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Abstract.
Background: Parkinson’s disease (PD) is a debilitating neurological disorder for which prognostic and diagnostic biomarkers
are lacking. Cerebrospinal fluid (CSF) is an accessible body fluid that comes into direct contact with the central nervous
system (CNS) and acts as a nuclease-free repository where RNA transcripts shed by brain tissues can reside for extended
periods of time.
Objective: We studied the RNA species present in the CSF of PD patients to identify novel diagnostic biomarkers.
Methods: Small volumes of CSF from 27 PD patients and 30 healthy age- and sex-matched controls were used for RNA
extraction followed by next-generation sequencing (RNA-seq) using the Illumina platform. CSF contains a number of
fragmented RNA species that were individually sequenced and analyzed. Comparing PD to control subjects, we observed a
pool of dysregulated sequencing tags that were further analyzed and validated by quantitative real-time PCR (qRT-PCR).
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Results: A total of 201 differentially expressed sequencing tags (DETs), including 92 up-regulated and 109 down-regulated
DETs were identified. We validated the following DETs by real time PCR in the patient samples: Dnmt1, Ezh2, CCR3,
SSTR5, PTPRC, UBC, NDUFV2, BMP7, SCN9, SCN9 antisense (AC010127.3), and long noncoding RNAs AC079630 and
UC001lva.4 (close to the LRRK2 gene locus), as potential PD biomarkers.
Conclusions: The CSF is a unique environment that contains many species of RNA. Our work demonstrates that CSF can
potentially be used to identify biomarkers for the detection and tracking of disease progression and evaluation of therapeutic
outcomes.
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INTRODUCTION

Parkinson’s disease (PD) is the second most preva-
lent neurodegenerative disease worldwide, with rates
expecting to double in the next 15 years [1]. Despite
many efforts to more accurately diagnose and under-
stand PD pathophysiology, diagnosis is primarily
clinical and can only be confirmed at autopsy [2, 3].
Therefore, there is a need for sensitive and specific
biomarkers to diagnose PD at early stages, enabling
clinicians to monitor disease progression and develop
therapeutic approaches to assess response to existing
and future treatments.

Genome-wide expression analyses using next gen-
eration sequencing (NGS) technology have proven
valuable for identifying biological processes in neu-
rodegenerative diseases [2]. Next generation RNA
sequencing (RNA-seq) provides sequence informa-
tion and measures the abundance of RNA molecules
present at any particular time in a specific cell, tissue
or organ. RNA sequencing does not rely on a priori
knowledge of transcripts and provides accurate and
comprehensive data. For these reasons, NGS is cur-
rently being applied to profile extracellular RNA from
the peripheral biofluids of patients with neurological
diseases, central nervous system (CNS) tumors, or
traumatic brain injury for biomarker discovery [4].
Cerebrospinal fluid (CSF) is in close proximity to
the main site of PD pathology and since there is no
barrier between CSF and the brain, CSF is an optimal
source of biomarkers for neurodegenerative disorders
[5]. Recent work using CSF and serum/plasma from
deceased PD patients with a complete pathological
assessment shows that the profiling of these readily
obtainable cell-free peripheral fluids provides a true
reflection of cellular alterations that result in disease
pathology [6, 7].

Despite the collection of multiple large data sets,
these approaches to date have not produced clinically

useful PD biomarkers. This can be attributed in part to
small sample volumes and samples with fragmented
RNAs in low abundance that make downstream RNA
sequencing challenging.

Here, we report a methodology to purify and
perform next generation RNA sequencing to iden-
tify extracellular RNA transcripts in CSF. Our data
demonstrate that CSF contains a diversity of frag-
mented RNA species, including several RNAs that
are dysregulated in PD patients. We optimized a
method to use small volumes (300 �l) of CSF for
RNA-seq using the Illumina platform, followed by
target validation utilizing quantitative real-time PCR
(qRT-PCR). These findings provide a framework for
developing a PD-specific RNA biomarker panel and
provide methodological advances that can be applied
to other neurological disorders for early detection and
assessment of treatment response.

