
Table 1 Summary of technologies assessing bradykinesia in PD offering both home and clinic-based 

assessment 

Technology 
Specifications Type of 

assessment 

Sample 

size 

Differentiates PD 

from controls            

(best parameter) 

Validation data Used in 

other PD 

studies  

Assesses other 

PD-related 

features 

PKG (Parkinson’s 

Kinetigraph) [1] 

 

Wearable 3-axis 

iMEMs 

accelerometer  

Continuous (24/7) 34 PD 

patients and 

10 age 

matched 

controls 

 Moderate correlation with UPDRS 

III (r = 0.64, p < 0.0005) 

Bradykinesia measured by 

algorithm also correlated by 

bradykinesia measured by dot slide 

method (r = 0.63, p<0.01), 

sensitivity 95%, specificity 88% 

Yes 

 [2–6] 

LID [1,2] 

Sleep [3,6] 

ICBs [5] 

 

AHTD (At Home 

Testing Device) [7] 

 

Computerized 

assessment battery 

Cross-Sectional 50 early 

stage PD 

N/A Correlation values N/A for UPDRS  

Feasibility – overall satisfaction 

score – 96.5 (out of a total of 100) 

Compliance – Acceptability ≥90% 

 

Yes [8] Tremor 

Speech 

Kinesia system [9] 

 

Wearable motion 

sensor consisting of 

3 orthogonal 

accelerometers and 

3 orthogonal 

gyroscopes 

Both continuous 

(24/7) and Cross-

Sectional 

42 PD 

patients 

 Strong correlation with toe tapping 

sub-score = (r = 0.86) 

ICC for Kinesia is significantly 

higher than clinical ratings of FT 

speed (p<0.0001), amplitude 

(p<0.0001) and rhythm (p<0.05) [10] 

Yes  

[10–24] 

LID [11,12] 

Gait [9,13] 

    Tremor [14] 

Automatic Spiral 

analysis using 

touchscreen 

telemetry device 

[25] 

Touchscreen 

telemetry device 

Cross-Sectional 65 patients 

with PD and 

10 healthy 

elderly 

controls 

 

(PC4, p = 0.001) 
Classification accuracy of 84% and 

AUC of 0.86 in relation to visual 

classification by raters 

Yes                        

[26–31] 

LID 

 
       



Technology Specifications Type of 

assessment 

Sample 

size 

Differentiates PD 

from controls 

(best parameter)  

Validation data Used in 

other PD 

studies  

Assesses other 

PD-related 

features 

Online BRAIN 

(BRadykinesia 

Akinesia 

INcoordination) tap 

test [32] 

 

Online FT task 

through computer 

keyboard 

Cross-Sectional 58 patients 

with PD and 

93 age 

matched 

controls 

 
(number of alternate 

taps in 30 seconds    

p = <0.0001) 

3 out 4 parameters correlated with 

UPDRS III scores (best parameter – 

number of alternate taps in 30 

seconds r = –0.53, p < 0.0001) 

Yes            

[33–37] 

No 

CV (Computer 

vision) motion 

analysis [38] 

 

Quantitative motion 

analysis of index 

fingers along with 

face detection 

method 

Cross-Sectional  13 PD 

patients and 

6 healthy 

controls 

 

(average zero 

crossing rate,            

p < 0.0001) 

Guttman correlation with UPDRS-

FT subscore = –0.80, p<0.0001 

Classification accuracy with 

UPDRS-FT subscore of 88% 

Yes [39] Gait [39] 

Microsoft Kinect 

[40] 

 

Camera-based 

motion sensor 

Cross-Sectional  9 patients 

with PD and 

10 healthy 

controls 

 Hand-clasping and pronation-

supination measured by the Kinect 

correlated strongly with the Vicon 

motion analysis system [Spatial 

accuracy 0.981 and 0.984 and 

Temporal accuracy 0.15 and 0.7 

respectively] 

Yes  

[41–50] 

Rehabilitation 

through 

exergaming 

[41,43,46,51] 

Gait  

[42,44,45,47–49] 

Smartphone app by 

Kassavetis et al 

group [52] 

Smartphone 

application on HTC 

design smartphone 

containing     tri-

axial accelerometer 

and touch screen 

technology 

Cross-Sectional  14 PD 

patients 

N/A 6 of the 7 parameters correlated 

significantly (best parameter: finger 

tapping frequency r = – 0.75,           

p= 0.001) 

No reports 

found 

Tremor 

 
       



Technology Specifications Type of 

assessment 

Sample 

size 

Differentiates PD 

from controls 

(best parameter) 

