBD) [99], is pre-
served in non-degenerative forms of Parkinsonism,
and predicts loss of DAT binding [100].

More experimental MRI techniques include neu-
romelanin imaging and tract-tracing techniques such
as diffusion tensor imaging (DTI). Reduced neurome-
lanin signal has been reported in PD [101], may
decline as disease progresses [102, 103], and may
indeed correlate in some hands (but not others, [104])
with striatal DAT binding [105], but this is currently
not an approach in wide use. DTI examines the move-
ment of protons and is widely used to assess fiber
tracts. This technique has revealed reduced fractional
anisotropy (FA) in the posterior substantia nigra in
PD [106], and changes in FA in the nigrostriatal tract
appear to correlate with clinical measures of disease
severity [107]. Furthermore, reduced nigral FA cor-
relates with increased free water in PD, and, when
assessed using a bitensor model, increases with dis-
ease progression [108].

Functional imaging

Resting state. Resting state functional MRI (rs-
fMRI) has revealed reductions in connectivity of
the pre- and post-central gyri, occipital cortex, and
cuneus in PD that progresses over the course of ill-
ness and correlates with cognitive decline [109]. The
potential validity of using a change in patterns of
rs-fMRI connectivity to assess disease progression
is highlighted by a study demonstrating a corre-
lation between reduced sensorimotor connectivity
and reduced CSF levels of a-syn [110]. However, it
should be noted that all rs-fMRI studies to date have
been small and single-site. Feasibility in multicenter
trials is still a concern.

Task-related activity. PD is typically associated with
reduced activation of the supplementary motor cor-
tex (SMA) during performance of a simple motor
sequence, and activation can be restored by symp-
tomatic medication such as apomorphine [111].
While this may seem a relatively non-specific out-
come measure, it may be important to demonstrate the
functional relevance of improvement in other mark-
ers. Increased dopaminergic activity was seen within
six months after fetal mesencephalic transplantation
for PD, but maximal clinical improvement did not
occur until later, associated with increased activa-
tion of the SMA, presumably reflecting a gradual and
protracted integration of the graft into the cortico-
striatal-pallidothalamo-cortical loop [112]. Cognitive
activation studies may also provide insight into
disease state, but interpretation is challenging. Per-
formance of an executive task should be associated
with suppression of activity in the Default Mode Net-
work (DMN). In patients with PD, there is failure of
suppression in the DMN [113], but the relationship
to disease progression and to symptomatic therapy is
unknown. Changes in activation patterns can be seen
even in presymptomatic carriers of LRRK2 mutations
during performance of a motor imagery task or while
performing the Stroop interference task [114, 115].
It is unclear how these alterations change with dis-
ease progression, but they are thought to represent
compensatory shifts and highlight the challenges in
interpreting such data.

The pattern of cerebral glucose metabolism, as
measured by fluorodeoxyglucose positron emission
tomography (FDG-PET) imaging, is altered in PD
in a characteristic fashion, i.e., relatively increased
metabolism in the basal ganglia, thalamus, pons and
cerebellum, with concomitant relative reductions of
metabolism in the premotor and parietal cortices
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Potential imaging biomarkers for Parkinson’s disease

Modality Indication Caveats Other comments
Structural High-resolution Exclusion of atypical Differences may be subtle, -
MRI T1, T2*/GRE, Parkinson syndromes limiting the utility
FLAIR
Subcortical Exclude atypical Parkinson - -
volumetry syndromes
Cortical thickness,  Thinning/atrophy associated Patterns likely to be Pattern of atrophy linked to
hippocampal with cognitive decline heterogeneous depending on nigral connectivity and may
volume clinical phenotype progress according to a
defined network of
propagation
Neuromelanin Assessment of dopaminergic Small volume of aminergic Need data from longitudinal
and noradrenergic cell bodies  nuclei makes reliable studies to understand
quantitation difficult potential as progression
marker
Diffusion Free water Initial studies not Nigral free water increases
weighted independently reproduced with disease progression but
unclear how robust after early
time points
Susceptibility Iron sensitive Increase may not be robust Increased iron with disease
weighted or T2* enough to be useful progression
Functional Resting state Connectivity of pre- and Difficult to control quality of Altered connectivity
Imaging fMRI post-central gyri, occipital images in multicenter studies correlates with cognitive
cortex and cuneus decline and with CSF
a-synuclein
FDG-PET Parkinson Disease Related PDREP is suppressed by Diagnostic value and changes
Pattern symptomatic therapies; with disease progression
requires sophisticated
statistical analysis; some
controversy regarding global
normalization
Parkinson Disease Cognitive (As above) PDCP is linked to cognitive
Pattern decline, a greater source of
disability in advanced disease
Task-related Motor activation Difficult to standardize across ~ Provides evidence of
activity centers. Primary utility is for functional integration
research studies rather than
clinical trials
Cognitive tasks Difficult to standardize across ~ Alterations in prodromal
centers. Primary utility is for disease reflect compensation;
research studies rather than unclear role in studying
clinical trials disease progression
Molecular DA systems: DAT  Assessment of dopamine DAT may be subject to Widely available. Different
Imaging SPECT or PET nerve terminal integrity, pharmacological and tracers have varying
primarily in striatum compensatory regulation selectivity and kinetic
properties
DA systems: More closely approximates Less widely available than May track disease
VMAT?2 binding monoamine nerve terminal DaT, not specific for DA progression but additional
density data are needed.
DA systems: Assessment of presynaptic Not widely available; Historical ‘gold standard’.