MATERIALS AND METHODS

Human CSF samples

Frequency matching was used to recruit 27 PD
patients and 30 age- and sex-matched healthy controls
at the Pacific Northwest Udall Center of Excellence
for Parkinson’s Disease Research (PANUC) and
the Alzheimer’s Disease Research Center (ADRC)
at the University of Washington (UW) and Veter-
ans Affairs (VA) Puget Sound Health Care System
(Seattle, Washington, USA) as previously described
[8–10]. All subjects underwent the following eval-
uations: medical history, physical and neurological
examinations, laboratory tests, and neuropsycholog-
ical assessments. The inclusion and exclusion criteria
for study subjects have been previously described
[8–11]. Briefly, PD patients met UK PD Society Brain
Bank clinical diagnostic criteria for PD [12], except
that having “more than one affected relative” was not
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considered an exclusion criterion. Control subjects
were the patients’ spouses or community volunteers
in good health. They had no signs or symptoms
suggesting cognitive impairment or neurological
disease; all had a Mini Mental Status Exam (MMSE)
score between 28 and 30, a Clinical Dementia Rat-
ing (CDR) score of 0, and New York University
paragraph recall scores (immediate and delayed) of
>6. All procedures were performed in strict compli-
ance with guidelines for human experimentation and
all participants underwent detailed informed consent
procedures. Subjects provided consent in writing in
accordance with procedures approved by the institu-
tional review boards at the UW and VA Puget Sound
Health Care System.

CSF was collected by lumbar puncture as pre-
viously described [9]. Similar sample collection
protocols and quality control procedures were fol-
lowed at all participating centers, in particular, the use
of polypropylene collection and storage tubes, rapid
separation into single use aliquots, and freezing of
CSF samples, to minimize potential site variability.
De-identified samples were aliquoted and stored at
–80◦C, coded as group “A” or “B”, and then trans-
ferred to the University of Miami for RNA analysis.
The UW CSF data dictionary is shown in Supplemen-
tary Table 1.

Library preparation of the CSF transcriptome
and sequencing

Library preparation was optimized to achieve
successful sequencing runs from low input RNA
by scaling up reverse transcription and PCR reac-
tion volumes without increasing PCR amplification
cycles. Extracted RNA was between 550 to 3600
picograms as shown in Supplementary Figure 1. We
utilized NEB-based directional RNA-Seq (Ipswich,
MA, USA) sample preparation kit to prepare all
libraries. End repair of cDNA libraries was performed
and 5’ and 3’ adaptors were ligated, sequentially.
Eluted cDNA was enriched and remaining RNA
products were digested with USER excision and
PCR amplification. During enrichment, each sam-
ple was indexed with one unique index primer from
a set of 12 different index primers for Illumina
multiplex sequencing. RNA was reverse transcribed
to synthesize first strand cDNA, followed by a
purification step, using Agencourt RNA Clean XP
beads (Beckman Coulter, Brea, CA, USA). Second
strand cDNA synthesis was performed and libraries
were amplified (12 cycles), followed by purification

using 1.8 X Agencourt AMPure beads (Beckman
Coulter, Brea, CA, USA). Finally, three uniquely
indexed libraries were pooled and sequenced on
a HigSeq2000 Illumina sequencer. A quality con-
trol assessment was performed, using the Bowtie
software package by estimating genome cover-
age, percent alignment and nucleotide quality. Raw
sequencing data was transformed to FastQ format
and stored on a dedicated server. All raw sequenc-
ing data and corresponding codes are uploaded onto
the Parkinson’s Disease Biomarker Program database
(PDBP) Data Management Resource (PDBP DMR)
(http://pdbp.ninds.nih.gov) and are freely available to
registered users.

Sequencing read processing and genome
mapping

Genome mapping was performed using the Spliced
Transcripts Alignment to Reference (STAR) software
[13], based on the latest available versions of STAR
2.1.3 and the most recent human transcriptome (ref-
erence hg19) downloaded from the UCSC database
(Santa Cruz, CA, USA). Transcript assembly was
processed and counts per million (CPM) values for
each aligned sequence (known and novel) were deter-
mined. To ensure that reads were indeed novel, we
applied an initial filter based on expression levels
to eliminate low abundance single-exon transcripts
to avoid mislabeling of genomic DNA contaminated
reads.

RNA sequencing analysis and identification
of differentially expressed transcripts

A trimming algorithm based on Trim Galore
software (Babraham Institute, Babraham, United
Kingdom) was used to trim reads for adapter removal.
EdgeR [14], a Bioconductor software package for
differential expression analysis of replicated count
data, was used to correct for multiple testing (false
discovery rate (FDR) cutoff of <0.1) and for the iden-
tification of differentially expressed transcripts based
on CPM values [14].