Validation Used in 

other PD 

studies  

Assesses other 

PD-related 

features 

mPower [53] Smartphone 

application utilizing 

inbuilt voice-

recorders, 

accelerometers and 

touch screen 

technology 

Continuous (four 

times daily) 

10 PD 

patients and 

10 controls 

 

(p<0.001) 

Using random forest method, mean 

error in predicting motor component 

of UPDRS III was 1.26 UPDRS 

points (SD 0.16) 

Yes         

[54,55] 

Gait and Posture 

Speech 

Short-term 

memory [54] 

Low-cost computer 

peripherals [56] 

Force feedback 

joystick and 

steering wheel 

Cross-Sectional 

 

13 PD 

patients and 

5 controls 

 

 

(ANOVA p = <0.01) 
Capable of differentiating PD 

patients of varying severity of 

bradykinesia (p = >0.05 - <0.01)  

 

No reports 

found 

No 

Smartphone 

application by Lee 

et al group [57] 

Smartphone 

application with 

timed tapping and 

rapid alternating 

movement tests 

Cross-Sectional 103 PD 

patients 

N/A Moderate correlation with upper 

limb bradykinesia items                     

(best parameter: mean total score 

for timed tapping test, r = –0.595, 

p<0.0001) 

Repeatability – ICC – 0.763, 

p<0.0001 

Over 90% found the application 

useful based on qualitative 

assessment for feasibility 

N/A Tremor 

Cognition 

PERFORM system 

[58,59] 

Set of 4 tri-axial 

accelerometers for 

each limb, and 1 

accelerometer and 1 

gyroscope attached 

at the waist 

Continuous          

(4 hours in the 

morning and 4 

hours in the 

afternoon) 

20 PD 

patients for 

short-term 

recording 

and 24 PD 

patients for 

long-term 

recording  

N/A 74.5% classification accuracy in 

objectively predicting the MDS-

UPRS was obtained for the 

bradykinesia assessment module, 

0.25 mean absolute error 

 

Yes              

[60–64] 

Tremor 

LID 

Gait 

        



Technology Specifications Type of 

assessment 

Sample 

size 

Differentiates PD 

from controls               

(best parameter) 

Validation Used in 

other PD 

studies  

Assesses other 

PD-related 

features 

Physilog [65] 

 

 

 

 

 

 

 

 

 

 

Sensors attached to 

each forearm 

containing three 

miniature uni-axial 

gyroscopes each 

 

 

ASUR consisting of 

two two-

dimensional 

gyroscopes 

Cross-Sectional 

 

 

 

 

Continuous (24/7) 

1st study 10 

PD patients 

and 10 

healthy 

controls 

 

2nd study 11 

PD patients 

 

(Range of rotation of 

hand in pitch axis,     

p = 0.0022) 

1st study strong correlation with 

UPDRS bradykinesia sub-scores                                

(best parameter: mobility of hand in 

roll axis, r = -0.83, p <0.0001) 

 

 

2nd study strong correlation with 

UPDRS bradykinesia sub-scores                                

(best parameter for small 5 minute 

window recording, mobility of hand 

- r = -0.74, p <0.01, whilst for large 

window size of 40 minutes, activity 

of hand parameter  – r = –0.80, 

p<0.0003) 

Yes            

[66–73] 

Tremor 

Gait                

[66–68,73] 

Motor 

fluctuations       

[69] 

Computer based 

assessment tool [74] 

Objective 

assessment tool on a 

personal computer 

Cross-Sectional 10 PD 

patients and 

10 controls 

 

(Time to move 

between targets        

p = 0.038) 

Significant difference was found 

between PD and control groups 

based on time taken to move 

between targets (p=0.038). 

However, no significant difference 

was observed between the two 

groups based on accuracy of 

movements (p = 0.820). Marked 

differences also was noticed 

between the two groups based on 

distance analysis in the task 

No Rigidity 

 

 

 

 



Technology Specifications Type of 

assessment 

Sample size Differentiates 

PD from healthy 

control 

Validation Used in 

other PD 

studies  

Assesses 

other PD-

related 

features 

SENSE-PARK 

system [75] 

Set of wearable 

sensors 

[Accelerometers 

and angular rate 

sensors], Wii 

balance board, 

software and 

smartphone app 

(PDApp) 

Continuous 

(24/7) 

 

 

 

22 PD patients 

divided into two 

groups- users and 

non-users 

N/A All participants (users and non-users) 

showed willingness to continue the study 

from visits 1-8 and completed the study. 

