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Review

The Synaptic Function of �-Synuclein
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Abstract. �-Synuclein is an abundant neuronal protein which localizes predominantly to presynaptic terminals, and is strongly
linked genetically and pathologically to Parkinson’s disease and other neurodegenerative diseases. While the accumulation
of �-synuclein in the form of misfolded oligomers and large aggregates defines multiple neurodegenerative diseases called
“synucleinopathies”, its cellular function has remained largely unclear, and is the subject of intense investigation. In this review,
I focus on the structural characteristics of �-synuclein, its cellular and subcellular localization, and discuss how this relates to
its function in neurons, in particular at the neuronal synapse.
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HISTORY

�-Synuclein was named after its localization on
synaptic vesicles and on nuclear envelopes isolated
from the Torpedo electric organ [1]. In parallel,
�-synuclein was identified as the non-amyloid-�
component (NAC) found in amyloid plaques of
Alzheimer’s disease patients [2]. The discovery of �-
synuclein was soon followed by the identification of its
close homologs �- and �-synuclein [3–6]. Since then,
�-synuclein has been linked to various devastating
diseases, including Parkinson’s disease [7, 8], demen-
tia with Lewy bodies [7, 8], multiple system atrophy
[9–11], Alzheimer’s disease [12, 13], pantothenate
kinase-associated neurodegeneration (PKAN; a.k.a.
neurodegeneration with brain iron accumulation type
I; formerly Hallervorden-Spatz syndrome) [14–16],
Pick’s disease [17], diffuse Lewy body disease [18],
Lewy body variant of Alzheimer’s disease [19],
amyotrophic lateral sclerosis (ALS) [20, 21], ALS-
Parkinsonism-dementia complex of Guam [22, 23],
pure autonomic failure [24], frontotemporal demen-
tia [25, 26], progressive supranuclear palsy [27, 28],
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corticobasal degeneration [29], and Krabbe disease
[30], collectively termed “synucleinopathies”. In addi-
tion, genome-wide association studies have identified
a higher risk of sporadic Parkinson’s disease for
individuals with variations in the SNCA gene [31],
highlighting �-synuclein’s genetic link to the disease.
The physiological function of �-synuclein, however,
has remained enigmatic.

�-SYNUCLEIN EXPRESSION &
LOCALIZATION

�-Synuclein is a protein of 140 residues that is pre-
dominantly and ubiquitously expressed in the brain
[4], in particular throughout the neocortex, hippocam-
pus, olfactory bulb, striatum, thalamus, and cerebellum
in the rat brain [32]. While initially described as a
nuclear protein [33, 34], these reports have not been
consistent. In contrast, the presynaptic localization of
�-synuclein has become well established (see below).
Yet, although �-synuclein is highly enriched in synap-
tic boutons which sprout from axons of different
neurochemical phenotypes, �-synuclein is not present
in all synaptic terminals, and, curiously, not all ter-
minals accumulate the protein in neurodegenerative
disorders [35], suggesting selective expression, target-
ing, and pathogenic vulnerability in certain neuronal
populations. Furthermore, although highly enriched in
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the nervous system [2, 4], its expression is not limited
to nervous tissues: significant amounts of �-synuclein
have been detected in red blood cells [36], and low
levels of expression have been found at mRNA and/or
protein level also in other tissues [37–43], suggest-
ing more general cellular functions in addition to its
activity in the brain.

Out of the three synuclein family members,
�-synuclein reveals the most brain-specific expres-
sion [44], and �-synuclein the least [5]. Similar to
�-synuclein, �- and �-synucleins localize to synaptic
terminals [4, 45, 46], and overlap with expression of
�-synuclein in certain brain areas [5, 44, 47]. Although
�- and �-synuclein are absent from Lewy bodies,
they co-localize with �-synuclein in spheroid-like neu-
ronal inclusions in Parkinson’s disease, dementia with
Lewy bodies and PKAN [7, 15]. The identification
of polymorphisms in �- and �-synuclein that pre-
dispose to dementia with Lewy bodies and diffuse
Lewy body disease [18, 48], neurodegeneration in
mutant �- and wild-type �-synuclein transgenic mice
[49–51], co-occurrence of �-synuclein in �-synuclein-
containing Pick bodies in frontotemporal dementia
[17], and the link of �-synuclein to ALS, Gaucher’s dis-
ease, and Alzheimer’s disease [52–54], suggests that
all synucleins may be involved in neurodegenerative
diseases.