Functional annotation and pathway analysis
of differentially expressed transcripts (DETs)

Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analysis of DETs was
performed using the Database for Annotation Visu-
alization and Integrated Discovery (DAVID) online

http://pdbp.ninds.nih.gov
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Table 1
Functional annotation clustering of differentially expressed genes

Annotation Cluster Enrichment Score DEGs p-value GO

Chromatin regulator 1.05 DNMT1, H2AFY, EZH2, 0.03 1903308
RSF1

Dephosphorylation 1.97 PTPRC, PTPN4, PTPN23, 0.02 0016311
CDKN3

Protein-tyrosine 1.64 PTPRC, PTPN4, PTPN23 0.009 IPR000242
phosphatase

Endoplasmic reticulum 1.48 SREBF1, VAPA, WFS1, 0.02 0005789
membrane MRVI1, SEC24C

Regulation of 1.26 GRM4, PTPRC, YWHAG, 0.04 0042325
phosphorylation LPAR1, CDKN3, BMP7

Phospholipase activity 1.17 JMJD7, PLA2G4C, PLCXD2 0.04 0004620

Differential expression analysis of RNA-seq data identified 92 up- and 109 down-regulated DEGs (cutoff criteria: |log FC| >1, p < 0.05 and
FDR <0.1). Functional annotation clustering using DAVID identified potential molecular processes affected by differential gene expression.
Significantly enriched genes had the following criteria: p-value <0.05, functional categories with highest classification stringency and an
enrichment score >1. Up-regulated genes were mostly enriched for genes involved in chromatin regulation, while down-regulated genes
were mainly enriched for protein-tyrosine phosphatases, endoplasmic reticulum membrane proteins, and genes that regulate phosphorylation,
dephosphorylation, and phospholipase activity.

analytical tools [15–17]. Protein-protein interaction
networks of DETs were constructed via the search
tool for the retrieval of interacting genes/proteins
(STRING; http://www.stringdb.org/) and the simi-
larity between the PPI networks and the KEGG
pathways were calculated via EnrichNet [18, 19].

Quantitative real time PCR (qRT-PCR)
validation of RNA-seq data

The cDNA synthesis protocol is described in Sup-
plementary Figure 2. The majority of RNA in the
CSF is short in length, most likely the result of
RNA fragmentation. We synthesized cDNA and uti-
lized SYBR green-based qRT-PCR reactions with
transcript-specific forward primers and a universal
PCR (reverse) primer (Supplementary Table 3) that
anneals to the 5’ end of the tagged cDNA (Sup-
plementary Figure 3). Small CSF sample volumes
limited qRT-PCR gene validation to a subset of
candidate sequencing tags; therefore 21 transcripts
(Supplementary Table 3) were selected for validation
based on their relevance to known PD genes in the
PPI analysis.

We performed Sanger sequencing to validate the
specificity of qRT-PCR products. Raw data was nor-
malized to the geometric mean of the 18 S gene that
met the criteria of having similar expression between
sample groups. Relative expression was compared
between PD and control groups using the student’s
t-test. All measurements were performed in triplicate
and data were analyzed using the �Ct method. Sta-
tistical analyses were performed using SPSS 21 for
Mac OSX (IBM, Armonk, NY, USA).

Fig. 1. Volcano plot of differentially expressed genes (DEGs)
between PD patients and controls. Log2 fold change was plotted
against the Edge R-generated p-value (-log base 10). Differential
expression analysis using a p < 0.05 cutoff identified 467 DEGs
between PD patients and controls. The gene list was cut to 207,
103 and 157 DEGs using cutoffs of p < 0.001, 0.01 < p < 0.001 and
0.01 < p < 0.05, respectively.

RESULTS

High-throughput sequencing of the CSF
transcriptome

We analyzed RNA transcripts from the CSF of
27 PD patients and 30 controls. CSF RNA-seq data
were analyzed using STAR to align reads to the
human genome, generating an average of 84 × 106

paired-end reads that aligned to the reference human
genome as well as to annotated genes. The average

http://www.stringdb.org/
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number of trimmed reads was 81 × 106 per sample, of
which 82.7% aligned to the human reference genome
(UCSC hg19) (Supplementary Table 2). Our analy-
sis focused on RNA fragments that were reproducibly
present in at least 65% of samples in each group and
CPM >1. After filtering, a total of 3521 fragmented
transcripts were detected: protein-coding (2862 tran-
scripts; 81.3% of total transcripts), non-coding RNAs
(458 transcripts; 13% of total transcripts) and pseudo
genes (201 transcripts; 5.7% of total transcripts, Sup-
plementary Table 4).