Participants rated the usability of the 

SENSE-PARK system with a mean score 

of 2.67(±0.49) on the PPSUQ (Post-Study 

System Usability Questionnaire) 

 

Yes          

[76–80] 

Gait 

Tremor 

Balance 

Sleep 

Cognitive 

function 

neuroQWERTY 

[81] 

Computer 

keyboard 

Cross-

sectional 

Early-PD dataset: 

18 early PD 

patients and 13 

healthy spouses as 

controls 

 

De-novo dataset: 

24 de-novo PD 

patients and 30 

healthy controls 

 

(nQi p = 0.001) 
The two subgroups showed a statistically 

significant difference from the controls (de 

novo/controls p = 0.022, early PD/controls 

p = 0.0003).  

Correlation of nQi (neuroQWERTY index) 

with UPDRS part III score r = 0.50, 

p<0.001. 

Using an ensemble regression algorithm, 

nQi differentiated PD patients from 

controls with an AUC = 0.81 

No No 

3D Depth Sensor 

[82] 
Microsoft 3D 

camera sensor 

based on Time of 

Flight (TOF) 

technology 

Cross-

sectional 

8 PD patients and 

5 healthy controls 

 80% classification accuracy for hand 

movements for PD patients using all 

features and 100% accuracy when using 

only best predictors 

100% classification accuracy for rapid 

alternating movement test using all 

features and also when using best 

predictors 

100% classification accuracy for finger tap 

test 

 

No No 

PD- Parkinson’s Disease, iMEMS – Micro-Electro Mechanical System, UPDRS – Unified Parkinson’s Disease Rating Scale LID – Levodopa-

induced Dyskinesia, PC – Principal Component ICB’s –Impulsive-Compulsive Behaviours, N/A – Not available, AUC – Area under the 

curve, ICC- Intra-class Correlation Coefficient, ASUR – Autonomous Sensing Unit Recorder, ANOVA – Analysis of Variance, FT- Finger 

Tapping 



 

Table 2 Summary of technologies assessing bradykinesia in PD offering only clinic/research-facility 

based assessment 

Technology 
Specifications Type of 

assessment 

Sample size Differentiates 

PD from controls 

(best parameter) 

Validation data Used in 

other PD 

studies  

Assesses other 

PD-related 

features 

Smartphone Tapper 

(SmT) app [83] 

Timed tapping task 

on smartphone 

application 

Cross-Sectional 57 PD patients 

and 87 controls 

 

(5 parameters 

having p<0.0001) 

Significant correlation of median 

number of taps with total motor 

MDS-UPDRS Part III score and 

bradykinesia subscores        

(R2=0.25-0.32, p<0.0001)  

Significant correlation of mean 

number of correct tapping 

(MCoT) with same parameter 

derived from mechanical tappers 

No reports 

found 

No 

Tri-axial 

accelerometer by Jia 

et al. group [84] 

Two ez340 

wristwatches 

having LCD 

display, 3-axis 

accelerometer and 

a pressure sensor 

Cross-Sectional 12 patients 

with PD and 12 

non-PD 

subjects 

 Correlation data N/A from study 

 

Yes [85] Medication intake 

[85] 

Nine degrees-of-

freedom sensor 

(9DoF) [86] 

9 internal sensors - 

3 accelerometers,  

3 gyroscopes and 3 

magnetic sensors 

orthogonally 

aligned to each 

other 

Cross-Sectional 25 PD patients 

and 10 age 

matched 

controls 

 
(toe tapping 
p<0.0001) 

Classification errors for finger 

tapping, dysdiadochokinesis and 

toe tapping were 15-16.5%, 9.3-

9,8% and 18.2-20.2% smaller 

than average inter-rater scoring 

error for the MDS-UPDRS 

No reports 

found 

No 

     
 

  



Technology Specifications Type of 

assessment 

Sample size Differentiates 

PD from controls 

(best parameter) 

Validation data Used in 

other PD 

studies  

Assesses other 

PD-related 

features 

Alternate tapping 

performance (ATP) 

on a handheld 

computer device [87] 

Touch-pad 

handheld computer  

Continuous           

(4 times per day) 

95 patients 

with PD and 10 

healthy elderly 

controls 

 

(Automated speed 

score) 

Global tapping severity showed 

strongest correlation with 

UPDRS III upper limb 

bradykinesia subscores (r = 0.91) 

Reliability – Cronbach’s α 

coefficient = 0.75 

Sensitivity to change – scores 

improved on the first test period 

after LCIG treatment, 

remaining statistically 

significant until 24 months 

(p<0.001) 

Median compliance- 93% 

Yes         

[28,88] 