Within the nervous system, the expression of �-
synuclein is developmentally regulated. �-Synuclein
mRNA expression begins in late embryonic stages in
rodents, reaches a peak in the first few postnatal weeks,
and is then reduced [55, 56]. �-Synuclein protein levels
increase during development and remain high during

adulthood [56, 57], suggesting post-transcriptional
regulation of its levels. �-Synuclein distributes from
the soma to presynaptic terminals during early weeks
of development in rodents [58, 59] and in humans [60,
61], where it associates with synaptic vesicles [1, 62].
Although it is still unclear how �-synuclein reaches the
synapse, its preference for synaptic vesicle membranes
[1, 62], and its affinity for the vesicular SNARE pro-
tein synaptobrevin-2 [63], synapsin III [64], or rab3A
[65], may target it to presynaptic boutons. Strikingly,
while highly concentrated in presynaptic terminals,
�-synuclein is among the last proteins to reach the
synapse [58, 66]. Together with its presence only in
vertebrates [67], this suggests that �-synuclein has an
activity required for a more complex cellular function
that is not essential for basic neurotransmitter release
or synapse development.

STRUCTURE OF �-SYNUCLEIN

�-Synuclein has a remarkable and unique struc-
ture (Fig. 1). Its N-terminal sequence is divided
into seven 11-mer repeats with a KTKGEV con-
sensus sequence (residues 1–95), which, similar to
apolipoproteins, form an amphipathic alpha-helix with
3 turns, and mediate association of �-synuclein with
lipid membranes [68–72]. This region contains also
the NAC domain (residues 60–95), an area believed
to be responsible for �-synuclein aggregation [2] and
sensing of lipid properties [73]. Curiously, all identi-
fied mutations associated with synucleinopathies are
located in this region: A30P, E46K, H50Q, G51D,
A53E, and A53T [74–80], five of which cluster within

Fig. 1. �-Synuclein domain structure. Upon binding to lipid membranes, the N-terminal domain of �-synuclein folds into two amphipathic
helices; the C-terminal tail of �-synuclein does not contribute to membrane binding. The lipid binding domain can be divided into seven highly
conserved 11-mer sequences. Helix 2 contains the aggregation-prone NAC-domain. All disease-linked mutations of �-synuclein are located in
the second and fourth 11-mer stretch.
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eight residues, suggesting that lipid binding or lack
thereof may be linked to �-synuclein pathology. The
C-terminus of �-synuclein (residues 96–140) is highly
acidic and largely unstructured [68, 69, 81], target
of various post-translational modifications [82], and
believed to be responsible for (i) interactions with pro-
teins (see below), (ii) ion, polycation and polyamine
binding [83–86], (iii) modulation of membrane bind-
ing of �-synuclein [87, 88], and for (iv) protection of
�-synuclein from aggregation [89–91].

INTRACELLULAR POOLS OF
�-SYNUCLEIN

�-Synuclein exists in a dynamic equilibrium
between a soluble state and a membrane-bound state,
with its secondary structure depending on its environ-
ment. The interaction between �-synuclein and lipid
surfaces is believed to be key feature for mediat-
ing its cellular functions (Fig. 2). Soluble cytosolic
�-synuclein is intrinsically unstructured and behaves
like a natively unfolded protein [71, 92–95]. A debate
has recently developed around �-synuclein’s soluble
state, due to a proposed metastable tetrameric form of
�-synuclein [96, 97]. While other studies have demon-
strated that no such cytosolic tetramer exists in the
central nervous system, in erythrocytes, mammalian
cells, and in E.coli [94, 95, 98, 99], binding to cellular
factors, such as lipids or membranes, can induce and
stabilize such multimers [100], as endogenous multi-
mers become unstable as the protein approaches purity
[101].