F-dopa uptake

Non-DA systems

dopamine nerve terminals
and dopamine synthesis rates

Cholinergic (cholinesterase,
VAChAT); serotonergic
(SERT)

decarboxylase is subject to
regulation and not specific to
dopaminergic neurons
Cholinesterase activity cannot
be quantitated in striatum, but
VAChHT can

Prolonged scans can be used
to assess DA turnover

Cholinergic dysfunction
relates to several aspects of
disability, especially
cognition

(Continued)
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(Continued)
Modality Indication Caveats Other comments
PoP a-syn Quantification of No specific tracers to date; ‘Holy grail’ of
Biomarkers alpha-synuclein pathology in intra-cellular localization and synucleinopathy imaging
brain limited brain density suggests ~ biomarker
signal will be limited;
possibility of peripheral
consumption
TSPO Microglial activation Classical ligand has low Unclear how microglial

signal; binding of newer
agents varies according to
polymorphism; quantitation

activation progresses with
disease and whether it is
harmful or protective

difficult

CSF, cerebrospinal fluid; DAT, dopamine transporter; fMRI, functional magnetic resonance imaging; F-dopa, fluorodopa; FDG, fludeoxyglu-
cose; MRI, magnetic resonance imaging; NM, neuromelanin; PD, Parkinson’s disease; PDCP, Parkinson’s disease cognitive pattern; PDRP,
Parkinson’s disease related pattern; PET, positron emission tomography; PoP, proof of principle; SERT, serotonin transporter; SPECT,
single-photon emission computed tomography; TSPO, translocator protein; VACT, vesicular acetylcholine transporter; VMAT?2, vesicular

monoamine transporter 2.

(the PD-related pattern, PDRP). PDRP expression
increases with disease progression and is inversely
correlated to DAT binding in the putamen [116].
However, the utility of the PDRP as an imaging
biomarker of disease progression is unclear because
the pattern is suppressed by symptomatic therapies
including levodopa and deep brain stimulation [117].
While the PDRP correlates with motor dysfunction in
PD, trials of a-syn-based therapies should also take
into consideration the cognitive decline that repre-
sents a significant source of disability for a substantial
number of patients. The PDCP (PD cognitive pat-
tern) is a distinct network of altered metabolism that
has been found to correlate with cognitive change
and with DAT binding in the caudate nucleus rather
than the putamen [118]. PDRP and PDCP may be
measured in the same set of images. FDG-PET may
serve to differentiate PD from other akinetic rigid
syndromes such as MSA or PSP [119]. This poten-
tial diagnostic utility may be highly relevant to the
conduct of trials of disease-modifying therapies, as
these conditions can be difficult to diagnose in early
stages, are not readily differentiated by dopaminer-
gic tracer studies, and inclusion of such patients may
reduce the chances of detecting therapeutic benefit.

Molecular imaging

Molecular imaging of the nigrostriatal dopamin-
ergic system is still likely the most widely accepted
biomarker to assess PD progression and, by exten-
sion, the impact of potential disease-modifying
therapies. The most extensively used approach is
some form of imaging presynaptic dopaminergic neu-
ron integrity. While this clearly addresses the most

obvious deficit in PD, it is probably not the only
outcome of interest, as progression of PD and major
sources of disability are associated with changes in
several non-dopaminergic neurotransmitter systems,
and neurochemical studies provide only one measure
of the underlying pathology.

Dopaminergic measures. The most widely used
approaches utilize PET or SPECT to assess expres-
sion of the membrane DAT, the vesicular monoamine
transporter type 2 (VMAT?2), or activity of L-aromatic
amino acid decarboxylase (L-AAAD). All three
approaches provide similar, although not identical,
information on the integrity of dopaminergic nerve
terminals in PD. All can demonstrate the character-
istic asymmetric reduction of tracer uptake in PD,
with a rostro-caudal gradient in which the poste-
rior putamen is maximally affected. All approaches
have, to varying degrees, demonstrated a correlation
between tracer uptake and nigral dopaminergic cell
counts [120-124]. Furthermore, the progression of
abnormalities using any of the three approaches [125]
is remarkably similar to the pattern of striatal TH
and nigral dopaminergic neuron loss demonstrated
in post-mortem PD studies [126], with an expo-
nential pattern of decline that reaches an asymptote
at four-to-five years into the disease. Nonetheless,
considerable caution is required in the application
of these approaches to study disease modification.
Although the practical significance is uncertain, both
L-AAAD activity and DAT are subject to pharma-
cological and compensatory regulation, particularly
evident in early PD stages [127, 128]. While there
is a general correlation between clinical measures
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of PD severity and imaging markers, it has been
increasingly difficult to demonstrate a correlation
between changes over time in the two parameters,
regardless of which tracer is used (see [129]). Fur-
thermore, there are several examples of discordance
between imaging and clinical measures of improve-
ment, particularly related to trials of putative disease
modification [130-133]. Thus, while dopaminer-
gic neuron imaging undoubtedly serves as a useful
adjunctive biomarker to assess the effects of potential
disease-modifying therapies, findings must be inter-
preted in the light of other available data, and it is
unlikely to ever become a surrogate endpoint.

An interesting molecular imaging technique
involves uptake of 6-'3F-fluoro-L-dopa (F-dopa)
which reflects not only the activity of L-AAAD (a
marker for the health of dopaminergic nerve termi-
nals), but also trapping of 6-'8F-dopamine (F-DA)
in synaptic vesicles, prolonged scans with F-dopa
can therefore be used to assess DA turnover [134].
However, F-dopa itself is only available at a few
centers worldwide, and turnover studies are techni-
cally challenging, requiring scan times of up to four
hours, arterial sampling, and high-performance liquid
chromatography for metabolite analysis.