No 

QDG (Quantitative 

Digitography)  [89] 

MIDI Piano 

keyboard 

Cross-Sectional 16 PD patients 

and 11 age 

matched 

healthy 

controls 

 

 

4 parameters correlated 

moderately with UPDRS part III 

bradykinesia subscores               

(best correlation -  coefficient of 

variation for key strike duration  

r = 0.67, p<0.001)  [90]      

Yes             

[90–93] 

Rigidity 

Arrhythmokinesis 

[91] 

IMU by Djurić-

Joviĉić et.al group 

[94] 

*Differentiated   

PSP-R from PD and 

MSA-P 

Wireless 

distributed 

functional 

electrical 

stimulation   

system [95] 

Cross-Sectional 13 PD patients, 

15 PSP-R 

patients, 14 

MSA-P patients 

and 14 healthy 

controls 

 
(12 parameters 

differentiated, 6 

parameters had          

p= <0.0001) 

No correlation between 

kinematic parameters and total 

UPDRS and part III scores was 

seen 

Yes             

[96–101] 

Gait  

[96–99] 

 

 

       



Technology Specifications Type of 

assessment 

Sample size Differentiates 

PD from controls 

(best parameter) 

Validation data Used in 

other PD 

studies  

Assesses other 

PD-related 

features 

CATSYS               

(Co-ordination 

ability testing 

system) [102] 

Portable Microsoft-

windows based 

system that 

consists of a data 

logger and 4 

different types of 

sensors: a tremor 

pen, touch 

recording plate, 

reaction time 

handle, and a force 

plate 

Cross-Sectional 44 PD patients 

and 28 healthy 

controls 

 
(reaction time              

p <0.009) 

Pronation supination correlated 

with UPDRS part III body 

bradykinesia sub-score                 

(r = –0.41, p < 0.014), finger 

tapping did not correlate         

Yes              

[103–106] 

Tremor                

[103–106]         

Finger tapping 

movement 

measurement 

system  [107] 

System consists of 

2 tri-axial 

accelerometers, 

touch sensor, AD 

converter, and a 

personal computer 

Cross-Sectional 16 PD patients 

and 27 healthy 

subjects 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

              

 

Maximum finger tapping contact 

force showed an inverse 

relationship with UPDRS FT 

scores      

3 out of 4 parameters showed 

correlation with UPDRS finger 

tapping score, highest 

correlation was seen with MoV 

(Maximum opening velocity) 

parameter (r = -0.59) [108] 

Yes            

[108] 

 

No 

        

 

 



Technology Specifications Type of 

assessment 

Sample size Differentiates 

PD from controls        

(best parameter) 

Validation data Used in 

other PD 

studies  

Assesses other PD-

related features 

Magnetic detection 

system [109] 

Magnetic induction 

coil, sensing coil 

and circuit unit 

Cross-sectional 20 PD patients, 6 

age matched 

controls, and 12 

normal 

volunteers 

 

(Average maximum 

closing velocity,       

p = <0.01) [110] 

 

AUC (0.8835) [111] 

 

Classification accuracy in predicting 

UPDRS scores-  93.1%±3.69% using 

12 LLGMNs [112] 

Repeatability – 5 parameters with          

ICC ≥ 0.5 [113] 

Yes         

[110–115] 

No 

Surface 

electromyography 

(SEMG) [116] 

 

Bipolar Surface 

EMG 

Cross-Sectional  19 patients with 

PD, 20 age 

matched controls 

and 20 young 

control subjects 

 

(p = <0.01-<0.05) 
Correlated significantly with 

UPDRS scores, especially FT (finger 

tapping) score (p = <0.01-<0.05) 

Yes        

[117–143] 

Gait [120–123] 

RBD [124] 

Tremor        

[106,113-117] 

Dyskinesia [125] 

Rigidity [132–135] 

Camptocormia [136] 

Deglutition [137,138] 

Digitomotography 

using Q-motor [144] 

Force transducer 

with a circular 

plane contact 

surface 

Cross-Sectional 16 early PD, 17 

mid-stage PD, 18 

healthy controls 

 

(Tap force, ANOVA 

p = 0.009) 

3 out of 6 parameters correlated 

weakly with UPDRS III finger 

tapping (best parameter: inter-peak 

interval r = 0.16, p < 0.05) 

Yes [145] LID [145] 

3D motion analysis 

system by 

Codamotion [146] 

*Can differentiate 

PSP and PD as well 

Motion analysis 

system 

Cross-Sectional 15 PD patients, 9 

PSP patients, 

and 16 healthy 

controls 

 