In presence of lipid membranes, such as artificial
liposomes, lipid droplets and lipid rafts, the N-terminal
residues of �-synuclein adopt an alpha-helical

Fig. 2. Physiological and pathological conformations of �-synuclein
at the synapse. Cytosolic �-synuclein is monomeric and natively
unfolded. Upon binding to synaptic vesicles, the N-terminal residues
of �-synuclein adopt a helical structure. Membrane binding of �-
synuclein is associated with its multimerization, which is essential
for its physiological function at the synapse. Pathologically, unfolded
�-synuclein in the cytosol can convert into �-sheet containing
oligomers (protofibrils) which eventually form amyloid fibrils.

structure which mediates binding of �-synuclein to
membranes [68–71, 102–104]. Membrane binding is
likely a cooperative effect of the 11-mer sequences,
as truncation of the N-terminal domain reduces lipid
binding drastically, and requires acidic head groups
[102–106], such as phosphatidylethanolamine, phos-
phatidylserine or phosphatidylinositol. This suggests
an interaction of the membrane headgroups with
lysines found on opposite sides of the �-synuclein
helix. Both, a single elongated alpha-helix, and a bro-
ken alpha-helix have been reported, depending on
membrane curvature [68, 71, 72], and �-synuclein
is able to transition between these two states [81,
107]: Upon binding to membranes with larger diame-
ter (∼100 nm), �-synuclein adopts an elongated helix
[68, 108–111]. In contrast, in presence of small and
highly curved vesicles, �-synuclein adopts a broken
helix conformation [71, 81, 112, 113], likely to adapt
to the smaller liposome area. �-Synuclein preferen-
tially binds to vesicles of smaller diameter [69, 114],
and as such associates with synaptic vesicles in the
brain [1, 62].

Recently, it was found that �-synuclein is
N-terminally acetylated, mediated by attachment of an
acetyl group to the alpha amino group of the first amino
acid of �-synuclein [94, 95, 115, 116]. N-terminal
acetylation of �-synuclein is seen both in healthy
and Parkinson’s disease individuals, and increases its
helical folding propensity, its affinity for membranes,
and its resistance to aggregation [115–118], suggest-
ing that N-terminal acetylation of �-synuclein could
have important implications for both the native and
pathological structures and functions of �-synuclein
[119]. In addition, phosphorylation of �-synuclein
regulates its structure, membrane binding, protein
interactions, oligomerization, fibril formation, and
neurotoxicity [120–125], although the exact kinases
and phosphatases regulating (de)phosphorylation of �-
synuclein remain unknown. Other post-translational
modifications, such as ubiquitination [126, 127],
sumoylation [128, 129], glycation [130–132], glycosy-
lation [133, 134], nitration [135–137], and proteolysis
[12, 89, 138, 139], can result in changes in protein
charge and structure. This may lead to altered bind-
ing affinities with other proteins and lipids, but their
functional significance remains unknown and contro-
versial.

�-Synuclein folding stabilizes and protects its tar-
get membrane [140], and membrane-binding protects
�-synuclein from aggregation [141–144], although
membrane binding has also been reported to acceler-
ate aggregation under oxidative stress [145]. Recently,
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alpha-helical multimers of �-synuclein have been
reported upon binding of �-synuclein to membranes,
which are required for its physiological function at
the synapse, and protect �-synuclein from aggrega-
tion [100, 142, 146]. In contrast to these physiological
conformations, in its pathologically relevant state,
�-synuclein adopts a beta-sheet rich conformation
which is accompanied by aggregation and fibril for-
mation, and deposition into Lewy bodies [147–151].
These cytosolic aggregates are likely derived from the
less stable, natively unfolded conformations of cytoso-
lic �-synuclein [142].

�-SYNUCLEIN FUNCTION AT THE
SYNAPSE

The normal function of �-synuclein remains enig-
matic, despite more than 25 years of research.
Assessing the normal function of �-synuclein has been
challenging, because: (i) �-Synuclein is an intrinsically
unstructured protein that cycles between a natively
unfolded state in cytosol, and a helical multimeric state
on membranes [71, 92–95, 100]; (ii) Overexpression
of �-synuclein triggers toxic effects in humans [152,
153] and in animal models [154–156], that are much
worse than the effects caused by loss of �-synuclein
[157, 158]. This disconnection of the pathogenic activ-
ity of �-synuclein from its physiological function [159]
complicates findings in overexpression models; (iii)
Potential compensation of �-synuclein function by its
isoforms �- and �-synuclein complicate findings in
knockout animals and necessitate simultaneous knock-
out of all isoforms or acute manipulation, such as done
via viral injections. However, �-synuclein’s presynap-
tic localization and its interaction with highly curved
membranes and synaptic proteins strongly suggests a
regulatory function associated with the synapse, such
as synaptic activity, synaptic plasticity, learning, neu-
rotransmitter release, dopamine metabolism, synaptic
vesicle pool maintenance, and/or vesicle trafficking
(Fig. 3).