Non-dopaminergic systems. Significant disability
in PD is attributable to non-motor complications,
many of which presumably reflect changes in
non-DA systems. Serotonergic neurons of the raphe
are affected in PD, but binding of the serotonin
transporter (SERT) ligand !''C-3-Amino-4-(2-
dimethylaminomethyl-phenylsulfaryl)-benzonitrile
(DASB) is only minimally reduced, with no clear
correlation to disease severity. In fact, increased
'IC-DASB binding is seen in PD patients with
depression [135, 136], and relative preservation of
11C-DASB binding in the putamen is associated with
levodopa-induced dyskinesias [137, 138]. DASB
binding is also increased in multiple brain regions
prior to clinical evidence of disease onset in subjects
with LRRK?2 mutations [139]. It is therefore unlikely
SERT binding will be useful as a marker of treatment
efficacy, although a dramatic increase in SERT
binding might be associated with treatment-related
complications.

Cholinergic dysfunction is common in PD and is
associated with cognitive impairment, postural insta-
bility, olfactory impairment, and RBD [140-143].
Cholinergic dysfunction with these disabling non-
motor features suggests that it may be a meaningful
measure of disease activity, particularly with respect

to therapies targeting a-syn. To date, most studies of
cholinergic function in PD have been conducted using
PET with tracers for acetylcholinesterase [144]. This
provides aless direct measure of cholinergic neuronal
integrity, and recent development of tracers for the
vesicular acetylcholine transporter [145] may offer a
more reliable measure and permit easier quantitation,
particularly in the striatum.

Both sympathetic and parasympathetic nervous
systems are affected in PD, albeit to somewhat
varying degrees (see [146] for review). The unequiv-
ocal presence of cardiac sympathetic denervation as
detected by '**I-metalodobenzylguanidine (MIBG)
or 'C-hydroxyephedrine (HED) SPECT, or 6-
I8F_fluorodopamine PET, might help differentiate
between PD and other atypical parkinsonian con-
ditions such as MSA or PSP, in which cardiac
sympathetic denervation is not thought to be present,
but even this is controversial. There are similarly
recent reports of gastrointestinal cholinergic dener-
vation in early PD, which would not be expected in
the atypical Parkinsonisms. However, in both cases,
the degree of denervation is highly variable, and there
is insufficient evidence of a clear relationship to dis-
ease progression that would justify the use of such
approaches to monitor either disease progression or
the effects of a disease modifying therapy. Further-
more, these peripheral abnormalities are present long
before motor manifestations are expressed, as is evi-
dent from studies conducted in idiopathic RBD [147],
thus suggesting the likelihood of a floor effect in many
patients.

Pathology or pathophysiology markers for proof
of principle and patient enrichment

The most useful imaging biomarker to establish or
confirm the impact of a-syn-based therapies would be
a probe for a-syn itself. Thus, a PET ligand to mea-
sure ai-syn deposition in the brain is highly coveted as
a PoP biomarker, analogous to the utility of A PET
tracers in clinical trials of amyloid-targeted therapies
[15, 148, 149]. If an a-syn PET tracer would become
available for clinical use, there are some important
considerations for using it as a PoP biomarker for
drug development. Most importantly, one has to take
the drug’s mechanism of action into account; i.e.,
would the PET signal need to detect effects of the
drug on progressive aggregation and propagation of
misfolded a-syn, or is a decrease of already estab-
lished a-syn pathology expected (clearance effect)?
In either case, quantitative methods will have to be
developed, with the identification of relevant regions
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of interest and reference region. Once the direction-
ality of the effect and quantitative methods have been
established, a pre-set target for the desired effect size
has to be defined. Each factor discussed above could
have a major influence on the sample size and treat-
ment duration, and consequently the ability to obtain
a robust PoP based on a PET readout. Additionally,
a meaningful go-decision based on a-syn PET imag-
ing, would also have to assume a relationship between
the treatment-induced directionality and extent of the
effect on the PET signal with a clinical benefits. This
critical aspect is well illustrated by the use of amyloid
PET imaging in AD programs. Thus, treatment with
BACE inhibitor, that reduced CSF A3 peptide lev-
els [150] and prevented further increase in amyloid
deposition, as demonstrated by PET imaging, did not
provide any clinical benefit [16]. On the other hand,
there are findings suggesting that treatment with an
anti-Af monoclonal antibody leads to amyloid clear-
ance (reduction from baseline) accompanied with a
potential delay in clinical disease progression [10].
What further complicates the possibility translate PoP
findings to potential clinical benefit is that the stage
of disease at treatment may impact the outcome, with
stronger effects presumably attainable at earlier dis-
ease stages [151]. Beyond the PoP utility of an a-syn
PET ligand, it could provide a critical tool for patient
enrichment via assessment of a-syn pathology load as
well as to monitor the progression of PD pathology in
natural history and therapeutic intervention studies.
The discovery and validation of an a-syn-targeted
PET ligand has proved elusive for several reasons
[152]: 1) while a number of PET ligands have been
shown to bind a-syn, these compounds bind to pro-
teins that take on a (-pleated conformation, thus
selectivity is generally poor (e.g., BF227 [153] and
SIL23 [154] bind to AP and tau, although BF227
did not bind in AB-negative DLB); 2) unlike A, a-
syn is predominantly intracellular and expressed in
small quantities, thus adequate cellular penetration
and signal-to-noise ratio will be difficult to accom-
plish; 3) greater selectivity might be afforded by
radiolabeled antibodies, but passage across the blood-
brain barrier will be quite limited; and 4) kinetics may
be challenging, as suggested by the time required
(several days) for a molecule to achieve equilib-
rium [155]. As a-syn is highly expressed in tissues
other than the brain, the question arises as to whether
a PET tracer would achieve a significant signal in
the brain or whether the signal would be consumed
peripherally. The fact that one can detect presumed
off-label binding of the tau ligand PBB3 to a-syn

in brain (at least in high concentrations) [156] sug-
gests this may not be an issue. Other ''C and '8F
tracers that have demonstrated brain penetrance with
rapid washout kinetics are in development [157], but
selectivity for a-syn and utility in transgenic animal
models or humans with synucleinopathies have yet
to be demonstrated in vivo.