(Amplitude of 

finger tap and 

coefficient of 

variation of cycle 

duration ANOVA –         

p= <0.001) 

Moderate correlation with 

significance for 3 variables, best 

parameter mean amplitude               

(r = –0.79, p<0.001 

 

Yes 

[147,148] 

Gait [148] 

        

 



Technology Specifications Type of 

assessment 

Sample size Differentiates 

PD from controls    

(best parameter) 

Validation Used in 

other 

studies  

Assesses other 

PD-related 

symptoms 

Gyrosensor by Kim 

et al. group [149] 

Gyrosensor Cross-Sectional 40 PD patients 

and 14 age 

matched 

controls 

 
(all 4 parameters 

p<0.001) 

Strong correlation with FT 

sub-score for all four 

parameters, best parameter: 

peak power in the power 

spectrum of angular velocity    

(r =  – 0.80, p <0.001) 

Yes      

[150–153] 

Gyrosensor used 

by research group 

was not used to 

assess other PD 

symptoms 

Bradykinesia 

assessment system 

[154] 

IMU- Three axis gyroscope 

and three axis 

accelerometer and a 

command module (micro-

controller and a serial USB 

interface) acquires sensor 

data and sends them to a 

computer 

Cross-sectional 9 PD patients 

and 7 healthy 

controls 

 
 

2 parameters had strong 

correlation and 2 had poor 

correlation with UPDRS 

bradykinesia score, best 

parameter: modified mean 

range (r = –0.83, p<0.001)  

Yes     

[155–158] 

Motor fluctuations 

[156] 

Tremor [155,158] 

Rigidity [157,158] 

Bradyapp  [159] Kinematic tasks on 

application in iPhone 

device with inbuilt – 

gyroscope accelerometer, 

capacitive touch screen, 

microphone and front 

facing camera 

Cross-sectional 18 PD patients N/A Accurate classification 

between less and more severe 

motor impairment was not 

achieved using Bradykinesia 

Subscore (BSS). However, 

other features were found to be 

highly discriminatory 

(AUC>0.85) 

No No 

3D Ultrasonic 

measurement system 

[160] 

Kinematic motion analysis 

system (CMS 20S) 

consisting of measuring 

sensor , basic unit with 

power pack together with 

table-mounted/floor stand 

[161] 

Cross- Sectional 16 right handed 

PD patients 

and 12 right 

handed healthy 

controls 

 

(peak frequency of 

the power density 

spectrum, p=0.016) 

Correlation between 

improvement of the UPDRS III 

after dopaminergic stimulation 

and changes of peak 

frequencies and peak power 

discontinuities was not 

significant (p=0.658) 

Yes       

[162] 

No 

3D motion capture 

camera system [163] 

2 cameras, 2 Infra-Red (IR) 

emitters connected to a 

computer laptop via USB 

interface 

Cross-sectional 22 PD patients 

and 22 normal 

controls 

 
(Combination of 

average opening 

velocity and 

decrease in 

maximal opening 

distance            

AUC = 0.94) 

Correlation of computer 

bradykinesia parameter and 

UPDRS-FT task (r = 0.75, 

p<0.001). System functionality 

verified with the commercial 

capture system OptiTrack 

No reports 

found 

No 

 

 



Technology Specifications Type of 

assessment 

Sample size Differentiates 

PD from healthy 

controls 

Validation data Used in 

other PD 

studies  

Assesses other PD-

related features 

Smart glove [164] Wireless wearable 

sensor system 

consisting of 2 touch 

sensors ,2 3D 

accelerometers and a 

force sensor 

Cross-

Sectional  

6 patients with 

PD and 3 healthy 

subjects 

 Patients with bradykinesia had a 

higher standard deviation and/or 

average of movement time than 

healthy subjects 

No reports 

found 

Tremor 

Rigidity 

Tri-axial 

accelerometer based 

device by Stamatakis 

et al  [165] 

4 tri-axial 

accelerometers 

Cross-

sectional 

36 PD patients 

and 10 healthy 

volunteers 

 

(AUC – 0.945) 
Predictive performance of model 

(Goodman-Kruskal Gamma Index- 

0.961) similar to MDS-UPDRS FT 

(Finger tapping) scores given my 3 

specialists in movement disorders 

(0.870-0.970) 

Yes 

[166,167] 

Gait [167] 

ParkDetect  [168] Smartphone 

application 

Cross-

sectional 

17 PD subjects 

and 18 healthy 

subjects 

 In the spiral analysis part of the 

application, there was a significant 

difference between PD and controls. 