Differentially expressed transcripts (DETs) in the
CSF of PD patients

Differential expression analysis was performed
using p < 0.05 to identify a total of 467 DETs between
PD patients and controls. Using p-value cutoffs
of p < 0.001, 0.01 < p < 0.001 and 0.01 < p < 0.05 as
shown in the volcano plot narrowed down the list of
DETs to 207, 103 and 157, respectively (Fig. 1).

Differential expression analysis of CPM values
using p < 0.05, FDR <0.1 and |log2 FC|>1 as cutoff
criteria produced a total of 201 transcripts differen-
tially expressed between PD patients and controls.
Among these DETs, 92 transcripts were upregu-
lated and 109 transcripts were downregulated in
PD patients. Of the 201 DETs, 142 (70.6%) were
related to protein-coding transcripts (Supplementary
Table 5). Interestingly, non-coding RNA and pseudo
genes are more abundant (29.4% vs 18.1%; p = 0.001,
Relative Risk = 1.8, 95% CI: 1.34 –2.41) in DETs as
compared to non-DETs. Protein-coding transcripts
are present in a lower proportion in DETs as com-
pared to non-DETs (70.6% vs 81.9%, Fig. 2).

Functional annotation clustering of differentially
expressed transcripts

To determine the relationship between differen-
tially expressed transcripts identified in RNA-seq to
relevant PD processes and pathways, gene ontology
(GO) and pathway enrichment analyses were per-
formed using DAVID online tools. We considered
significantly enriched genes as those with the follow-
ing criteria: p-value <0.05, functional categories with
the highest classification stringency and enrichment
score >1.

Based on the cutoff criteria of |log2 FC|>1, p < 0.05
and FDR <0.1, we screened 201 DETs. Up-regulated
transcripts were mostly enriched for chromatin
regulators, while down-regulated transcripts were

Fig. 2. Comparison of the abundance of RNA species in
differentially-expressed and non-differentially expressed genes.
Various RNA types (x-axis) were plotted as a percentage showing
the difference in abundance of each RNA species in the non-
differentially expressed (blue) and differentially expressed (green)
gene pools identified by RNA-seq in PD patients and controls using
p < 0.05, FDR <0.1, and |log FC| >1 as cutoff criteria. DEGs had
an overall higher proportion of non-coding RNA genes (29.4% vs
18.1%; p = 0.001, relative risk = 1.8, 95% CI: 1.34–2.41) and lower
proportion of protein-coding genes (70.6% vs 81.9%) than the
non-DEGs. Also, DEGs had a higher proportion of miRNA genes
(3% vs 0.2%; p = 0.001, relative risk = 2.07, 95% CI: 1.08–3.97)
compared to non-DEGs.

significantly enriched for protein-tyrosine phos-
phatases, endoplasmic reticulum membrane proteins,
and genes that regulate phosphorylation, dephospho-
rylation and phospholipase activity (Table 1). Details
of functional annotation clustering in up and down-
regulated DETs are shown in Supplementary Tables 6
and 7.

Construction of protein-protein interaction (PPI)
networks

We mapped 201 DETs to the STRING database
(the hub protein was selected according to the
node degree) and screened for significant interac-
tions (>0.7). These relationships were integrated
to construct interaction networks among interact-
ing proteins (Fig. 3) and the similarity between PPI
networks and KEGG pathways were calculated via
EnrichNet [18, 19]. This analysis detected the follow-
ing proteins: EZH2, DNMT1, NDUFV2, MAPK11,
CCR3, LPAR1, SSTR5, PTPRC, and BMP7 that inter-
act with known PD genes PARK7, LRRK2, and SNCA.
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Table 2
Quantitative real time PCR (qRT-PCR) validation of RNA-seq data

Official gene RNA Type Log2 FC Log2FC p-value p-value
symbol qRT-PCR RNA-seq qRT-PCR RNA-seq