Asnoted above, the emergence of cognitive impair-
ment is a major clinical aspect of PD and could
potentially be an important measure of a clinically
meaningful impact of disease-modifying therapies
targeting a-syn. Several studies have used PET to
determine the presence of abnormal A3 deposition,
but the prevalence is overall too low [158] to make
AP PET a useful biomarker for this purpose.

a-syn interacts with phosphorylated tau [159], and
both proteins appear to be co-deposited (along with
Ap) in PD with cognitive impairment [160], raising
the possibility that tau imaging might provide indirect
insights into a-syn deposition. Several PET ligands
for misfolded tau have been recently been developed.
However, the most widely used PET tau tracer, Bp
AV 1451, only binds to a limited extent in discrete
cerebral cortex regions in patients with cognitive dys-
function associated with PD or DLB [161]. Emerging
evidence suggests that another preferential tau ligand,
HC.PBB3, binds to a-syn, but likely only where there
is a high concentration of aggregates, such as in MSA
or individuals with SNCA multiplication [156, 162].

PD and other neurodegenerative disorders are asso-
ciated with microglial activation [163, 164]. The
‘peripheral benzodiazepine receptor’ (now referred to
as Translocator Protein, TSPO) ligand ! C-PK 11195
has been used to study PD, with variable results. One
study showed localized binding in the substantia nigra
that correlated with disease severity [165], whereas
another found more widespread inflammation that
did not correlate with clinical severity [166]. e
PK 11195 is a difficult ligand to work with, as the
signal-to-noise ratio is low, and the lack of a clear
reference region makes modeling challenging. Sev-
eral newer TSPO ligands have been developed, but
while the signal is better compared to ' C-PK 11195,
the binding of these agents varies, subject to genetic
polymorphism [167]. Thus, interpretation requires
polymorphism testing, and low affinity binders, rep-
resenting <10% of the population, cannot be studied.
Only limited data are available on TSPO binding
in PD using these later generation ligands, and it
is unclear how useful they will be [168]. Further-
more, the relationship between microglial activation
and disease progression is unclear.
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Application of molecular imaging approaches

There is no single imaging measure that can reli-
ably provide a measure of treatment effectiveness.
Nonetheless, molecular imaging may prove useful in
PoC studies. The ability to demonstrate blood-brain
barrier passage and TE would be an important first
step in deciding whether or not to proceed with a
potential therapy and in the interpretation of failed
therapeutic efficacy.

As noted above, measures of nigrostriatal
dopaminergic system integrity will inevitably be
regarded as necessary to exclude non-DA-dependent
Parkinsonism (SWEDD, scans without evidence of
dopaminergic deficit), and they would likely con-
stitute a secondary outcome measure in PD trials.
Indeed, DAT SPECT has recently been approved by
the European Medicines Agency as an enrichment
marker for inclusion in clinical trials (draft qualifica-
tion opinion - [169]), and the FDA has also issued a
letter of support for this use [170]. However, although
in one study, density of DAT in striatum did correlate
inversely with density of a-syn staining, 1) the rela-
tionship between change in a dopaminergic marker
and change in clinical function is inconsistent [129];
2) meaningful disability associated with PD progres-
sion arises from non-dopaminergic mechanisms; 3)
the treatment may have a pharmacological effect on
the dopaminergic marker, independent of changes in
disease severity; and 4) it may take considerable time
and a large patient cohort to demonstrate a convinc-
ing effect on the DA-related marker. If robust imaging
measures of disease pathology were available, there
is still no guarantee that an effect of the treatment on
the imaging marker would correspond to an impact
on disease progression.

Digital and wearable technologies

Mobile technology-derived measures in human
anti-alpha-synuclein trials

Assessment of human behavior using technology
placed on the surface or inside the body of a person,
or in the immediate environment, has been increas-
ingly recognized as a powerful source of data that
may enhance diagnosis and management in medicine
(Fig. 2). “Technology” here means detection sys-
tems for biological, chemical, and other processes.
Mobile technology is worn on the body (so-called
“wearables”), and its development has been accel-
erated, fueled by collaborations with the health and
fitness sector industry. This technology allows for
the detection of subtle changes in human activity

and behavior, changes that may escape detection
by traditional measurements, such as diaries, ques-
tionnaires, or even in-clinic assessments by trained
clinicians. Mobile technology-derived measures are
thus attractive options to include as outcome mea-
sures in trials of symptomatic and disease-modulating
compounds. Due to the nature of PD (associated with
predominantly motor symptoms including mobility
limitations, falls, and sleep problems; exhibiting a
chronic and progressive course), this disease is an
interesting “target disease” for the assessment of
mobile technology-derived measures. This interest
is reflected by many observational studies recently
published (for a review, see [171]).

Potential of mobile technology-derived measures

Objective data from mobile technologies can quan-
tify single and recurrent events of interest, extended
continuously over a timeframe that captures their
frequency in the background of expected fluctua-
tions, or intermittently, offering the opportunity to
reliably include a virtually infinite number of highly
accurate “visits” and data points. Moreover, mea-
sures obtained from mobile technologies can support
supervised assessments in the clinic and laboratory,
where outcome measures mainly reflect functional
capacity (“How well can you perform?”) and easily
can be used under unsupervised conditions in eco-
logically natural environments, where the outcome
measures reflect functional activity (“How do you
regularly perform?”) [172, 173].

The high accuracy and inter-event reliability in
the measurement of endpoints of interest by mobile
technologies promises to increase the signal-to-noise
ratio, thereby reducing the sample size required by
clinical trials [174]). It could also lower trial costs
by shortening the duration and lowering the burden
on patients whose efforts no longer require answering
diaries or questionnaires [175, 176]. Furthermore, use
of mobile and interactive technologies may reduce the
need for in-clinic assessments in clinical trials, further
reducing burden, complexity and expense. A con-
densed overview of short-, medium- and long-term
efficacy, efficiency, and patient centricity benefits
expected from mobile technology-based measures,
integrated in a battery of assessments built into clin-
ical trials are available [177].