The tapping task was not 

considered long enough to gather 

data regarding bradykinesia and 

number of taps to complete the test 

should have been higher 

No reports 

found 

Tremor 

Gait and Posture 

SMART motion 

system  [169] 

3 Infra-Red (IR) 

cameras that follow 

3D displacement of 

reflective markers 

taped to the patient’s 

hand 

Cross-

sectional 

25 right handed 

PD patients (14 

E-PD and 11      

A-PD) and 20 age 

and gender 

matched right 

handed healthy 

controls 

 
(p<0.05) 

Significant differences were 

observed between HC and E-PD 

with regards to kinematic variables 

amplitude, speed and amplitude 

slope (p<0.05), between HC and A-

PD with the same kinematic 

variables (p<0.05) and between E-

PD and A-PD groups (p<0.05)  

No correlations were found between 

kinematic variables and MDS-

UPDRS Part III bradykinesia sub-

scores (p>0.05) 

Yes 

[170,171] 

Tremor [170] 

 

 

 



Technology Specifications Type of 

assessment 

Sample size Differentiates 

PD from controls 

(best parameter) 

Validation data Used in 

other PD 

studies  

Assesses other 

PD-related 

features 

SensHand V1 

wearable device 

[172] 

Miniaturised IMU 

composed of full 9 

axis inertial sensors 

(accelerometers and 

gyroscopes) 

Cross-sectional 15 patients 

with PD and 6 

healthy 

controls 

 Correlation with MDS-UPDRS Part 

III (r = 0.87), MDS-UPDRS I-IV      

(r = 0.95), Hoehn and Yahr Scale     

(r = 0.92), Schwab and England      

(r = 0.86) 

Yes     

[173] 

Tremor [173] 

Accelerometer by 

Costa et al [174] 

Uni-axial 

accelerometer 

Cross-sectional 33 patients 

with PD, 18 

patients with 

ET and 21 

healthy 

volunteers 

 
(5 parameters        

p< 0.001) 

Weak correlations exist with 

UPDRS subscores, best parameter: 

beat decay of the Auto Manual 

Information (BD-AMI) of FT               

r = 0.451, p <0.001. ROC for 

discriminating between patients 

and controls was best for BD-AMI of 

forearm movement 77.4%  

No reports 

found 

No 

Electromagnetic 

tracking device [175] 

Tracks motion with 

six degrees of 

freedom 

Cross-sectional 24 patients 

with PD and 16 

age matched 

healthy 

controls 

 Significant correlations between 

amplitude and UPDRS-III                

(r = 0.467, p = 0.02), but not 

between speed and motor section of 

UPDRS (r = 0.272, p = 0.20) in the 

‘off state’. Raw correlations were not 

significant for the H&Y and S&E 

scales in the off state as well. 

Yes      

[176–178] 

Tremor             

[176–178] 

Synertial motion 

capture system [179] 

Motion capture suit 

and IMU (3D 

gyroscopes, 3D 

accelerometers and 

3D magnetometers) 

Cross-sectional 13 PD 

participants 

and 10 healthy 

controls 

 
(bradykinesia 

index p = 0.018) 

Separated PD population with and 

without bradykinesia (p <0.001) 

Significant correlation of 

bradykinesia index with pronation 

supination subscore of UPDRS (r = -

0.626, p = 0.001) 

Yes     

[180] 

No 

 
       

 

 

 



Technology Specifications Type of 

assessment 

Sample size Differentiates 

PD from healthy 

controls 

Validation data Used in 

other PD 

studies  

Assesses other 

PD-related 

features 

MotionMonitor 

magnetic tracking 

system [181] 

6 degrees of freedom 

electromagnetic 

measurement 

system  

Cross-

sectional 

10 PD patients with 

mild-moderate LID, 

10 non-dyskinetic 

PD patients and 10 

age and gender 

matched healthy 

controls 

 

(p<0.05) 

 

Significant difference was observed 

between controls and PD patient 

group (those with LID and non-

dyskinetic) with regards to rapid 

alternating movement (RAM) 

characteristics of range and velocity 

(p<0.05). Significant difference was 

already observed between PD 

patients with LID and non-

dyskinetic subjects (controls and 

PD) with regards to irregularity 

RAM characteristic (p<0.05) 

Yes       

[182–184] 

LID            

[181,184] 

Forearm pronation 

and supination 

motor tasks 

(FPSMT) utilising a 

smartphone [185] 

Tri axial 

accelerometer 

sensors built into an 

android smartphone 

Cross-

sectional 

6 PD patients, 9 

healthy and age 

matched controls 

and 18 healthy 

young controls 

N/A 100% sensitivity and 88.8% 

specificity of the bradykinesia 

assessment algorithm assessed by 

comparing results to UPDRS 

bradykinesia subscores 

No Resting tremor 

Rigidity  

Postural 

disturbance 

Body sensor network 

(BSN) [186] 

Two shimmer nodes 

– one per thigh 

consisting of a tri-

axial accelerometer, 

gyroscope and 

magnetometer 

Cross-

sectional 

24 PD patients N/A Various classification systems for 

automatic UPDRS evaluation have 

been carried out – NCC (Nearest 

Centroid Classifier) and kNN (k 

Nearest Neighbours).  