Protein interactions

�-Synuclein has been reported to interact with and
affect a variety of proteins, mostly at the presynap-
tic terminal. This includes a controversial binding of
phospholipase D [160–163], regulation of the mem-
brane interaction of the G-protein rab3 [65], binding
to the SNARE-protein synaptobrevin-2 and chaperon-
ing SNARE-complex assembly [63, 159], binding and
modulation of synapsin III [64], binding of VMAT2

Fig. 3. Function of �-synuclein at the synapse. Shown are the
synaptic processes that �-synuclein has been reported to affect,
including membrane remodeling, modulation of the dopamine
transporter DAT and vesicular monoamine transporter VMAT2, clus-
tering of synaptic vesicles and maintaining synaptic vesicle pools,
promoting SNARE-complex assembly, and modulating the release
cycle of synaptic vesicles.

[164], dopamine and serotonin transporters [165–167],
and regulation of tyrosine hydroxylase [168–170].
While these interactions are compatible with a function
at the presynaptic terminal, the reported localization of
�-synuclein to mitochondria [171–173], endoplasmic
reticulum [174, 175], Golgi [174, 175], and nuclei [1,
176] may arise from an altered subcellular distribution
or spillover to other membranes, due to overexpres-
sion or during cell disruption. Overall, the functional
significance of most of these findings remains unclear.

Lipid transport, lipid packing and membrane
biogenesis

The similarity of �-synuclein with class A2
apolipoproteins and decreased brain palmitate, phos-
phatidylglycerol and cardiolipin metabolism in
absence of �-synuclein [177–179] suggest a role
in lipid metabolism, although lipidomic profiling
of brains from synuclein transgenic and knockout
mice revealed minimal effects of synuclein on lipid
metabolism [180]. �-Synuclein has been reported to
bind to fatty acids [181], and may thus serve as a fatty
acid transporter between the cytosol and membrane
compartments, while other studies suggest the con-
trary [182]. Furthermore, �-synuclein has been shown
to induce membrane curvature and convert large vesi-
cles into highly curved membrane tubules, cylindrical
micelles and vesicles [183–187], driven by binding
affinity, partition depth, and interleaflet order asymme-
try [188]. In addition, �-synuclein has been reported
to organize membrane components [189], to modulate
phospholipid composition [190], and to be a specific
inhibitor of phospholipase D1 and D2 in vitro and
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in vivo [160–162]. This suggests that �-synuclein may
be involved in cleavage of membrane lipids and mem-
brane biogenesis. Yet, the data on �-synuclein and
phospholipase D inhibition are controversial [163].
Last, �-synuclein has been reported to sense lipid pack-
ing defects and to affect lipid packing [191, 192],
and binding of �-synuclein to synaptic vesicles may
stabilize them via stabilizing their intrinsically tight
curvature [193].

Impact on dopamine metabolism and
dopaminergic neurons

While many types of neurons are affected in
Parkinson’s disease [194–196], a remarkable sign is
the loss of dopaminergic neurons in the substan-
tia nigra, and the resulting deficiency of dopamine
signaling [197–199]. Despite tremendous strides in
the understanding of �-synuclein function and dys-
function, the increased vulnerability of dopaminergic
neurons to �-synuclein pathology remains unclear at
the mechanistic level. �-Synuclein has been proposed
to regulate homeostasis of monoamines in synapses,
via interaction with the serotonin transporter [165].
It binds to and regulates the targeting and the activ-
ity of the dopamine transporter DAT [166, 167, 200],
although its mode of action remains controversial
[201–203]. �-Synuclein inhibits dopamine synthesis
by inhibiting the expression and activity of tyrosine
hydroxylase [154, 168–170, 204], likely via reducing
the phosphorylation state of tyrosine hydroxylase and
stabilizing dephosphorylated inactive tyrosine hydrox-
ylase [168, 205–207]. In agreement, aging-related
increases in �-synuclein expression in the substantia
nigra negatively correlate to the expression of tyro-
sine hydroxylase [57]. In addition, �-synuclein affects
the vesicular dopamine transporter VMAT2: Knock-
down of �-synuclein increased the density of VMAT2
molecules per vesicle, while overexpression inhibits
VMAT2 activity, interrupting dopamine homeostasis
by causing increased cytosolic dopamine levels [164].
In agreement with a function in dopamine metabolism,
absence of �-synuclein causes decreased reuptake of
dopamine in the dorsal striatum [208], a 36% reduc-
tion in striatal dopamine, accompanied by a reduction
in tyrosine hydroxylase-positive fibers in the stria-
tum, decreased striatal levels of tyrosine hydroxylase
and dopamine transporter [209], and a decrease in
the number of dopaminergic neurons in the substan-
tia nigra [210, 211]. In addition, �/�-synuclein double
knockout mice display 20% reduced dopamine lev-
els, with no change in dopamine uptake and release