Why is it so difficult to develop mobile
technology-derived measures?

The integration of mobile technology in clinical
trials has been difficult for a number of reasons.
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Fig. 2. Adapted Illustration of the International Classification of Functioning, Disability and Health Model of the World Health Organization.
A) The description (and treatment) of a disease, dysfunction or symptom require(s) consideration of multiple domains of an individual
(more specifically, body/organ structure and function, activity, social participation, as well as personal and environmental factors), and the
corresponding interactions across domains. B) Traditional outcome measures, such as clinical scales, body fluid parameters and imaging
(green circles) document variables about the body/organ (here: brain) structure and function domain and to some extent about the activity
domain. Mobile technology (orange) has the potential to collect information over most of the ICF domains. ICF, International Classification
of Functioning, Disability, and Health; UPDRS, Unified Parkinson’s Disease Rating Scale.

First, there is a lack of studies investigating mobile
technology-derived measures in PD that convincingly
describe endpoints of interest. Importantly, as a field
we lack consensus defining the optimal concepts of
interest and contexts of use for technologies in PD
clinical trials. This is due in large part to the fact that
the maturity of mobile technology in terms of medical
use is low. A recent review found that only 5 percent
of about 850 original studies applying technology-
derived measures in PD used systems that were close
to or already positioned on the market [171]. Fur-
thermore, only a small proportion of studies provide
qualitatively acceptable data in terms of cohort and
algorithm description, sensitivity to change, speci-
ficity, accuracy, and predictive value of investigated
measures [171]. Finally, technological development
does not follow clinical decision-making, and often
the opposite is true. Researchers often focus on
seemingly easy-to-detect symptoms or signs with
questionable clinical meaningfulness or allow the
technology at hand to dictate the questions being
asked of subjects.

The multidimensional and protean nature of PD’s
clinical manifestations further complicates the selec-
tion of concepts of interest and contexts of use for
the application of technologies; distinct features of
PD occur at different time points and deteriorate
with different slopes of progression during distinct
PD phases. As an example, fine motor movement of

the upper extremities may be a useful progression
parameter in prodromal and early, but not late PD
phases [178-180]. Moreover, our “pre-technology
era” clinical view may hinder us from discovering
the clinical relevance and usefulness of PD-related
features particularly sensitive to technology-based
assessment strategies: candidate measures could be
loss or preservation of variability (e.g., of movement
“episodes” and activity patterns during the day and
during the night); loss or preservation of similarity
of comparable movements; phenomena associated
with multitasking-related deficits, and a range of non-
motor behaviors (e.g., heart rate variability, sleep
architecture, etc.). Fourth, we have not yet solved
retention issues regarding the use of mobile technol-
ogy over long periods, especially when they require
active participation of the study subjects (e.g., enter-
ing data). For example, only two percent of those who
had downloaded the mPower app during the first six
months of availability used it more than five times
[181]. Other studies have reported similarly poor
long-term adherence to technology requiring active
participation. Thus, such assessments not only suffer
from low retention but also from a potential selec-
tion bias, as the study participants adopting and using
mobile technologies may not be representative of a
population of interest. Such lack of adherence could
create issues for data completeness and integrity
in clinical studies. Fifth, access (see below) and
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regulatory issues make it difficult for investigators
to integrate these new tools. Raw data is often not
freely accessible, and is only interpretable by using
company-owned algorithms, and there are often sep-
arate proprietary platforms required for devices from
different companies, preventing the time-locked inte-
gration of their data. Importantly, the field currently
lacks data and metadata standards that would allow
sharing and common interpretability of device data.
Finally, legal (privacy) and regulatory barriers exist
and often differ across countries.

In spite of these challenges, the potential of mobile
technology-based measures as exploratory endpoints
in anti-a-syn trials is enormous, specifically if we
consider the following recommendations.

Recommendations for the integration of mobile
technology-derived measures in human
anti-alpha-synuclein trials

The International Parkinson and Movement Dis-
orders Society Task Force on Technology [176] and
the Clinical Trials Transformation Initiative recently
published general recommendations for the devel-
opment of mobile technology-derived measures and
for the implementation of mobile technology in
PD clinical trials [177]. There is broad consensus
that every ongoing clinical PD trial should integrate
mobile technology-derived measures, initially on an
exploratory level and targeting endpoints previously
validated in clearly defined cohorts.

— There is no convincing evidence currently avail-
able that TE of pathological a-syn can lead
to improvements in specific PD symptoms; as
such, mobile technology should gather data
about a wide range of symptoms, using different
modalities (e.g., combinations of accelerome-
ters, gyroscopes, magnetometers, GPS, heart
rate) and body surfaces instead of assessing sin-
gle symptoms and applying single sensors for
data collection. Shorter assessment periods (e.g.,
days rather than weeks of assessment) may com-
pensate for the higher effort on the part of the
patients.

— Data obtained from the habitual environment
likely have a higher potential to add novel
information to a battery of measurements than
mobile technology-derived data collected in
the clinic and laboratory. Note that traditional
assessments mostly examine functional capac-
ity, which do not necessarily reflect behaviors
in habitual environments, under unobserved

conditions. We recommend performing com-
bined assessments covering functional capacity
and functional activity.

— Data collection approaches that do not require
(much) active engagement of the study partic-
ipants during the active data collection phase
should mitigate the current rate of attrition.
Translation of these data into understandable
information to the technology wearers during
or after the active data collection phase may
enhance adherence [182].