Precision, Sensitivity and Specificity 

for the leg agility task is 34.55%, 

25.17%, and 84.52% respectively 

[187] 

Correlation between mean UPDRS 

scores and right leg agility task (r = 

0.82, p≤0.05) and left leg agility task 

(r = 0.87 , p≤0.05)  [187] 

Yes     

[187–189] 

Gait [187,189] 

 

 

 



Technology Specifications Type of 

assessment 

Sample size Differentiates 

PD from healthy 

controls 

Validation data Used in other 

PD studies  

Assesses 

other PD-

related 

features 

Motus motion 

analysis system [93] 

Motion analysis 

system with angular 

velocity sensors. 

Sensors consist of 

vibrating quartz 

crystals that act like 

solid-state 

gyroscopes [190] 

Cross-

sectional 

20 patients with 

early stage, 

untreated PD and 19 

controls 

Less affected side 

of PD and non-

dominant side of 

controls (p>0.05) 

More affected side 

of PD and non-

dominant side of 

controls (p<0.001) 

Root mean square of the forearm 

angular velocity data (Vrms) was 

significantly worse on the more 

affected side of PD when compared 

to the less affected side (p<0.005) 

Significant correlations were 

obtained between more affected side 

Vrms scores and UPDRS part III       

(r = -0.51, p<0.001), and between 

less affected side scores and UPDRS 

part III (r = -0.69, p<0.001) [92] 

Yes           

[92,190–196] 

Dyskinesia       

[191] 

Tremor             

[192] 

Window-based 

genetic programming 

classifiers [197] 

Polhemus Patriot 

electromagnetic 

motion tracking 

device and IRCGP 

Cross-

sectional 

49 PD patients and 

41 age matched 

controls 

 

(AUC = 0.92) 
Evolved classifier achieved an AUC 

of 0.92, Mean closing deceleration 

AUC (patients/controls) 0.84, Mean 

amplitude AUC 0.78, Mean speed 

AUC 0.74 

Yes          

[198,199] 

No 

 

 

 

 

 

 

 

UPDRS – Unified Parkinson’s Disease Rating Scale, PD – Parkinson’s Disease, RBD – Rapid Eye Movement Sleep Behaviour Disorder, 

LID- Levodopa-Induced Dyskinesia, IMU – Inertial Measurement Unit, MIDI – Musical Instrument Digital Interface, LLGMNs – Log 

Linearized Gaussian Mixture Networks, ICC – Intra-class Correlation Coefficient, AUC – Area under the curve, EMG- Electromyography, 

ANOVA- Analysis of Variance, ROC- Receiver Operating Characteristic, N/A – Not available, FT- Finger Tapping, HC – Healthy Controls , 

E-PD – Early Parkinson’s Disease , A-PD – Advanced Parkinson’s Disease , H&Y  scale– Hoehn and Yahr scale, S&E scale – Schwab and 

England scale, IRCGP – Implicit context representation of Cartesian genetic programming 

 

 



Final search query 

 

   IEEE Xplore database – Advanced search option  

1) PD (OR) Parkinson (OR) Parkinson’s (OR) Parkinsonian – Metadata only; refined by 2006-2017 

2) bradykinesia (OR) hypokinesia (OR) akinesia (OR) slowing (OR) finger tapping (OR) pronation (OR) supination (OR) leg 

agility (OR) toe tapping – Metadata only; refined by 2006-2017 

3) technology (OR) wearable (OR) smartphone (OR) gyroscope (OR) accelerometer (OR) sensor (OR) mobile (OR) tool (OR) 

device – Metadata only; refined by 2006-2017 

4) Combing search sets 1, 2, 3 using AND function to yield final search query - (((((((Parkinson) OR Parkinson's) OR 