[212], a two-fold increase in extracellular dopamine
levels upon striatal stimulation, and hyperactivity in
a novel environment, which is reminiscent of mice
expressing reduced levels of the dopamine transporter
[213]. Overall, this suggests that dopaminergic neurons
may have both, a higher need for �-synuclein function,
and a higher susceptibility to �-synuclein dysfunction.
Yet, the presence of �-synuclein in cells other than
dopaminergic neurons suggests a more general activity
in neuronal function.

Molecular chaperone activity

The biochemical structure of �-synuclein predicts
a function as a molecular chaperone capable of
binding to other intracellular proteins. This hypoth-
esis was strengthened by three observations: First,
�-synuclein shares structural and functional homology
with the 14-3-3 family of molecular chaperone proteins
[214]. Second, via its C-terminal domain, �-synuclein
suppresses the aggregation of thermally denatured pro-
teins [215–219], and overexpression of �-synuclein
protects dopaminergic neurons from oxidative stress
and apoptosis [220, 221]. Third, �-synuclein res-
cues the lethal neurodegeneration caused by knockout
of the co-chaperone CSP� in mice by chaperoning
assembly of synaptic SNARE-complexes [63, 222].
This function of �-synuclein is essential for long
term functioning of neurons, since �-, �-, �-synuclein
triple-knockout mice have reduced SNARE-complex
assembly, show neuropathological signs and reveal
shortened survival [63, 223, 224]. This chaperone func-
tion is consistent with the lack of an acute effect
of �-synuclein on cell survival and neurotransmitter
release, and may become particularly important under
stressful conditions and during the long life of a neuron.

Neurotransmitter release and synaptic plasticity

The presynaptic localization of �-synuclein, its
interaction with synaptic vesicles [1, 62] and
synaptobrevin-2 [63], its SNARE-complex chaperon-
ing activity [63], and its changes during periods of
song-acquisition-related synaptic rearrangements in
birds [225] strongly argues for a role in neurotransmit-
ter release and synaptic plasticity, although its precise
function remains unclear. Yet, absence of �-synuclein
in worms, flies and yeast suggests that �-synuclein
is not required for synaptic transmission or mem-
brane trafficking in general. In agreement, knockout of
�-, �/�-, �/�-, or �/�/�-synucleins does not induce
morphological changes in the brain [63, 157, 212, 224],
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although changes in synaptic protein levels [63, 212],
changes in synapse structure and size [223], and
impairments in survival [63, 223] have been reported in
synuclein triple knockout mice. Together with neuro-
muscular pathology in mice lacking �-synuclein [226],
and reduced working and spatial memory learning in �-
synuclein knockout mice [227, 228], this suggests that
�-synuclein contributes to the long-term operation of
a neuron.

The effect of �-synuclein on neurotransmission
and synaptic plasticity has been investigated both in
knockout and under overexpressing conditions, where
�-synuclein has been reported to both promote and
inhibit neurotransmitter release, or have no effect at
all. While some studies reported a lack of effect of �-
synuclein on neurotransmitter release [63, 212, 229],
others revealed an enhancement of synaptic transmis-
sion [223, 224, 230–234], or a decrease in release
[157, 158, 213, 223, 235–237]. Two recent studies have
reported an inhibitory effect of �-synuclein on synap-
tic vesicle endocytosis during intense stimulation, but
not under basal levels [238, 239], while another study
reported an enhancement of clathrin-mediated endo-
cytosis by �-synuclein in neuronal and non-neuronal
cells [240]. Whether the inconsistent results obtained
for the effects of �-synuclein on neurotransmission
and synaptic plasticity could be ascribed to the experi-
mental models used and the investigated brain regions,
needs to be determined. It seems to be clear, though,
that �-synuclein is not required for basal neurotrans-
mission, but plays an important role in maintaining
neurons during intense neuronal activity and over their
long lifetime.