UBC protein coding 4.8 0.37 0.01 0.16
SSTR5 protein coding –2.06 –2.27 0.02 2.3E-08
MAPK11 protein coding –1.09 2.20 0.5 5.26E-12
PTPRC protein coding –1.75 –1.84 0.18 9.37E-09
PARK7 protein coding –1.97 0.14 0.17 0.99
NDUFV2 protein coding –0.76 –2.22 0.06 2.73E-12
LRRK2 protein coding –2.01 –0.1 0.33 0.49
LPAR1 protein coding –1.23 –1.74 0.14 2.32E-08
EZH2 protein coding 2.29 1.72 0.03 3.32E-06
DNMT1 protein coding –1.38 1.14 0.01 0.000255726
CCR3 protein coding –1.2 –4.47 0.05 1.34E-30
BMP7 protein coding –1.84 –2.79 0.01 1.68E-29
AL356309.1 miRNA 0.37 –2.62 0.72 1.35E-13
AC010127.3 antisense –1.52 –2.31 0.08 3.81E-12
RP3-467N11.1 antisense –0.95 –3.24 0.56 9.08E-18
RP5-1051H14.2 lincRNA 1.36 2.68 0.4 1.5E-12
CTD-2066L21.2 lincRNA –1.2 –2.7 0.13 4.03E-14

We successfully confirmed the results of RNA-seq by qRT-PCR validation; the trend of fold changes (FC) in the two groups showed a
76% correlation between RNA-seq and qRT-PCR findings. Log2 fold changes (Log2FC) in qRT-PCR correlated with Log2FC in RNA-seq
(p = 0.01, r2 = 0.65). The qRT-PCR and RNA-seq fold changes for four genes: PARK7, DNMT1, MAPK11 and AL356309.2 were not validated.

Fig. 3. Protein-protein interaction (PPI) network was constructed from differentially expressed genes (DEGs) validated by quantitative
real-time PCR. We mapped 201 DEGs to the STRING database (the hub protein was selected according to the node degree) and screened
significant interactions with a score >0.7. Because of the close relationship between DEGs and known PD genes PARK7, LRRK2 and SNCA,
these genes were added to the module to form a more complete network. Green arrows indicate up-regulated and red bars indicate down-
regulated genes between PD patients and controls that were validated by quantitative real time PCR. AC010127.3 is an antisense RNA to
SCN9a and UC001lva.4 and AC079630 are two lncRNAs on the LRRK2 gene that are all significantly down-regulated in CSF samples of
PD patients as compared to controls. There is no significant difference in the expression of the other genes as measured by qRT-PCR.
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Although these three PD transcripts were not in our
DETs, because of their direct interaction with our
DETs, were added to the module (Fig. 3) as these
protein-coding genes play an important role in the
pathological process of Parkinson’s disease.

Validation of CSF sequencing

Target transcripts included 19 genes from the PPI
network (Fig. 3) and two non-coding RNAs that are
differentially expressed. The differential expression
observed in RNA-seq between the two groups was
validated in 13 out of 17 transcripts (76%) by qRT-
PCR (Table 2). Our comparison of RNA-Seq and
qRT-PCR showed good agreement in both the direc-
tion and magnitude of fold change for candidate
transcripts. Log2 fold changes of these transcripts
in qRT-PCR correlated with RNA-seq (p = 0.01,
r2 = 0.65). AC010127.3 is an antisense RNA to
SCN9a that is down-regulated in qRT-PCR while
SCN9a is significantly up-regulated. UC001lva.4
(p = 0.01, Log2FC = –1.6) and AC079630 (p = 0.001,
Log2FC = –6.72) are two lncRNAs on the LRRK2
locus that are significantly down-regulated in qRT-
PCR while the LRRK2 gene itself is not significantly
altered in expression. NDUFV2 and LRPPRC (mito-
chondrial biogenesis and maintenance factors), are
both significantly down-regulated.