PD) OR Parkinsonian) refined by: Year:2006-2017 )) AND ((((((((((((technology) OR wearable) OR 

smartphone) OR gyroscope) OR accelerometer) OR sensor) OR mobile) OR tool) OR device) OR computer) 

refined by:Year:2006-2017 )) AND (((((((((bradykinesia) OR akinesia) OR hypokinesia) OR slowing) OR 

finger tapping) OR pronation) OR supination) OR leg agility) OR toe tapping) refined by:Year:2006-2017 ) 

 

 

Web of Science database – Advanced search option 

1) TS = (PD OR Parkinson* OR Parkinson’s* OR Parkinsonian*) 

Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-EXPANDED, IC 

Timespan=2006-2016 

2) TS = (bradykinesia* OR hypokinesia* OR akinesia* OR slowing* OR finger tapping* OR pronation* OR supination* OR 

leg agility* or toe tapping*) 

Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-EXPANDED, IC 

Timespan=2006-2016 

3) TS = (sensor* OR sensors* OR wearable* OR device* OR devices* OR tool* OR tools* OR smartphone* OR mobile* OR 

application* OR applications* OR gyrosensor* OR accelerometer* OR technology* OR technologies* OR computer* OR 

keyboard*) 

Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-EXPANDED, IC 

Timespan=2006-2016 

4) Search sets 1, 2 and 3 combined using AND function under search history 

 

 

 

 



      

Scopus database – Advanced search option 

 

1) TITLE-ABS-KEY ( PD  OR  Parkinson's  OR  Parkinson  OR  Parkinsonian )  AND  PUBYEAR  >  2005 

 

2) TITLE-ABS-KEY ( bradykinesia  OR  hypokinesia  OR  slowing  OR  akinesia  OR  "finger tapping"  OR  supination  OR  

pronation  OR  "leg agility" OR "toe tapping" )  AND  PUBYEAR  >  2005 

 

3) TITLE-ABS-KEY ( sensor  OR  sensors  OR  wearable  OR  device  OR  devices  OR  technology  OR  technologies  OR  

gyrosensor  OR  accelerometer  OR  smartphone  OR  mobile  OR  application  OR  tool  OR  tools  OR  applications  OR  

computer  OR  keyboard )  AND  PUBYEAR  >  2005 

 

4) Combine search sets 1 AND 2 AND 3 – Final search query -     ( TITLE-ABS-KEY ( PD  OR  Parkinson's  OR  

Parkinson  OR  Parkinsonian )  AND  PUBYEAR  >  2005 )  AND  ( TITLE-ABS-KEY ( bradykinesia  OR  

hypokinesia  OR  slowing  OR  akinesia  OR  "finger tapping"  OR  supination  OR  pronation  OR  "leg 

agility" OR "toe tapping” )  AND  PUBYEAR  >  2005 )  AND  ( TITLE-ABS-KEY ( sensor  OR  sensors  OR  

wearable  OR  device  OR  devices  OR  technology  OR  technologies  OR  gyrosensor  OR  accelerometer  

OR  smartphone  OR  mobile  OR  application  OR  tool  OR  tools  OR  applications  OR  computer  OR  

keyboard )  AND  PUBYEAR  >  2005 ) 

 

Engineering Village (Compendex and Inspec)  

1) (((((PD) WN All fields) OR ((Parkinson) WN All fields)) OR ((Parkinson's) WN All fields)) OR ((Parkinsonian) WN All 

fields))  

 

2) (((((((((bradykinesia) WN All fields) OR ((akinesia) WN All fields)) OR ((hypokinesia) WN All fields)) OR ((slowing) WN 

All fields)) OR ((finger tapping) WN All fields)) OR ((pronation) WN All fields)) OR ((supination) WN All fields)) OR ((leg 

agility) OR ((toe tapping)) WN All fields)) 

 

 

3) (((((((((((((wearable) WN All fields) OR ((technology) WN All fields)) OR ((accelerometer) WN All fields)) OR ((tool) WN 

All fields)) OR ((sensor) WN All fields)) OR ((device) WN All fields)) OR ((gyroscope) WN All fields)) OR ((smartphone) 

WN All fields)) OR ((application) WN All fields)) OR ((technologies) WN All fields)) OR ((mobile) WN All fields)) OR 

((computer) WN All fields)) 

 



4) ((((($PD) WN ALL) OR (($Parkinson) WN ALL)) OR (($Parkinson's) WN ALL)) AND (2006-2017 WN YR)) AND ( 

(((($bradykinesia) WN ALL) OR (($akinesia) WN ALL)) OR (($hypokinesia) WN ALL)) AND (2006-2017 WN YR)) AND ( 

(((($wearable) WN ALL) OR (($technology) WN ALL)) OR (($accelerometer) WN ALL)) AND (2006-2017 WN YR)) 
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