How does �-synuclein exert its effect on the neu-
rotransmission machinery? Within the presynaptic
terminal, �-synuclein is highly mobile, as shown by
photo-bleaching experiments, and �-synuclein dis-
perses from synaptic vesicles upon stimulation [241,
242], similar to synapsin I [243]. Facilitated by
its dynamic membrane-binding, this suggests that
�-synuclein can be recruited to the site of high
membrane-fusion activity, and that neural activity con-
trols the normal function of �-synuclein at the nerve
terminal. Indeed, �-synuclein attenuates the mobility
of synaptic vesicle pools between presynaptic boutons
and maintains the overall size of the recycling pools at
individual synapses [244].

In vitro, �-synuclein inhibits docking of synaptic
vesicle mimics with plasma membrane mimics [245,
246]. This inhibition is not caused by interfering with
the fusion process itself, but is due to clustering of
synaptic vesicle mimics, a process strongly dependent

on �-synuclein’s ability to associate with lipids and
synaptobrevin-2 [246]. �-Synuclein driven vesicle
clustering has been initially reported in yeast [247,
248]. Recently, �-synuclein has been reported to clus-
ter synaptic vesicles in neurons [146], which is likely
mediated by �-synuclein’s ability to form multimers on
the vesicle surface [100, 146]. This clustering activity
of �-synuclein restricts synaptic vesicle motility [146],
and thereby likely affects the kinetics of neurotransmit-
ter release. Supportively, �-synuclein associates with
specific subpopulations of synaptic vesicles [100, 249],
and cooperatively regulates synaptic function with
synapsin III in dopaminergic neurons [64]. In addition,
�-synuclein knockout synapses reveal a selective defi-
ciency of undocked vesicles without affecting docked
vesicles [158], and knockdown of �-synuclein leads
to a significant reduction in the distal pool of synaptic
vesicles [66].

How does clustering of synaptic vesicles by
�-synuclein multimers relate to increased SNARE-
complex levels? �-Synuclein induced vesicle clus-
tering may increase the local concentration of
synaptic vesicles and thereby of the SNARE protein
synaptobrevin-2. This clustering of synaptic vesicles
at the active zone would promote the formation of
neuronal SNARE-complexes by constraining addi-
tional synaptic vesicles close to the active zone.
Supportively, the SNARE-complex assembly deficit in
�/�/�-synuclein triple knockout mice aggravates with
increased synaptic activity [63].

Overall, the effect of �-synuclein on neurotransmit-
ter release is likely not mediated by directly acting on
the release machinery, but by affecting the spatial orga-
nization of distinct synaptic vesicle pools within the
presynaptic terminal, possibly via �-synuclein multi-
merization, which is triggered by membrane binding
and potentiates SNARE-complex assembly [100]. This
activity of �-synuclein contributes to the long-term
operation of the nervous system, suggesting that alter-
ations in the physiological function of �-synuclein
could promote the development of neuropathology in
Parkinson’s disease and related disorders.

CONCLUSION

�-Synuclein is important for the normal function and
integrity of synapses, and in the aging nervous system,
dysfunction of �-synuclein becomes a predisposing
factor for synaptic dysfunction and the development of
neuropathology. Overexpression of �-synuclein trig-
gers redistribution of the SNARE proteins SNAP-25,
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syntaxin-1 and synaptobrevin-2 in an age-dependent
manner in the striatum [250], impairs proper vesicle
trafficking and recycling [175, 248, 251, 252], and
large �-synuclein oligomers inhibit SNARE-mediated
vesicle fusion in vitro [253]. Furthermore, misfolded
�-synuclein, in the form of oligomers and aggregates,
is believed to be toxic [254, 255], and recent studies
have revealed propagation of misfolded �-synuclein
between neurons [256–259]. However, many questions
remain unclear, including the causes of the selective
vulnerability of dopaminergic neurons in Parkinson’s
disease, the triggers for �-synuclein aggregation and
pathology, and the role of aging in the pathogenesis of
Parkinson’s disease. Understanding how �-synuclein
localizes to and functions at the synapse, will pro-
vide a biological context to how it misfolds, which
species of �-synuclein are toxic, how these species are
released and taken up by neurons, and how they nucle-
ate new aggregates in a healthy cell. It is clear that
either too little or too much �-synuclein is deleterious
for the brain. Thus, aiming at maintaining a healthy bal-
ance of �-synuclein in the brain is a worthwhile target
for preventing synucleinopathies, while maintaining its
normal brain function.
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