— If the aim of an a-syn targeted trial is to
reduce the progression of progressively worsen-
ing symptoms rather than improving potentially
non-progressive symptoms, there should be
enough evidence that the target symptoms exist
in an as large as possible proportion of study
participants, have a high chance to be in a
“progressive phase” of the disease, and can be
measured by technology without the risk of
ceiling or floor effects. Interesting candidate fea-
tures in prodromal and early PD are fine motor
movements of the hands and arms and axial
symptoms, such as gait and postural instability,
at later stages.

— Mobile technology collecting and providing free
access to raw data (i.e., the sensor signal) has
the advantage that the PIs can contribute to
independent data analysis approaches as soon
as new algorithms and statistical strategies are
available. Moreover, PIs may benefit from open-
access platforms for mobile technology that may
become available in the near future.

PROOF OF CONCEPT CLINICAL
STUDIES

As a key mediator of PD pathogenesis, thera-
peutic modulation of a-syn-associated pathogenic
mechanisms are anticipated to produce clinical effi-
cacy reflective of slowing of disease progression
(i.e., disease-modification). The scope of the effort
required to unequivocally demonstrate slowing of
disease progression, with an appropriate safety and
tolerability profile, will require the design, conduct,
interpretation, and regulatory review of data gen-
erated from multiple clinical trials. The breadth of
such a development program, which will be highly
dependent upon the size of the beneficial clinical
effect observed, is likely to require hundreds of
biomarker-enriched (and potentially thousands) of
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patients studied over relatively long time periods
(months to years). Such efforts, as exemplified in
recent AD therapeutic development efforts, will be
resource intensive, the bulk of which expended at the
latter stages of clinical evaluation (i.e., pivotal or reg-
istration studies). Therefore, the development of an
a-syn-based therapeutic should progress in a step-
wise manner in which advancement decisions are
guided by the strength of the aggregate preclinical,
non-clinical and clinical data.

Previous sections in this white paper have cov-
ered translational approaches, tools and measures
currently available to assess the therapeutic potential
of a given a-syn-directed drug candidate. It is imper-
ative to continue to characterize and refine these tools
and outcomes in a translational manner to optimally
design initial clinical studies. The focus of this section
is to discuss key early clinical development objectives
and clinical trial elements for a-syn-based therapeu-
tics, with specific emphasis on advancement to PoP
and PoC. The challenges and issues faced in latter
stages of clinical development (pivotal/registration
trials) of an a-syn-based therapeutic (or any other
potentially disease-modifying therapy for a neurode-
generative disease) (recently reviewed in [69]) will
not be addressed herein.

What defines proof of principle and proof of
concept for alpha-synuclein-based therapeutics?

PoP and PoC relate to the level of confidence
one assigns to an available dataset at key decision
points during development. In the absence of a uni-
formly accepted definition, the present discussion
will emphasize that PoP is defined by data generated
in humans demonstrating that a potential therapeutic
can be administered safely at dosages (or, more accu-
rately from a translational perspective, exposures)
that lead to a measurable change in a pathological or
pathophysiological endpoint assessed by physiolog-
ical, biochemical, or imaging biomarker. Similarly,
PoC is defined by data generated in humans that
a potential therapeutic favorably impacts a clinical
outcome, or a validated biomarker that may reliably
predict clinical efficacy when studied in a larger, per-
haps more diverse, patient population. For instance,
lowering a-syn levels in a central or peripheral tis-
sue compartment after short-term exposure (days to
weeks) without seeing a beneficial clinical outcome
may constitute PoP. On the other hand, demonstrating
slowing of motoric decline after longer-term (likely
months/years) exposure, preferably with a reduction

in brain a-syn load via a PET tracer, may constitute
PoC. When considered in these broad terms, the goals
of any early clinical evaluation of an a-syn-based
therapeutic should be to initially establish robust PoP
as a foundation to support the latter demonstration
of clinical PoC. As we have argued earlier, it is dif-
ficult to envision achievement of clinical PoC for an
a-syn-based intervention without first demonstrating
PoP.

Symptomatic effects versus disease modification

Clinical assessments for symptomatic outcomes
should be included in all initial, short-duration treat-
ment studies as it is a confounding factor that
influences the design and interpretation of later, larger
pivotal studies seeking to demonstrate disease modifi-
cation. Given the difficulty in modeling symptomatic
outcomes in a-syn-based animal models discussed
above, uncertainty exists as to what clinical signs and
symptoms of a given synucleinopathy may improve
following exposure to an a-syn-modulating interven-
tion (e.g., motor, cognitive, autonomic). Modalities
like wearable sensors that capture broad and unbiased
scopes of function appear particularly well-suited for
use in these clinical studies. Demonstration that mod-
ulating a-syn produces improvements in a patient’s
symptomatology or function, not resulting from a
drug-drug interaction with co-incidentally adminis-
tered symptomatic therapies, would constitute PoC.

Choosing the optimal patient population

The known clinical heterogeneity in PD and
the variable motor and non-motor manifestations
represent a challenge to optimal patient selection.
Importantly, the ability to establish initial PoP (or
clinical PoC) may depend heavily on the ability to
select an experimental population characterized by a
nearly uniform underlying biology/pathophysiology
or other biological trait —even if such molecularly
homogenous population remains clinically heteroge-
neous.

The ideal a-syn patient population carries point
mutations, duplication, or triplication of the a-syn
gene, SNCA [183, 184]. Unlike in sporadic PD, where
the pathogenicity of a-syn is assumed, in these pop-
ulations, the pathogenicity of a-syn is confirmed.
Unfortunately, such patients are very rare and are
difficult to effectively recruit into clinical trials. Lack-
ing available SNCA-PD cohorts, one could argue
that a “patient enrichment” strategy using biological
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and/or imaging endpoints to identify patients with
high expression of pathological a-syn being targeted
by a specific therapy, may improve the probability of
success in establishing PoP.