DISCUSSION

Our RNA-seq data and bioinformatics pipeline
suggest that extracellular RNAs might be detectable
in CSF and their presence and differential expression
can be monitored to identify Parkinson’s disease-
related extracellular RNAs. We observed higher
frequency of non-coding RNAs in the CSF of PD
patients compared to controls corroborating previous
reports that various ncRNA species perform essential
functions in the regulation of gene expression during
neural development, plasticity, and aging [20, 21].
Several ncRNAs are implicated in PD [22] and other
CNS diseases. Specifically, long noncoding RNAs
(lncRNAs) are abundantly transcribed and highly
expressed in the brain [25]. Recent evidence suggests
lncRNAs play important roles in neurodegenera-
tive diseases, specifically PD [26] and some reports
suggest a link between LRRK2 and transcriptional
control via non-coding RNAs [27, 28]. While we did
not observe significant changes in LRRK2, we iden-
tified two lncRNAs (UC001lva.4 and AC079630),
located on the LRRK2 locus, that are down-regulated

in PD patients compared to controls. These findings
are in line with previous reports that cite no signif-
icant changes in gene expression patterns between
LRRK2 mutation carriers and either neurologically
normal controls or idiopathic PD patients [27, 29].
Our findings also highlight the need to characterize
these novel lncRNAs from the famous LRRK2 locus.

DNA methyltransferase 1 (Dnmt1) is an impor-
tant chromatin regulator that is downregulated in PD
patients. Alterations in Dnmt1 levels might directly
impact DNA methylation status and therefore, tran-
scription. In support of our findings, a previous study
detected a significant reduction in nuclear Dnmt1 lev-
els in human postmortem brain tissue from PD and
dementia with Lewy bodies (DLB) patients as well as
in the brains of �-synuclein transgenic mice models
[30].

We identified protein tyrosine phosphatase, recep-
tor type, C (PTPRC) to be down-regulated in PD
patients, a finding that is in line with previous studies
showing PTPRC down-regulation in the blood cells
of PD patients [31]. Mitochondrial proteome genes
are also potential candidates for PD association stud-
ies. NADH dehydrogenase (ubiquinone) flavoprotein
2 (NDUFV2) is one of the core nuclear-encoded sub-
units in human mitochondrial complex I and defects
in this subunit have been associated with PD [32, 33].
Our results confirmed previous reports and showed
that NDUFV2 and another mitochondrial biogenesis
and maintenance factor, LRPPRC, were both down-
regulated in PD patients. These mitochondrial genes
have recently been linked to PD pathogenesis and
require further research [34].

Bone morphogenetic protein 7 (BMP7) was down-
regulated in PD patients. Reports suggest that BMP7
has neuroprotective and neuroreparative effects
against 6-hydroxydopamine(6-OHDA) lesioning of
the nigrostriatal dopamine pathway in an animal
model of PD, making BMP7 another interesting and
relevant potential PD biomarker [35]. CCR3 was also
differentially expressed in PD patients. Whereas rel-
atively few studies exist, CCR3 and CCR5 have been
shown to be associated with microglial activation and
regulation of the central nervous system, which could
have Parkinson’s disease relevance [36, 37]. Interest-
ingly, SCN9a was significantly up-regulated and its
antisense transcript, AC010127.3, was significantly
downregulated in qRT-PCR. Recent reports identify
a link between SCN9A and the pathogenesis of pain
in Parkinsonism and global motor delay [38, 39].

Overall, these candidate genes form an interesting
picture of the transcripts present in the CSF. Valida-
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tion of candidates of known importance in PD and
PD-related pathways suggest that CSF transcriptome
profiling holds promise for the identification of novel
PD RNA biomarker discovery.

CONCLUSIONS

Cerebrospinal fluid contains a number of mea-
surable RNA species that can be used to generate
a CSF-RNA transcriptome. Analysis of these pro-
files from a small cohort of PD patients and
controls resulted in the validation of several tran-
scripts, including: Dnmt1, Ezh2, CCR3, SSTR5,
PTPRC, UBC, NDUFV2, BMP7, SCN9, SCN9 anti-
sense (AC010127.3) and two lncRNAs on LRRK2
(AC079630 and UC001lva.4) as potential PD diagno-
sis and treatment RNA biomarkers. These transcripts
were mostly enriched in function for chromatin reg-
ulators, protein-tyrosine phosphatases, endoplasmic
reticulum membrane proteins, and genes that regulate
phosphorylation, dephosphorylation and phospholi-
pase activity. The findings from future large-scale
studies can be used to study gene candidates in a
living cohort longitudinally to determine the most
reliable RNA biomarkers for early PD detection, pre-
diction of disease progression, as well as response
to early intervention and clinical therapeutics over
time. Future studies should also measure the pres-
ence of biomarker candidates in peripheral tissues to
determine if there is a correlation between CSF and
plasma biomarkers.
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