One could envision designing a clinical PoP study
in PD patients with evidence of synucleinopathy,
where the primary goal is to establish that the drug-
targeted pathologic a-syn levels are reduced after
treatment. Potential trial subjects could be screened
for high a-syn levels using analysis of serum, periph-
eral tissues, and CSF, and potentially via a-syn
molecular imaging, once developed. In the absence of
a means of identifying the presence of a-syn pathol-
ogy in living patients, DAT imaging, discussed above,
may be used to differentiate Parkinsonian patients
with a higher risk of symptom progression [185]. The
ability to extend the demonstration of PoP to clini-
cal PoC in a given sub-population, and clinical PoC
to the broadest population, will depend on measur-
ing change in clinical status as a result of lowering a
relevant a-syn species. As a subset of “responders”
may be statistically drowned in an overall negative
study, it will be important to anticipate the possibil-
ity that a clinical PoC can be confirmed only in a
subset of the cohort. Understanding the biological
differences between the responders and the rest of
the cohort may help fine-tune patient selection for a
subsequent phase of development. Implementation of
such an approach will require identification of clin-
ical, biomarker and/or genetic indicators associated
with responder population for recruitment of patients
in the next phase. The identification of such mark-
ers to enable personalization of disease-modifying
therapy will require that all studies, both interven-
tional and observational, collect harmonized clinical
and biomarker measures, and that the field redou-
bles its efforts to encourage all subjects to provide
biospecimens and consent to concurrent and future
analyses.

Outcome measures — safety

Non-clinical safety studies are necessary to iden-
tify potential liabilities to be monitored in humans
and to identify safe starting doses for first-in-human
studies. Safety (bio)markers should be sought in non-
clinical studies and are particularly useful if they
can be used to reduce risk in a clinical program. At
present, it is unknown if lowering levels of physi-
ological (“normal”) a-syn species has any inherent
liabilities in humans. Optimally, a-syn-based thera-
peutics should selectively target pathological forms

and spare normal species. Several of the current a-
syn-based approaches spare “normal” a-syn species
and are specific for a-syn (versus (3- and y-synuclein).
Because of our poor understanding of the normal
function of the synucleins, no guidance can yet be
made regarding “target-mediated” side effects of anti-
a-syn therapies.

Outcome measures — proof of principle

The decision to initiate human studies in healthy
subjects versus synucleinopathy patients will be spe-
cific to each therapeutic modality (small molecule,
antibody, gene therapy, antisense oligonucleotide),
based on a risk/benefit estimate as determined by
non-clinical safety experiments. Therefore, we do
not provide a specific “class” recommendation for
a-syn-based therapies. It is anticipated that either
starting first in human studies in a synucleinopathy
patient population or advancing to such a popula-
tion early in development will be advantageous. The
advantages include early assessments of safety issues
inherent to the target patient population and enabling
assessments of physiologically-based pharmacoki-
netic/pharmacodynamic relationships that may rely
on the presence of underlying a-syn pathophysiology.

Demonstrating a relationship between dose and TE
in the brain is important where the TE measure could
be specific to a drug candidate. A clear dose-response
effect on TE, pharmacodynamic, and safety mark-
ers is key to interpretation of results of early stage
clinical trials and to the initiation of pivotal trials.
Taking advantage of expression of the target a-syn
species in the CSF and peripheral biospecimens is an
attractive approach to establishing measures for TE.
Although extrapolation of exposures and TE from the
peripheral to the central compartment has its chal-
lenges, evidence for peripheral TE may be highly
informative, especially if a relationship is established
in animal models and a valid physiologically-based
pharmacokinetic/pharmacodynamic model can be
built. Additionally, many existing CNS imaging
and physiological assessment tools (structural MRI,
DTI, fMRI, 2-deoxyglucose imaging, and electroen-
cephalograms) have limited utility as direct TE
markers but may be suitable as pharmacodynamic or
PoP outcome measures.

Reduction of a-syn protein levels, comparing base-
line levels to multiple post-exposure assessments, in
biological fluids (serum and CSF), and potentially in
accessible cells like peripheral blood mononuclear
cells [186, 187] would be an informative outcome. In
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order for these modalities to be useful, they must have
robust assay metrics (e.g., low test/retest variabil-
ity). Establishing PoP by demonstrating reductions
in a-syn expression in small, relatively short-duration
clinical studies will be a critical step, and will help
translate PoP into clinical efficacy through the estab-
lishment of clinical PoC.

Current challenges in translation proof of
principle to proof of concept

In order to support investment in large-scale, long,
and expensive pivotal clinical trials, the objective of
a PoC trial should be to increase confidence that
the previously demonstrated TE/PoP outcomes trans-
late into a clinically meaningful outcome. For PD,
such outcomes include assessment of motor function
utilizing the Movement Disorders Society Unified
Parkinson’s Disease Rating Scale (MDS-UPDRS).
As such development programs advance, continued
assessments of safety and tolerability remain critical.

Ideally, the population upon which PoP was
demonstrated can also serve as the population to
establish PoC and eventual approval. As discussed
above, this may not always be the case, therefore the
synucleinopathy patient population is one of the key
variables to address in a PoC study. Whereas biologi-
cal factors may weigh heavily in the choice of patient
population to study for PoP, clinical characteristics
are critically important in determining an optimal
PoC study population. Clinical signs and symp-
toms differ between synucleionpathies, and inclusion
of patients who manifest disease progression with
specific clinical characteristics (e.g., predominantly
motor versus cognitive versus peripheral/autonomic
signs and symptoms) will dictate what clinical out-
come measures should be included for use in these
studies. For PoC studies, the primary endpoint does
not necessarily have to be an approved endpoint,
or even the planned pivotal study endpoint (such as
MDS-UPDRS, see Table 4). In fact, ideal endpoints
for PoC should be more sensitive, more precise, and
correlate with or predict outcomes on the primary
endpoint planned for pivotal trials (if the primary
endpoints are not the same). Planned pivotal study
outcome measures should be included in the PoC
study, even if the study is underpowered to detect
a statistically significant difference between groups.
Modeling and simulation techniques should be used
to estimate probability of success in future pivotal
trials.

Table 4
Alternate outcomes to be considered for alpha-synuclein proof of
concept studies

Modality
Neuroimaging

Examples

DAT, VMAT?2 or other tracers
capable of visualizing structural or
functional abnormalities in PD
patients

More granularity and reliable
assessments than clinical rating
scales (do not need to correlate with
or predict change in existent clinical
rating scales)™

Gait, cognition, dysautonomia™

Wearable sensors

Non-motor endpoints
(time to milestones)

*If these measures correlate with or predict change on validated
clinical rating scales they may be more valuable for PoC studies.
DAT, dopamine transporter; PD, Parkinson’s disease; PoC, proof
of concept; VMAT?2, vesicular monoamine transporter 2.

There are, however, several challenges inherent in
this approach. If subjects are taking medications for
control of disease symptoms, one should carefully
consider their effect on chosen outcome measures.
One must also consider the current state of val-
idation or available natural history data on novel
outcomes (e.g., wearables, new imaging methods)
when incorporating them into studies, and must pre-
pare a background dossier to support any go-forward
decisions based thereon. There are also several anal-
ysis issues. Currently, there is a lack of clarity on the
necessary effect size of change in MDS-UPDRS and
other outcome scales, as they have not yet been used
in a sufficient number of completed trials. We do not
yet understand whether existing scales are suitable
to be a global measure. Novel composite scales may
need to be developed to combine non-motor and cog-
nitive aspects into a single global measure of disease
progression in PD. Another outstanding question is
whether our statistical methods for declaring PoC are
antiquated. Do we really need results of a “delayed
start” study to declare PoC, or can modern methods
such as modeling and simulation approaches or adap-
tive and Bayesian study designs maximize our ability
to interpret results of studies in relatively small pop-
ulations, since PoC trials are often underpowered for
traditional endpoints? An example of the utility of an
adaptive dose randomization strategy with Bayesian
statistical approach was reported recently for an AD
trial [149]. When coupled with more sensitive clini-
cal outcome measures, if available, it may be possible
to reduce the sample size while evaluating PoC at a
range of doses.
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Many factors influence the choice of clinical out-
comes including ease of measurement, metrics of
the clinical scales used to assess a particular sign
or symptom, and sensitivity to detect change. Pro-
gression rate-specific clinical signs and symptoms
differ, not only between synucleinopathies but also
within given disease state at specific stages of dis-
ease (progression can be non-linear). Existing data
from longitudinal clinical cohorts for PD such as
DATATOP [188], PreCEPT/PostCEPT [189], PPMI
[190] and other natural history studies, as well as
studies in other synucleinopathies such as MSA and
DLB, can be used to model disease progression to
optimize trial design.

Although unlikely to be of current utility in PoC
study design, the use of prodromal patient popula-
tions is likely to become more relevant over time.
There are unique challenges in stratification of a de
novo or prodromal populations. Strategies for how
to handle medication use, baseline disease severity,
and even accounting for regional practice differences
must be devised to minimize interpatient variability.
When designing studies to be carried out in prodro-
mal or pre-motor populations, characteristics of the
at-risk population will need to be carefully defined.
For example, should the initial population be defined
by individual symptoms (e.g., RBD) versus symptom
complexes (multi-modal approach); obviously genet-
ics and other risk factors will also need to be taken
into account and could further help enrich the at-risk
population. For the field to be ready to undertake tri-
als in prodromal patients, we will need to improve
our understanding of prodromal symptoms and rate
of progression to meet existing disease diagnostic
criteria in order to reduce the number of patients to
be screened for these trials. Conducting a longitudi-
nal, non-interventional clinical study in an enriched
prodromal population would generate critical data to
support the use of such populations in drug develop-
ment efforts.

Finally, application of available clinical, imaging,
and physiological tools to enrich a given synucle-
inopathy population will be critical to achieving
success in PoC. Stratifying the target synucleinopa-
thy population during randomization or analysis for
key clinical variables such as concomitant med-
ication usage, baseline disease severity, genetic
factors, and clinical operational variability (e.g.,
geographic, standard of care) will increase the
probability of detecting a clinical effect of the ther-
apeutic intervention under study. In the absence of
an a-syn PET ligand, studies are currently relying

on DAT SPECT scans to serve this purpose (see
above).

Given the breadth of «a-syn-based therapeutic
modalities under study and the complexity and
variability of the clinical synucleinopathy diseases,
PoC trial designs will need to be optimized for
each specific therapeutic under study. Sponsors are
encouraged to share as much non-competitive a-syn
therapeutic PoC trial designs and data as possible,
perhaps within clinical trial consortia or harmonized
databases such as the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) [191] and the Critical
Path for Parkinson’s Initiative [192]. Such collabora-
tive efforts will be critically important to achieve the
shared goal of lowering disease burden and improv-
ing the lives of existing and future patients suffering
from synuclein-based neurodegenerative diseases.

General perspective

That a-syn is the major drug development target
for the treatment of human synucleinopathies, and PD
in particular, is supported by the depth and mechanis-
tic breadth of the approaches currently being pursued
(Table 1). Multiple therapeutics have recently entered
clinical trials, and critical human data that will inform
all a-syn-based therapeutic development programs
is on the horizon. Although these efforts face many
profound challenges, including the lack of key tools
such as an a-syn-based imaging agent and the inher-
ent difficulty of demonstrating clinical efficacy in
slowly progressive neurodegenerative diseases, we
remain optimistic that meaningful strides toward the
ultimate identification and approval of a-syn-based
disease-modifying therapeutics will be made in the
near future.
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